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Abstract

Background

The complexity of biological systems motivates us to use the underlying networks to provide
deep understanding of disease etiology and the human diseases are viewed as perturba-
tions of dynamic properties of networks. Control theory that deals with dynamic systems
has been successfully used to capture systems-level knowledge in large amount of quanti-
tative biological interactions. But from the perspective of system control, the ways by which
multiple genetic factors jointly perturb a disease phenotype still remain.

Results

In this work, we combine tools from control theory and network science to address the diver-
sified control paths in complex networks. Then the ways by which the disease genes perturb
biological systems are identified and quantified by the control paths in a human regulatory
network. Furthermore, as an application, prioritization of candidate genes is presented by
use of control path analysis and gene ontology annotation for definition of similarities. We
use leave-one-out cross-validation to evaluate the ability of finding the gene-disease rela-
tionship. Results have shown compatible performance with previous sophisticated works,
especially in directed systems.

Conclusions

Our results inspire a deeper understanding of molecular mechanisms that drive pathological
processes. Diversified control paths offer a basis for integrated intervention techniques
which will ultimately lead to the development of novel therapeutic strategies.
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Introduction

Network medicine [1] deals with complexity by simplifying cellular systems, summarizing
them merely as biomolecular networks which are graphs with components (nodes) and inter-
actions (edges) between them. There are different types of biomolecular networks such as
genetic regulatory networks [2, 3], biochemical reaction networks [4, 5] and protein-protein
interaction networks [6, 7] represent the functional, biochemical and physical interactions that
can be identified with a plethora of technologies [8]. Network-based approaches to human dis-
ease take a complex disease stems as the malfunctions of corresponding biomolecular networks
[9, 10]. Therefore, one of important tasks is to identify the effects of cellular interconnectedness
on disease progression.

Recently, control theoretical tools of complex network have become a topic of active pursuit
[11-20] and been successfully used to analyze biomolecular networks. Many dynamic proper-
ties of complex disease, mediated by the underlying cellular network, can be learned from the
control effects exerted by genetic factors or drugs [20-24]. In particular, Liu et al. [11] intro-
duce a maximum matching approach to predict minimum driver set (MDSet) nodes for the
control of various biological networks. Additionally, Liu et al. [20] elucidate the principles
behind biochemical network observability by offering the essential sensors in cell communica-
tion or biomarker design. Rajapakse et al. [21] examine various aspects of a genomic state-
dependent dynamic network and elaborate on the controllability of genomic networks during
processes of genomic reorganization. Wuchty [22] shows that MDSets of proteins are more
likely to be essential, cancer-related and virus-targeted genes and closely related to bottleneck
interactions, regulatory and phosphorylation functions, and genetic interactions. Melissa et al.
[23] assess the output controllability of protein glycosylation in Chinese Hamster Ovary Cell
for addressing the problem of glycosylation heterogeneity. Dealing with dynamic systems that
respond to external inputs with specific output signals, these works have successfully achieved
the important functional characteristics of MDSets nodes for the control of complex biological
networks. Whereas they only focus on the control roles of nodes, an intriguing question, how-
ever, remains what exactly the control paths by which genetic factors perturb biological net-
works look like.

Therefore, we wondered whether control paths that are related with pathogenesis of the
complex disease from the perspective of network medicine as well. Starting from an MDSet
genetic factors whose time dependent control can guide the whole biological network to any
desired final state, input control signals transmit along directed paths to all other genetic fac-
tors. These directed paths are called control paths. The dynamical process of propagating the
perturbation influence relies on these control paths. We expected that the control paths carry
biological significance, for example, disease-related pathway.

In this work, the control paths are defined on the maximum matching set (MMSet) edges
which are a stem-cycle disjoint cover of the network and show us the directed paths along
which the input control signals are transmitted. Moreover, diversified MMSets bring us diversi-
fied control paths (DCpaths) in which a node participates. For this node, the downstream
reachable set nodes in these DCpaths are used to index its perturbation influence in this net-
work. Focusing on the currently best investigated interactomes we determined the genes’
DCpaths in a human regulatory network. The known disease genes’ perturbation ranges were
indeed enriched with disease-related pathways. Furthermore, DCpaths are used to analyse
gene-phenotype relationship data from the Online Mendelian Inheritance in Man (OMIM)
[25] and to test, by the leave-one-out cross-validation, the application in prioritizing candidates
for all diseases with at least two known disease genes. The case studies of Alzheimer Disease,

PLOS ONE | DOI:10.1371/journal.pone.0135491 August 18,2015 2/15



@’PLOS ‘ ONE

Control Paths in Regulatory Network

Diabetes Mellitus Type 2 and Leukemia strongly suggest that such well-defined DCpaths have
significance in the identification of novel causal genes and disease pathways.

Results
Diversified control paths

According to Kalman’s controllability rank condition [26], a linear time-invariant dynamic
system X (t) = A - X(t) + B - u(t) is controllable, if and only if the the n x nm controllability
matrix Q¢ has full rank, i.e.,

rank(Q.) = [B,AB,A’B,...,A" 'B| =n (1)

where the state vector X € R", A € R" x R" is the adjacency matrix, B € R" x R" is the input
matrix, u € R" is the input vector, m is the number of driver nodes and # is the number of
nodes. The underlying directed network of this system is denoted by G(A), with node set V and
link set L. But, it is computationally infeasible for complex networks to verify Kalman’s condi-
tion. To overcome this difficulty, Liu et al. [11] proposed the concept of maximum-matching
set (MMSet) to assess and quantify structural controllability of arbitrary complex networks. A
particularly useful result is the number of MDSet nodes (Np) required to fully control a net-
work G(A) is max{n — |M|,1}. An MMSet is a link set M C L with maximum cardinality, and
no two links in M may share a common starting node or a common ending node. |M| denotes
the size of MMSet.

The controllability of a complex network concentrates on the interaction structure in which
the pattern of influence may be known, but not the specific extent of influence [18]. In response
to unknown or uncertain link weights, the controllability is used to uncover the generic proper-
ties of systems, independent of parameter values [27]. An MMSet shows the important links by
which we can construct the cactus structures efficiently in a complex system [11]. The cactus
must be the most economical topology-structure pattern to propagate control influence, since
the cactus is a minimal structure such that removing any link will render the structure uncon-
trollable [28]. Therefore, we should recognize that the MMSet not only reveals the MDSet but
also consists of a backbone of the key control paths. It forms a stem-cycle cover of the original
network. Starting from the MDSet nodes input control signals transmit along the directed
paths which are constructed by the MMSet links to guide the whole network to any desired
final state. These directed paths are called control paths.

Definition 1. Control Path Set (CPSet) Cy is composed of the control paths which are con-
nected by the links of a maximum-matching set M in a complex network.

For example, a system with adjacency matrix A and input matrix B in Fig 1A, from the Kal-
man’s controllability matrix Qc shown in Fig 1B, we can see the following important structural
information for global controllability:

i. Ifay; =0, rank(Qc) < n. Node 4 must only be influenced by node 1.

ii. If as, =0, rank(Qc) < n. When node 4 is controlled by node 1, node 3 must be influenced
by node 2.

iii. If as3 =0, rank(Qc) < n. Node 5 must be influenced by the state of node 3.

iv. If as; =0, rank(Qc) = n can be true. Without the influence coming from node 1, node 3 and
node 5 can also be controlled.

Maximum matching is usually used to solve the assignment problem. Then we can also take
the maximum matching as an assignment scheme of control influences in a complex network.
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Fig 1. A schematic diagram of diversified control paths. (a): a linear dynamic system with adjacency matrix A and input matrix B. (b): the Kalman’s
controllability rank condition, if rank(Qc) = n, this system is controllable. (c): for the underlying network, propose a maximum-matching set (MMSet) to assess
the structural controllability. Links of the MMSet are highlighted by red. (d): for a network G(A), differentiated MMSet M, and M, marked by red, construct
diversified control path sets. Disease genes are marked by purple and their perturbation ranges are indicated by shadow areas.

doi:10.1371/journal.pone.0135491.g001

Control influences are assigned according to an MMSet marked by red colour in Fig 1C, and
the original network is divided into two control paths, through which all nodes can be con-
trolled by the MDSet nodes marked by green colour. Losing some intricate control information
between nodes inevitably, the MMSet absolutely retains all the four structural properties listed
above and shows us the CPSet to govern the whole network. Therefore, we take the control
paths as the significant pathways, implying critical topological information, which are related
to the dynamical process of propagating the perturbation influence.

Furthermore, we note that, for a network there are diversified MMSets. Each one brings to
our eyes a unique CPSet through which control influences transmit. The approach to enumer-
ate diversified MMSets is given below. As showed in Fig 1D, for the network G(A), differenti-
ated MMSet M; and M, marked by red colour, can shoulder the same control responsibilities
and form diversified CPSets. The perturbation range (Pr) of a given node i under a MMSet M;
is a node set indicated as

Pr,(C,) = {jlnodej is reachable from node i through CPSet C, }. (2)

k=1,2.. K, Kis the number of existing MMSets. Links in M invariably connect the nodes of
Pr; (Cy) into a cactus structure originating from node i. Lin’s theorem [28] has demonstrated
that a linear control system is structurally controllable if and only if the associated digraph can
be spanned by cacti. So the states of nodes in Pr; (C) can be fully controlled by influencing
node i. Two shadow areas in Fig 1D have displayed the perturbation ranges of two disease
genes highlighted by purple.

Definition 2. Set | J, C, is the diversified control paths (DCpaths) of a complex network.
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Fig 2. The perturbation influences of disease genes of the Tuberculosis (MIM:107470). (a): A CPSet of the partial human regulatory network, the
MMSet links are highlighted by red, the disease gene IFNGR1 and IFNG are marked by purple, their perturbation ranges are circled with red and blue dotted
lines respectively. (b): Another differentiated CPSet. (c): the perturbation influences of IFNGR1 and IFNG are marked by red and blue shadow respectively.

doi:10.1371/journal.pone.0135491.9002

Then the perturbation influence (Pi) of a given node i can be indicated as

Pi, = {j|lnodej is reachable from node i through DCpaths }. (3)

What we exactly want to do is use the perturbation influence, based on the control paths, to
identify and quantify the ways by which disease genes perturb biological systems.

Perturbation influence of disease genes

Firstly, we focus on how the known disease genes intervene in a biological system. The
DCpaths of a human regulatory network (Table A in S1 File) is detected to reveal the perturba-
tion influences of disease genes. Intuitively, for a disease, the overlap of disease genes’ perturba-
tion influences can be taken as the significant pathways, which are related to its etiology
essentially.

In Fig 2, the Tuberculosis (MIM:107470) in OMIM has 2 disease gene IFNGR1 and IFNG,
which are also characterized by the partial regulatory network. Fig 2A and 2B show us two dif-
ferentiated CPSets (highlighted with red) and the perturbation ranges of IFNGR1 and IFNG
(circled with red and blue dotted lines respectively). Diversified control paths indicate the per-
turbation influences of IFNGRI1 and IFNG (marked by red and blue shadow respectively) in
Fig 2C. Their overlapped gene set {CDK4, CSDA, CKS1B, SKP2, CDKNI1B} is considered as
the potential pathways which have close relationships with pathogenesis of the Tuberculosis.
All the five genes participate in the small cell lung cancer pathway (hsa05222 in KEGG [29]).

Also, we proceed to execute the DCpaths analysis on Thrombocythemia (MIM: 187950)
and Immunodeficiency (MIM: 610163). The results are given in Table 1 with the disease name,
disease gene list, genes’ perturbation influences and their common Gene Ontology (GO) terms
[30]. For Thrombocythemia, the three known disease genes TPO, JAK2 and MPL can thor-
oughly perturb some common ranges which have the same biological functions, such as JAK-
STAT cascade, growth hormone receptor signaling pathway, cytokine-mediated signaling
pathway, etc. For Immunodeficiency, its known disease genes CD3E and CD3G almost have
the same perturbation influences on the regulatory network, which chiefly affect the immune
response of human.
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Table 1. Instances for the perturbation influence of disease gene.

Disease Disease
gene
TPO
Thrombocythemia(MIM: JAK2
187950)
MPL
CD3E

Immunodeficiency(MIM:
610163) CD3G

doi:10.1371/journal.pone.0135491.t001

Perturbation influence

JAKS, STAT1, SOCSH, IL20RB, TYK2,
STAT4, SOCS4, CSF2RB, BAX

STAT1, SOCS1, JAKS, IL20RB, STAT2,
SOCS7, CRLF2

JAKS, STAT1, SOCS1, IL20RB, TYK2,
STAT4, SOCS4, CSF2RB, BAX
ZAP70, CD3D, CD3Z, NCR3, FCER1G,
NCR1, FCER1A, MS4A2, FCGR3

ZAP70, CD3Z, NCR3, FCER1G, NCR1,
FCER1A, MS4A2, FCGR3

Common Gene Ontology term

JAK-STAT cascade, Growth hormone receptor signaling pathway,
Cytokine-mediated signaling pathway, . ..

Innate immune response,Regulation of immune response,
Regulation of immune effector process,Regulation of defense
response,. ..

It is clear that the DCpaths can be used to index the ways by which the disease genes influ-
ence pathological processes. And for the same disease, known disease genes’ perturbation influ-
ences are same and indeed enriched with disease-related pathways. To further demonstrate the
power of DCpaths, we prioritize the candidate genes based on the assumption that the genes
cause the same disease by driving the same perturbation influence in the human regulatory
network.

Prioritization of candidate genes

With investigation of the relative location of the candidate to all of the known disease genes by
the use of perturbation influence, we assign a score to each of the candidate genes:

score(i) = max {sim(Pi, Pi )|x € X,} (4)

where, X, is the set of known disease genes of disease d, for any given disease genes x € X, the
biological functional similarity between the perturbation influence Pi; and Pi, is calculated.
The maximum value of similarities is taken as the score of a gene i for disease d. The details of
how the similarity is obtained are given below. Then the genes are ranked according to the
score in order to define a priority list of candidates for further biological investigation.

In Table 2, Alzheimer Disease (MIM:104300), Breast cancer (MIM:114480) and Colorectal
cancer (MIM: 114500) are proceeded for studies. Unsurprisingly, our method assigned the
high ranks to the known disease genes in all cases. What is more, we detect some potential
causal genes from the top ranked candidate genes as showed in Table 3. Most of them have
been proved to be closely related to the corresponding dieases’ pathogenesis by the existing lit-
eratures. For instance, Kanekiyo et al. [31] have demonstrated that the low-density lipoprotein
receptor-related protein 1 (LRP1) plays a critical role in brain amyloid- (AB) peptides clear-
ance and the Accumulation, aggregation, and deposition of A are likely initiating events in the
pathogenesis of Alzheimer’s disease (AD); Protein precursor cleaving enzyme 1 (BACE1) is the
first protease and the rate limiting enzyme in the genesis of amyloid-p. This protein remains an
important potential disease-modifying target for the development of drugs to treat AD [32];
Protein kinase C-alpha (PRCK1) regulates MDR1 expression with siRNA and reverse che-
moresistance of ovarian cancer [33]; Epidermal growth factor (EGF) receptor is frequently
overexpressed in the malignant phenotype of ovarian cancer leading to increased cell prolifera-
tion and survival [34]; AQP7 is a glycerol channel in adipose tissue with a suggested role in
controlling the accumulation of triglycerides and secondly development of obesity and type-2
diabetes [35]; PIM-2 is a proto-oncogene and highly expressed in neoplastic tissues and in leu-
kemic and lymphoma cell lines, the nuclear factor kappa B (NFKB1) pathway appears to be
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Table 2. The ranks of known disease genes for three instances.

Alzheimer Disease (MIM:104300)

Disease gene Rank
APP 7
NOS3 5
Breast cancer (MIM:114480)
Disease gene Rank
CDHA1 6
PIK3CA 5
Colorectal cancer (MIM: 114500)
Disease gene Rank
CTNNB1 19
AXIN2 2
APC 1
CCND1 5
EP300 13
BUB1 12

doi:10.1371/journal.pone.0135491.t002

Disease gene Rank Disease gene Rank
PLAU 4 A2M 2
PSEN1 3 APOE 1
Disease gene Rank Disease gene Rank
TP53 4 ATM 2
PPM1D 3 RAD53 1
Disease gene Rank Disease gene Rank
PIK3CA 16 TP53 9
SRC 3 TGFBR2 4
NRAS 7 BAX 18
BRAF 6 PLA2G2A 10
DCC 14 FGFR3 17
BUB1B 11 BCL10 8

deregulated in a variety of tumors, with sustained activity of NFKB1 leading to apoptotic resis-
tance in tumor cells [36].

We test our DCpaths-based method by Leave-One-Out Cross Validation (LOO-CV) [37].
Removing one disease-gene association in each cross validation trial, if this association can be
ranked within top k% over the entire human regulatory network, it can be said that the associa-
tion is reconstructed successfully. We evaluated prioritization results in terms of overall recall
when varying the rank threshold k%. In Fig 3, the comparison with the sophisticated method
PRINCE [38], obtained by prioritizing candidates on all 112 diseases in the LOO-CV, shows
that our method achieve compatible prediction outcomes with PRINCE and further illustrate
the disease genes perturb the biological system by the DCpaths we mentioned.

Case study

Furthermore, to further demonstrate the significance of perturbation influences, we examine

whether forecasted causal genes are enriched with disease pathways on multifactorial disorders
or not. Alzheimer Disease (MIM:104300), Diabetes Mellitus, Type 2 (MIM:125853) and Leuke-
mia (MIM:601626) are selected for case studies. We take the top 30 ranked candidate genes for

Table 3. The top ranked candidate genes for some instances.

Disease Candidate Gene Rank
Alzheimer Disease (MIM:104300) LRP1 6
Alzheimer Disease (MIM:104300) BACE1 17
Ovarian cancer (MIM: 167000) PRKCH1 4
Ovarian cancer (MIM: 167000) EGF 5
Diabetes Mellitus, Type 2 (MIM:125853) AQP7 23
Leukemia (MIM:601626) PIM2 13
Leukemia (MIM:601626) NFKB1 26
Colorectal cancer (MIM:114500) PECAM1 15
Amyloidosis (MIM:105200) APBB1 1

doi:10.1371/journal.pone.0135491.t003
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Fig 3. Comparison in performance between our method and PRINCE. A plot of recall versus rank
threshold, rank threshold k% means that the gene was ranked within top k%.

doi:10.1371/journal.pone.0135491.g003

these cases as the causal genes and check the metabolic pathways they participate in by Gene-
Trail [39]. Typical output of GeneTrail is a set of metabolic pathway terms with the size of the
query and the term gene lists, their overlap gene lists and the statistical significance (p-value) of
such enrichment.

Alzheimer Disease (MIM:104300) in OMIM gives a list of 6 known disease genes, which
are also characterized by the human regulatory network. Besides these genes, the functional
enrichment of other 24 causal genes within the top 30 are analysed in Table 4. We can see that
8 of them are involved in hsa04610: Complementand coagulation cascades (p-value = 4.69-
08), that 5 of them are involved in hsa05010: Alzheimer's disease (p-value = 6.04e-04), etc.
Almost all the pathways are closely related with the current knowledge on Alzheimer Disease.

Diabetes Mellitus, Type 2 (MIM:125853) in OMIM gives a list of 12 known disease genes,
which are also characterized by the human regulatory network. Besides these genes, the func-
tional enrichment of other 18 causal genes within the top 30 are analysed in Table 5. We can

Table 4. Enrichment analysis of causal genes in Alzheimer Disease.

Metabolic pathway

hsa04610: Complementand coagulation
cascades

hsa05010: Alzheimer's disease
hsa04210: Apoptosis
hsa04914: Progesterone-mediated oocyte

maturation
hsa05142: Chagas disease

doi:10.1371/journal.pone.0135491.1004

P-value Expected number of Number of Gene
genes genes

4.69e- 0.381904 8 PLAUR, PLG, F2, SERPINE1, F13B, FGA,
08 F13A1, F11

6.04e- 0.636507 5 LRP1, BACE2, GAPDH, BACE1, LPL
04

2.60e- 0.879537 6 AKT2, AKT1, AKT3, PRKACG, NFKB1, PRKX
03

1.59e- 0.856391 5 AKT2, AKT1, AKT3, PRKACG, PRKX
02

2.14e- 0.960547 5 AKT2, AKT1, AKT3, SERPINE1, NFKB1
02
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Table 5. Enrichment analysis of causal genes in Diabetes Mellitus, Type 2.

Metabolic pathway

hsa04930: Type Il diabetes mellitus

hsa04960: Aldosterone-regulated
sodium reabsorption

hsa04910: Insulin signaling pathway
hsa04070: Phosphatidylinositol

signaling system
hsa04150: mTOR signaling pathway

doi:10.1371/journal.pone.0135491.t005

P- Expected number  Number of Gene

value of genes genes

3.75e-  0.302998 8 PKLR, PIK3R3, PIK3R2, PIK3R1, PIK3R5, PIK3CG,
09 PIK3CB, PIK3CD

5.43e- 0.208311 7 PIK3R3, PIK3R2, PIK3R1, PIK3R5, PIK3CG, PIK3CB,
09 PIK3CD

1.12e- 1.13624 11 PKLR, PTPN1, EXOC7, TRIP10, PIK3R3, PIK3R2,
08 PIK3R1, PIK3R5, PIK3CG, PIK3CB, PIK3CD

3.11e-  0.284061 7 PIK3R3, PIK3R2, PIK3R1, PIK3R5, PIK3CG, PIK3CB,
08 PIK3CD

1.79e- 0.369279 7 PIK3R3, PIK3R2, PIK3R1, PIK3R5, PIK3CG, PIK3CB,
07 PIK3CD

see that 8 of them are involved in hsa04930: Type II diabetes mellitus (p-value = 3.75e-09),

that 7 of them are involved in hsa04960: Aldosterone-regulated sodium reabsorption (p-

value = 5.43e-09), that 11 of them are involved in hsa04910: Insulin signaling pathway (p-

value = 1.12e-08), etc. These agree well with the current knowledge on Diabetes Mellitus.
Leukemia (MIM:601626) in OMIM gives a list of 12 known disease genes, which are also

characterized by the human regulatory network. Besides these genes, the functional enrichment

of other 18 causal genes within the top 30 are analysed in Table 6. We can see that 8 of them

are involved in hsa05221: Acute myeloid leukemia (p-value = 1.51e-07), that 7 of them are

involved in hsa04662: B cell receptor signaling pathway (p-value = 3.41e-06), etc. These agree

well with the current knowledge on Leukemia.

Robustness

To show the robustness of DCpaths, we test our method by prioritization of oncogenes, stabil-
ity of perturbation influence of genes, and case study on Breast cancer (MIM: 114480) in a can-
cer signaling map (Table B in S1 File) [40]. The cancer signaling map was constructed by using
cancer mutations and the literature-curated human signaling network. Characterizing an over-
all picture of the cancer, this network contains 326 nodes, 892 edges, in which 259 edges are
indirected and we convert them into bi-directional edges. Then we extract the cancer signaling
map with 326 nodes, 1151 edges to reveal the signaling architecture of cancer. 30 known can-
cer-gene associations are selected from the OMIM knowledge database.

Table 6. Enrichment analysis of causal genes in Leukemia.

Metabolic pathway

hsa05221: Acute myeloid leukemia

hsa04662: B cell receptor signaling
pathway

hsa05220: Chronic myeloid leukemia
hsa05212: Pancreatic cancer

hsa04062: Chemokine signaling
pathway

doi:10.1371/journal.pone.0135491.1006

P-value Expected number of Number of Gene
genes genes

1.51e- 0.462914 8 PIM2, PIM1, RELA, NFKB1, PIK3R2, PIK3CG,
07 PIK3CB, PIK3CD

3.41e-  0.530247 7 RELA, NFKB1, VAV2, PIK3R2, PIK3CG, PIK3CB,
06 PIK3CD

3.41e- 0.521831 7 SHC2, RELA, NFKB1, PIK3R2, PIK3CG, PIK3CB,
06 PIK3CD

3.41e- 0.513414 7 ARHGEF6, RELA, NFKB1, PIK3R2, PIK3CG, PIK3CB,
06 PIK3CD

2.83e- 1.08574 8 SHC2, RELA, NFKB1, VAV2, PIK3R2, PIK3CG,
05 PIK3CB, PIK3CD
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Fig 4. Analysis results for robustness of our method. (a) The AUC of 2-fold cross validation for prioritization of oncogenes in the cancer signaling map. (b)
The AUC of 5-fold cross validation for prioritization of oncogenes in the cancer signaling map. (c) The AUC of 10-fold cross validation for prioritization of
oncogenes in the cancer signaling map. (d) The stability of perturbation influence of the regulatory network. (e) The stability of perturbation influence of the
cancer signaling map.

doi:10.1371/journal.pone.0135491.9004

For prioritization of oncogenes, the 2-fold, 5 fold and 10-fold cross validation results have
been provided in Fig 4A, 4B and 4C. Comparisons with PRINCE [38] on AUC [41] show that
our method achieves better prediction outcomes than PRINCE. These results also embody the
advantages of DCpaths in directed relationship analysis.

For stability of perturbation influence of genes, we remove a certain proportion of edges
and assign a score to the stability of perturbation influence (SPi):

1 < Pi, N Pi/
SPi—= - T
=02 Pi, U Pi/

(5)

i

where, Pi/ indicates the perturbation influence of a given node i after the a certain proportion
of edges are removed. We take the Jaccard coefficient between the perturbation influences of
node before and after deleting to measure the stability. Then the average of stabilities of all
nodes is used to show the stability of perturbation influence of a network. In Fig 4D and 4E the
SPi of the regulatory network and cancer signaling map are shown respectively, 20 times ran-
domized experiments are conducted for each proportion. With the increase of the percentage
of removed edges, the SPi goes down. But, on average, a node can maintain almost 70% original
perturbation influence after 10% edges are removed in both the regulatory network and cancer
signaling map. An MMSet experiences strong influence of removing, even the scale of MMSet
will be changed. We use a random process to obtain variant MMSets as many as possible (see
the next section). Based on diversified MMSets, DCpaths eliminates influences of changeful
individual MMSet and Pi show preferable stability under removing.

As a case study, we present the results of prioritization candidate genes on Breast cancer
(MIM:114480) in the cancer signaling map. Breast cancer in OMIM gives a list of 5 known dis-
ease genes (APC, ATM, p53, PI3K and CDH1), which are further characterized by the cancer
signaling map. Besides these genes, some potential causal genes from the top ranked candidate
genes as showed in Table 7. Furthermore, we have downloaded the somatic mutations for
Breast cancer (Table C in S1 File) from TCGA [42]. Most all of potential causal genes in
Table 7 mutate in more than 2 samples. Having obvious mutation, they tend to play an impor-
tant role in Breast cancer. Fig 5 vividly display the perturbation influence of disease genes by
showing a subnetwork of the cancer signaling map. This subnetwork contains 5 known disease
genes (highlighted by red color), 15 top ranked potential causal genes (highlighted by magenta
color) and the genes (highlighted by purple color) in the diversified control paths of disease
genes. These directed paths identify the ways by which 5 disease genes perturb the cancer sig-
naling map. And the 15 potential causal genes also have ability to perturb these pathways, for
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Table 7. The top ranked candidate genes for Breast cancer in Cancer Signaling Map.

Breast cancer (MIM:114480)

Gene Rank Number of mutation samples Gene Rank Number of mutation samples
APC 1 8 FGFR 11 4
ATM 2 20 GR 12 3
p53 3 265 PDGFRA 13 4
PI3K 4 2 JAK3 14 6
CDH1 5 58 JAK1 15 4
DNAPK 6 13 HCK 16 1
p300 7 8 VDR 17 1
p14ARF 8 2 TEC 18 3
TWIST 9 2 MEK5 19 2
SHC 10 1 PLCy 20 0

doi:10.1371/journal.pone.0135491.1007

they possess their own directed control paths lead to the perturbation influence of disease
genes.

Materials and Methods

The DCpaths-based approach requires a directed network as input. In this study, we consider a
human KEGG regulatory network (Table A in S1 File), constructed by Backes et al. [3]. This
network contains the regulatory relationships selected from all KEGG pathways and can be
download from the website http://genetrail.bioinf.uni-sb.de/ilp/Home.html. Backes et al. access
the data via the Biochemical Network Database (BNDB) [43] for a consistent interface. It con-
tains 2010 genes connected by 9900 regulatory relationships, among which 1579 genes,
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Fig 5. Sketch of prediction results for Breast cancer in Cancer Signaling Map. 5 known disease genes are highlighted by red color, 15 top ranked
potential causal genes are highlighted by magenta color and the genes in the diversified control paths of disease genes are highlighted by purple color.

doi:10.1371/journal.pone.0135491.g005
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annotated by GO terms, with 7630 regulatory relationships are selected to form our human
regulatory network. The GO annotation is essential to the calculation of biological functional
similarity between the perturbation influences. Our Leave-One-Out Cross Validation process
needs one disease has at least 2 known disease genes. Therefore, 366 known disease-gene asso-
ciations, satisfied this condition, are chosen from the OMIM knowledge database, relating 252
known disease genes to 112 diseases.

Diversified MMSets enumeration

For a given directed network, anyone of the existing algorithms [44, 45] can be used to com-
pute an MMSet. The Markov process, as described by Jia et al [46], performs unbiased random
sampling among all MMSets and can be used to estimate the role of each vertex in controlling
the network. We used the approach of Wang et al [47] to enumerate diversified MMSets.
Beginning from an MMSet, randomly chooses a link in this MMSet, enumerates all alternative
MMSets that include all other elements except this link, then randomly chooses one of these
MDMSets as the current MMSet and repeats the process. The DCpaths of our results is achieved
for 827 diversified MMSets in 18649 random samples for the prioritization of candidate genes
in the human regulatory network.

Functional similarity between the perturbation influences

Then we present the detailed description of the algorithm to calculate the biological functional
similarity between the perturbation influence Pi; and Pi, of given gene i and x.

Algorithm for sim(Pi;, Pi,):

Input the gene set Pi; and Pi,

Construct a bipartite graph BP(Pi,, Pi,, E), Vu € Pi;, VI € Pi,, E(u, I) = GOSimppa (1, I) [48]

Solve the Maximum Weight Bipartite Matching Problem on BP by the Hungarian algorithm
[41].

Output the sum of the weights of the maximum matching as sim(Pi;, Pi,).

The perturbation influences of gene i and x are the gene set Pi; and Pi,, we detect the best
matching between these two gene sets, and use the GO annotation similarity to quantify the
functional similarity of each matching pair (1, I). The similarity of two genes, indicated as
GOSimppa (1, 1), is computed by the method of Wang et al. [48]. The more genes in Pi; having
consistent functions with the genes in Pi,, the higher value sim(Pi;, Pi,) achieves.

Conclusions

Medium-scale subnetworks, such as motif and community, represent the functional structures
of a complex system. MMSet decomposes a network into medium-scale structures (stems and
cycles), which are the subsistent control paths, by which we can control the whole system with
the minimum driver nodes effectively. Therefore, detecting the significant DCpaths to quantify
the perturbation influences of the genetic factors in the biological system is our goal. Although
the influences of genetic factors are complicated and confused, DCpaths is an effective mean to
analyze the intricate control relationship between them. To verify the power of DCpaths, we
have handled the prioritization of candidate genes in the human regulatory network to analyze
the perturbations of known disease genes, predict causal genes and detect disease pathways.
Using DCpaths to analyze pathogenesis is due to its several considerable merits: DCpaths
give us a chance to understand the complex disease form a new perspective that how and to
which extent does a genetic factor influences the network; DCpaths’ calculation has nothing to
do with the weights of the regulatory relationships; DCpaths-based method can reveal very
important functional relationships between genetic factors, which can not be detect by
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common neighbour or reachable path based methods, especially in directed biological systems.
For instance in Fig 2, the disease genes IFNGR1 and IFNG of Tuberculosis have no common
neighbours or reachable paths to each other, but their same influence on the dynamic proper-
ties of this disease can be uncovered based on DCpaths in the human regulatory network.

Supporting Information

S1 File. The experimental data. The human KEGG regulatory network (Table A), the cancer
signaling map (Table B) and the somatic mutations for Breast cancer from TCGA (Table C).
(XLS)
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