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Hepatocellular carcinoma (HCC) is the prevalent type of primary liver malignancy. Different noncoding RNAs (ncRNAs) that
negatively regulate gene expression, such as the microRNAs and the long ncRNAs (IncRNAs), have been associated with cell
invasiveness and cell dissemination, tumor recurrence, and metastasis in HCC. To evaluate which regulatory ncRNAs might be good
candidates to disrupt HCC proliferation pathways, we performed both unsupervised and supervised analyses of HCC expression
data, comparing samples of solid tumor tissue (TP) and adjacent tissue (NT) of a set of patients, focusing on ncRNAs and searching
for common mechanisms that may shed light in future therapeutic options. All analyses were performed using the R software.
Differential expression (total RNA and miRNA) and enrichment analyses (Gene Ontology + Pathways) were performed using the
package TCGABiolinks. As a result, we improved the set of IncRNAs that could be the target of future studies in HCC, highlighting
the potential of FAM170B-ASI and TTN-ASI.

1. Introduction

Epidemiologic data from the International Agency for
Research on Cancer of the World Health Organization
reveals that liver cancer comprises 5.6% of worldwide cancer
incidence and 9.1% of all cancer-associated mortality [1].
Hepatocellular carcinoma (HCC) is the most prevalent type
of primary liver malignancy [2]. The high lethality of HCC
can be attributed to the lack of diagnostic markers for an
early detection and late stages high heterogeneity [3]. HCC
has been epidemiologically associated with chronic Hepatitis
B Virus (HBV) or Hepatitis C Virus (HCV) [4], as well as
alcoholic and nonalcoholic fatty liver disease, which are its
major risk factors [2]. Currently, the most effective treatment
is either surgical tumor resection or liver transplantation [5].

Multiple studies have shown the potential of differ-
ent microRNAs (miRNAs) as prognostic and diagnostic
biomarkers in many types of cancer, including HCC [6-
8]. miRNAs are noncoding RNAs that negatively regulate
gene expression by leading mRNAs to target degradation
or translational repression after binding to its 3’UTR (for
review see [9]). In cancer, their role has been either as tumor
suppressors or as enhancers (oncomiRs) [10].

In HCC, different miRNAs have been associated with
cell invasiveness by repressing TET gene expression, leading
to silencing of several invasion-suppressors via hypermethy-
lation [11], and cell dissemination by regulating differenti-
ation, hence increasing metastatic potential [12]. They are
even implicated in improvement of HBV and HCV viral
replication and tumor-supporting mechanisms [13, 14]. This
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multifaceted miRNA capacity of influencing in the HCC
environment proves the importance of studies describing
expression profiles of miRNAs during tumor occurrence.

Another class of noncoding (nc) RNAs, the long ncRNAs
(IncRNAs), are > 200 nucleotides’ RNA molecules with multi-
ple regulatory roles that can not be inferred by their sequence.
These roles comprise, among others, chromatin organization
affecting the gene expression [15]. HOTAIR, an antisense
IncRNA, has been associated with HCC recurrence and
metastasis [16]. HULC and FTX (HCC) are also upregulated
in tumoral samples [17].

Here, differently from previous works that focused on
viral infection (HBV or HCV) comparing primary solid
tumor tissue (TP) and adjacent tissue (NT) [6, 8, 18, 19], or
focused on the mutation found [20], we in silico compared TP
and NT of a set of patients in sense to discover the pathways
that differentiate both groups of samples and the regulatory
ncRNAs and their putative targets. As a result, we improve
the set of IncRNAs that could be the target of future studies.

2. Material and Methods

All analyses were performed using the R software (v. 3.4.0)
[21]. The differential expression (mRNA and miRNA) analy-
sis was performed using the package TCGABiolinks (v. 2.7.1)
[22]. First, we downloaded HCC harmonized data (hg38)
from The Cancer Genome Atlas (TCGA) using the function
GDCdownload with the option legacy = FALSE. We analyzed
a total of 41 participants that have expression data of both
primary solid tumor and adjacent tissue samples. It is worth
noticing that in the database adjacent tissue is referred to as
normal; however this is hardly the case as all patients were
cirrhotic. Thus we use the term adjacent, as this is not a
sample from a normal liver. To select these individuals, we
used only the participant ID of the TCGA barcode as query
barcode (e.g., participant ID in bold: TCGA-BC-A10Q-01A-
11R-A131-07). The sampling comprises a group of men and
women, white, black, or Asian, showing or not the presence
of risk factors such as fat liver disease. Not all samples had a
positive diagnostic for HBV or HCV. All data is available at
TCGA web portal.

For total RNA differential expression, we followed
the standard pipeline. The samples were highly corre-
lated after an outlier check (TCGAanalyze Preprocessing
function). Except one sample (0.85 < r < 0.9) all other
samples showed an r > 0.9. Then, we followed a nor-
malization step using both GC content and gene length
(TCGAanalyze Normalization) and gene filtering by quantile
(TCGAanalyze Filtering) as recommended in [23]. Differen-
tially expressed genes (DEGs) were accessed by the function
TCGAanalyze DEA considering a log2 fold change (logFC)
of > 1 or < -1. and false discovery rate (FDR) of 0.0l
Enrichment analyses of DEGs and top 10 categories’ plot were
performed by the functions TCGAanalyze_EAcomplete and
TCGAvisualize_EAbarplot, respectively.

Heat maps were plotted using the function heatmap.2
from package gplots (v. 3.0.1) [24] considering the gene
expression information of the top genes based on signifi-
cant FDR or all differentially expressed transcripts of the
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categories miRNA, precursor microRNA (pre-miRNA), and
IncRNA. Hierarchical cluster analyses were performed using
the package pvclust (v. 2.0-0) [25] with 1000 bootstrap
replications. Clusters with approximately unbiased grouping
support p values (%) (au - red values) of 95 were considered
as statistically significant groups.

For the differentially expressed transcripts, we performed
a Spearman correlation to detect which regulatory RNAs
are negatively correlated with other RNAs. We accepted
those with r < -0.8 and p value < 0.05 as statistically
significantly correlated. These correlated transcripts were
used as interactions to input the network on Cytoscape
(v. 3.5.1) [26], where the edges represent the statistically
significant r values. The miRNAs and their putative targets
were used to predict their interaction using the online
software TargetScan (release 7.1) [27]. Interactions not found
in TargetScan were also tested in miRDB [28] and TarBase
(v. 8) [29]. The interactions found by either TargetScan or
TarBase were confirmed by two other tools: miRWalk v.
3.0 (http://mirwalk.umm.uni-heidelberg.de/) [30] consider-
ing a binding probability cut-off of 0.8, and mirDIP v. 4.1
(http://ophid.utoronto.ca/mirDIP/index.jsp) [31, 32] consid-
ering a “medium” cut-off of scores. Gene Ontology Biological
Processes of the proteins associated with the network were
evaluated using the Cytoscape plugin BiNGO [33]. For the
interest in IncRNAs, we performed a supervised prediction
model using the Area Under the Curve of the Receiver
Operating Characteristic (AUC-ROC) using the package
pROC v. L11.0 [34].

3. Results and Discussion

In this study we performed a supervised analysis of HCC
expression data focusing on ncRNAs searching for com-
mon mechanisms that may shed light in future therapeutic
options. The majority of statistically significant differentially
expressed ncRNAs are higher expressed on tumor samples,
suggesting that these RNAs are necessary to tumor pro-
gression/maintenance. Additionally, tumor samples showed
a more diverse expression profile in comparison to those
from adjacent tissues. Such pattern has been reported also for
gastric [35] and colorectal cancers [36].

We found a total of 1739 DEGs in total RNA-seq among
tumor and normal samples. From these, 1276 were upregu-
lated in tumor (Figure 1(a), Figure S1A, and Table S1). miRNA
differential expression (DE) revealed 234 DE miRNAs, of
which 169 were upregulated in tumor (Figure 1(b), Figure S1B,
and Table S1). Other noncoding regulatory RNAs resulted in
92 pre-miRNAs (73 upregulated in tumor) and 122 IncRNAs
(90 upregulated in tumor) (Figure 1(c), Table S2). Consider-
ing the fold change of DEGs and DE miRNAs, the top ten up-
and downregulated genes in tumoral samples are shown in
Table 1.

The enrichment analysis (Gene Ontology + Pathways)
revealed that the most represented pathways in differentially
expressed transcripts from total RNA-seq are involved in bile
metabolism, fear behavioral response, and immune-related
categories (Figure 2). To infer putative expression relation-
ship, we plotted a network based on Spearman’s correlation,
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FIGURE 1: Heat maps of differentially expressed noncoding regulatory RNAs. (a) miRNA. (b) Pre-miRNA. (c) LncRNA. Tumor samples in
brown and adjacent samples in blue. Hierarchical clusterization based on transcript logl0 scale expression.

considering only the negative interactions. These interactions
involved a total of 18 highly correlated regulatory ncRNAs
of all types (miRNA, pre-miRNA, and IncRNA) with their
putative targets (Figure 3(a)). In the case of miRNAs and pre-
miRNAs, the miRNA-target interactions were predicted as
explained in the Material and Methods. These highly negative
targets are most involved in programmed cell death, immune
response, and Molybdenum cofactor biosynthesis processes
(Figure 3(b)). For the IncRNAs in the network, we calculated
the AUC-ROC values and found four IncRNAs with potential
to correctly discriminate TP and NT samples: CCND2-ASI

(AUC = 0.792, 95% confidence interval: 0.6834-0.8903),
FAM170B-ASI (AUC = 0.917,95% confidence interval: 0.8387-
0.9758), TTN-ASI (AUC = 0.901, 95% confidence interval:
0.84-0.9539), and SYNPR-ASI (AUC = 0.939, 95% confidence
interval: 0.8798-0..9823).

The DEGs enrichment analysis suggested that bile
metabolism and fear behavioral response immune-related
categories are the most represented pathways. Immune-
related categories are usually disrupted in cancer. For exam-
ple, CD274, upregulated in our TP samples, confers immune
resistance to tumor cells by the inactivating cytotoxic T-cell
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TaBLE 1: Top ten differentially expressed genes (DEGs) from total RNA-seq and microRNA RNA-seq.

Total RNA-seq DEGs

Upregulated in tumor Downregulated in tumor
Transcript Fold change Transcript Fold change
SIRT1 15.32119 PAPPA2 -5.66486
RPL28 11.29295 TNR -4.59590
LINCo01613" 10.83190 SNHG21 -4.51615
CACNB3 10.71749 CALHMS6 -4.44294
CREM 10.54143 LCMTI1-AS2" -4.39991
GOLGASB 10.32588 BHMT2 -4.34723
SLC46A2 10.16996 PRDM1 -4.33354
LINC00449" 10.10149 CPLX4 -4.29631
NUP85 9.78697 PTP4A2 -4.06166
CFAP44-AS17 9.67638 GEMIN4 -3.99574
DE miRNAs
Upregulated in tumor Downregulated in tumor
Transcript Fold change Transcript Fold change
hsa-mir-767 8.99037 hsa-mir-490 -3.58293
hsa-mir-105-2 8.90799 hsa-mir-4686 -3.40137
hsa-mir-891a 8.86653 hsa-mir-1258 -2.95466
hsa-mir-105-1 8.19189 hsa-mir-139 -2.00361
hsa-mir-3923 7.94124 hsa-mir-424 -1.96325
hsa-mir-520f 7.91529 hsa-mir-4683 -1.94045
hsa-mir-520c¢ 7.63784 hsa-mir-934 -1.92190
hsa-mir-518e 7.37922 hsa-mir-130a -1.86453
hsa-mir-520b 717289 hsa-mir-873 -1.84610
hsa-mir-520a 7.00665 hsa-mir-6503 -1.76457
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FIGURE 2: Enrichment analysis of differentially expressed transcripts from total RNA data. GO: Gene Ontology. The red lines represent the
ratio of genes found for the pathway over the total number of genes for that specific pathway. Inside each bar, n: number of genes. Bar sizes
are in agreement to the -logl0 of the FDR of the enriched ontology/pathway.
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FIGURE 3: Representative network of the negative Spearman correlation of ncRNAs and putative affected target interactions and Gene
Ontology Biological Processes. (a) Representative network of Spearman’s negative correlation. Each edge represents an r < -0.8 and p value
<0.05. Light blue: downregulated miRNAs in TP samples. Red: upregulated pre-miRNAs in TP samples. Light red: downregulated pre-
miRNAs in TP samples. Purple: upregulated IncRNAs in TP samples. Light purple: downregulated IncRNAs in TP samples. Dark gray:
upregulated heterogeneous RNAs in TP samples. Light gray: downregulated heterogeneous RNAs in TP samples. Nodes’ size represents
the degree of connectivity. (b) Gene Ontology Biological Processes with statistically significant (FDR < 0.05) representation. The name of the
proteins enriching each process is inside the respective piece of the pie plot.

[37]. DACTI, which encodes for an antagonist of beta catenin
1,and DVL2, a dishevelled protein family member, are respec-
tively, down- and upregulated in tumor tissues, suggesting
that the Wnt signaling is active [38]. Additionally, CDKI4
and GSK3B are upregulated, reinforcing the Wnt signaling
activation, which is related to cell polarity category [39].
This signaling pathway has been associated with malignant
transformation [40].

GO group classified as fear behavioral response includes
a series of genes neurotransmitters (such as glutamate,
dopamine, and serotonin receptors), which comes as no sur-
prise since many studies have shown the impact of serotonin,
GABA, and sympathetic neurotransmitters in hepatocyte
proliferation [41-43]. It also includes MECP2 and transcrip-
tion factors associated with chromatin remodeling. Finally,
bile acids are also known to act as potential carcinogens and

deregulation of bile acids homeostasis has been linked to
HCC formation [44].

Another transcription factor, FXR2, is supposed to act
as heterodimer (or larger complexes) with TP53 or FXRI,
suppressing tumor development. However, TP53 and FXRI
expressions were not detected after normalization process.
Still, FXR2 can interact as homodimer or as a larger complex
[45]. The absence of FXRI expression could be a consequence
of GSK3B upregulation, once FXR1 phosphorylation by
GSK3B leads to FXRI downregulation [46].

From the negative correlation network (Figure 3), we can
highlight the immune-related categories, as occurred in the
DEGs enrichment analysis. The expression of NATI has been
recently reported to show high expression in breast cancer
and be associated with steroid biosynthetic pathway genes
[47]. Here, NAT1is also upregulated in TP samples. This gene’s



expression is also negatively correlated with two IncRNAs,
both antisense RNAs: SYNPR-ASI and CCND2-ASI. CCND2-
ASI is known to promote glioma cell proliferation by activat-
ing Wnt/f-catenin signaling [48], but it is downregulated in
HCC. CASPI, usually downregulated in cancer cells once it
promotes apoptosis [49], showed a high expression pattern
in TP samples and is negatively correlated with CCND2-ASI.
NLRPI expression is associated with tumor inflammasomes
and suppression of apoptosis in metastatic melanoma [50].
However, NLRPI is downregulated in our tumor data and
negatively correlated with the pre-miRNA MIR3667. This
miRNA is known to disrupt the oncogenetic activity of PCAT-
I/MYC in prostate cancer [51] and thus its low expression
in TP samples is expected. GRIK2, correlated with tumor
progress [52], ERCI, which is upregulated in TP samples and
its expression is associated with tumor progression once it is
necessary to focal adhesion turnover [53], and PRDX3, whose
overexpression is highly connected to prostate cancer [54]
by protecting tumoral cells from oxidative stress [55], are all
upregulated in TP samples of HCC and negatively correlated
with the expression of the antisense RNA FAMI70B-ASI.
ERCl is also negatively correlated with SYNPR-ASI, hsa-mir-
139, which is known to play antitumoral roles in HCC [56],
and the pre-miRNA MIR320A plays antitumoral roles in
breast cancer [57]. SLC17A8 is upregulated in prostate cancer
[58] and in HCC and negatively correlated with SYNPR-ASL.
HSD3B7 is associated with bile acid and did not change its
expression in CTNNBI mutated HCC samples [59]. However,
here HSD3B?7 is upregulated in TP samples and negatively
correlated with LINC01493.

NLRP1/CASP1 form a complex that induces pyroptosis
[60], a cell death dependent on CASPI and associated with
many pathological conditions, including cancer [61]. Bearing
in mind that we can not interpret gene expression as active
protein production or enzymatic activity, still it seems like
pyroptosis pathway is disrupted in HCC in comparison to
other cancer types and that CCND2-ASI might play a role by
regulating CASPI expression in this process.

AQP9 overexpression decreased the PIK3CB levels in
normal tissues, reducing the cell proliferative potential by
increasing FOXOl levels and reducing PCNA expression [62].
In HCC, AQP9 levels are low [63] inducing PIK3CB activity
and cell proliferation [62]. In agreement with these authors,
AQP9 is downregulated in our TP samples profile, while
PIK3CB is upregulated. PCNA is also upregulated but did
not pass the logFC cut-off. AQP9 is negatively correlated
with TTN-ASI, which was recently described as an oncogene
highly expressed in esophageal squamous cell carcinoma
progression and metastasis [64].

Hierarchical cluster analysis of the differentially ex-
pressed total transcripts, miRNAs, pre-miRNAs, and IncR-
NAs, shows that statistically significant groups are created
in all cases, discriminating most adjacent from tumoral
samples. This kind of distinction was not found when trying
to differentiate samples also by viral types (HBV or HCV)
(data not shown). It is worth noticing that DEG, but especially
ncRNA analysis, was able to perfectly discriminate between
TP and NT, although it was not able to separate HBV and
HCV-infected samples. This suggests that the mechanisms
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depicted here are common to HCC regardless of its causative
injury. Even though risk factors for HCC are well-known, it
remains as an important cause of death worldwide. Although
tumor surveillance in cirrhotics is highly recommended by
international guidelines [65], late diagnosis is quite common.
Moreover, advanced liver disease and parenchymal dysfunc-
tion further prevent curative therapies [66].

4. Conclusions

Our data suggests that neither HBV nor HCV infection
changes overall gene expression (including those genes
encoding for ncRNAs) in TP samples. Pyroptosis pathway
is misregulated in HCC if compared to other cancer types
and the IncRNA CCND2-ASI might be involved in this
misregulation, revealing a singular characteristic of HCC.
Additionally, FAMI170B-ASI and TTN-ASI emerge as new
candidates to tests to disrupt HCC homeostasis by turning
cancer cells susceptible to oxidative stress or affecting cancer
cell proliferation, respectively. Also, these IncRNAs show
remarkable expression signatures, differentiating TP from
NT samples with high AUC-ROC values.
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Figure SI: volcano plot representing differentially expressed
transcripts (primary solid tumor x normal tissues). (A.) Total
RNA. (B.) MicroRNA. Blue dots: upregulated transcripts in
tumor samples. Red dots: downregulated transcripts in tumor
samples. Black dots: statistically nonsignificant expressed
transcripts. logFC: log2 fold change. Vertical gray lines:
cut-off of logFC < -1 and logFC > 1. Horizontal purple
line: FDR cut-off of 0.01. Table SI: differentially expressed
data from total RNA. logFC: log2 fold change. Table S2:
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differentially expressed miRNAs. logFC: log2 fold change.
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