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Abstract

Background: The problem of efficient utilization of genome-wide expression profiles for identification and
prediction of complex disease conditions is both important and challenging. Polygenic pathologies such as most
types of cancer involve disregulation of many interacting genes which has prompted search for suitable statistical
models for their representation. By accounting for changes in gene regulations between comparable conditions,
graphical statistical models are expected to improve prediction precision.

Methods: In comparison problems with two or more experimental conditions, we represent the classes by
categorical Bayesian networks that share one and the same graph structure but have class-specific probability
parameters. The graph structure is learned by a score-based procedure that maximizes the difference between
class probabilities using a suitable measure of divergence. The proposed framework includes an indirect model
selection by adhering to a principle of optimal class separation and identifies interactions presenting significant
difference between the compared conditions.

Results: We evaluate the performance of the new model against some benchmark algorithms such as support
vector machine, penalized linear regression and linear Gaussian networks. The classifiers are compared by
prediction accuracy across 15 different data sets from breast, lung, gastric and renal cancer studies. In addition to
the demonstrated strong performance against the competitors, the proposed method is able to identify disease
specific changes in gene regulations which are inaccessible by other approaches. The latter is illustrated by
analyzing some gene interactions differentiating adenocarcinoma and squamous cell lung cancers.

Introduction
High-throughput technologies such as microarrays supply
means for genome-wide observation on cell samples and
provide unique opportunities for studying complex hetero-
geneous diseases. It is understood for example that the
highly polygenic pathology of cancers involves not single
gene mutations but alternations in multiple genetic path-
ways [1]. Even cancer subtypes with a common origin can
be driven by very different disregulations on gene interac-
tion level [2]. Computational analysis of high-throughput
genetic data thus requires adequate multivariate statistical
models with capacity of studying gene regulations at
system level. Graphical models such as Bayesian networks

have been proposed for describing cell signaling processes
[3] and analysis of expression data [4], to mention but a
few, and have been accepted as important tools in the field
of systems biology.
We present a categorical Bayesian network framework

based on an original learning method for analysis of
gene expression data, in particular, for classification of
gene expression profiles coming from different popula-
tions. Typical applications include diagnostic tests for
disease conditions and differentiating between disease
subtypes. More formally, we assume we are given a sam-
ple of n microarrays measuring the expression level of
N, potentially thousands, genes or gene probes under
two different experimental conditions. Usually n is
much smaller than N. We are interested in designing a
methodology for setting apart these two conditions and
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be able to designate gene profiles to their originating
classes.
Many classical approaches such as linear discriminant

analysis are ill suited for large N small n settings. Other
models, such as LASSO [5] and support vector machines
(SVM) [6], either disregard possible gene associations or
defy explicit interpretation. In contrast, Bayesian network
(BN) models are able to identify associated genes and
parsimoniously describe the global gene interaction
structure [4,7,8]. BNs have been recognized as worth-
while alternative to more traditional state-of-art models
in terms of discrimination and classification power [9,10],
but their widespread application is nevertheless not
evident.
A major issue in applying BNs to analysis of gene

expression data is choosing the complexity of the under-
lying graph structure. Simple models may undermine the
complexity of the observed gene system. On the other
hand, too complex ones often overfit the data and, as a
result, diminish the prediction power. A standard
approach addressing this model selection problem
employs the Bayesian paradigm and performs maximum
a posteriori (MAP) estimation [11]. Since the posterior is
usually not available in closed form, the MAP approach
needs to be implemented by computationally expensive
Monte Carlo procedures [9] or by applying some heuris-
tic algorithms that approximate MAP [10]. Moreover, the
efficiency of MAP in the context of model selection
crucially depends on the selected prior. The so called
constrained-based learning methods such as the PC algo-
rithm [12] also require setting additional parameters (the
a-level for the conditional independence tests in PC) in
order to choose the ‘right’ complexity of the model. Simi-
larly, the score-based learning methods such as the pena-
lized maximum likelihood estimation [13] rely on
parameters controlling the penalization as a function of
complexity. Therefore, in single-population(class) set-
tings, model selection seems to involve inevitably some
external, outside the data itself, input or control.
In the theory of statistical learning there are two stan-

dard approaches for choosing model selection para-
meters. One is based on large sample asymptotic
properties of the estimator and ensures that the latter is
consistent. The other accepted practice is to follow a
data-driven cross-validation (CV) procedure. Both
approaches however have disadvantages: the former one
may suffer from lack of optimality in finite sample size
settings, while the CV approach can be computationally
prohibitive for the purpose of network learning. In addi-
tion, some authors have raised questions on the theore-
tical justification of CV [14]. Our approach is motivated
by the intuitive expectation that in two(multi)-class pro-
blems, model selection can be more easily resolved in a
self-contained manner. We propose a categorical BN

framework with a score-based learning algorithm that
includes the class membership information in the opti-
mization function. It addresses the model selection pro-
blem by choosing networks that provide optimal class
separation. Our methodology can be applied to gene
expression data of reasonable size and, as we show, is
not only effective in gene profile classification, but can
provide important insights on the functionality of the
observed biological systems.
Categorical Bayesian networks (CBNs) represent asso-

ciations between discrete random variables through
directed acyclic graphs. In contrast to linear Gaussian
BNs, CBNs are capable of representing non-linear rela-
tionships between their node-variables. Although the
application of CBNs to continuous gene expression data
involves loss of information in the necessary process of
discretization, often (see Figure 1 below for examples),
CBNs benefit from more faithful representation of the
observed gene interactions than linear BNs. A number of
existing methods exploit CBNs to mitigate gene expres-
sion noise and improve classification accuracy [15,16]. In
the context of microarray data, another advantage of dis-
cretization is its robustness to the so-called lab or batch
effect inherent in many multi-laboratory studies [17].
The paper is organized as follows. We start with a brief

introduction to CBNs, the Maximum Likelihood (ML)
principle for CBN estimation and formulate a novel scor-
ing function as alternative to the standard log-likelihood
function used in ML. Our discriminating function is
based on the Kullback-Leibler (KL) divergence between
conditional probability tables (Eq. (3) below). For given
two-class training data, we reconstruct a CBN that
includes only those gene connections that present signifi-
cant class differences and thus reveal implicated gene
interaction changes. We then describe a classification
algorithm that models the observed conditions using the
already estimated graph structure. The representing
CBNs are distinguished by their class-specific probability
tables. As usual, the class assignment of new observations
is based on the likelihoods of the estimated class CBNs.
In the Results section, the proposed method is evalu-

ated on 15 microarray data sets - 6 breast cancer, 3 lung
cancer, 3 gastric cancer and 3 renal cancer studies -
grouped in pairs by phenotypic and class criteria. The
performance of 4 algorithms - the proposed one, SVM,
LASSO and a linear Gaussian BN classifier based on the
PC algorithm for structure learning - are compared using
sets of differentially expressed genes as well as on a
collection of gene pathways from the KEGG database.
Compatible but different data sets are chosen as (train-
ing, test) pairs for evaluation. The proposed classifier
demonstrates favorable prediction performance across
the selected data set pairs. Finally, we illustrate the analy-
tical and interpretation merits of our methodology by
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focusing on the lung cancer data sets and inspecting
some regulations that have significant role in distinguish-
ing adenocarcinoma from squamous cell lung cancers.

Methods
Our methodology was first introduced in [18]; below we
presented it in some more details.
In regard to the notation, we shall use capital letters

to denote model parameters and random variables, and
small ones for the realizations of these variables. Let
Xi, i = 1,.., N be random categorical variables. Categori-
cal Bayesian network (G, P) with nodes Xi’s is a prob-
ability model based on directed acyclic graph (DAG) G
and conditional probability table P defined as follows. G
can be described by a collection of sets Pai’s such that
for each i, Pai, called parent set of Xi, comprises all Xj’s
for which there is a directed edge connecting Xj and Xi

in G. We shall use index k to denote the categorical
levels of Xi and multi-index j for the combination of
parent states of Xi, and with slight abuse of notation
shall write k Î Xi and j Î Pai. The second component
of a CBN is the table P of conditional probabilities
Pr(Xi|Pai). Let Pi,kj ≡ Pr(Xi = k|Pai = j). For each i and j,
the multinomial distribution of (Xi|Pai = j) is defined by
the probability vector Pi,j ≡ (Pi,kj)k∈Xi ,

∑
k∈Xi

Pi,kj = 1.
Then we have P = {Pi,j}i,j.
With [Xi] and [Pai] we shall denote the number of

states of Xi and Pai, respectively, and with |Pai| the
number of parents of Xi. Clearly, [Pai] =

∏
Xa∈ Pai

[Xa].
The complexity of the CBN (G, P) is given by
df (G) =

∑N
i−1 [Pai]([Xi] − 1) and equals the degree of

Freedom for defining the probability table P.
For any DAG G, there is a node order Ω, also called

causal order, such that the parents of each node always

precede that node in Ω, a fact that we write symbolically
as XΩ(1) ≺ XΩ(2) ≺... ≺ XΩ(N). Formally, Ω is a permuta-
tion of the indices 1,..., N, such that for any i > 0,
PaΩ(i) ⊂ {XΩ(1), XΩ(2), ..., XΩ(i−1)}. For any order Ω, with
G(�) we shall denote the class of DAGs that are compa-
tible with Ω.

Learning categorical Bayesian networks from two-class
data
We approach CBN learning from the perspective of
classification problems where the observations are
assumed to come from two different classes. We
describe an algorithm that utilizes the class label infor-
mation to find a DAG attaining maximum class discri-
mination with respect to a suitable measure. The
essential component of our method is the graph struc-
ture estimation since the optimal conditional probability
table can be easily inferred for any given DAG.
Let {xs}n

s=1 be a n-sample of independent observations on
{Xi}N

i=1 and let each observation xs have a label cs Î {0, 1}
that assigns it to one of the two classes; cs’s are assumed to
be observations on a binary random variable C. We denote
the labeled sample with Dn = {(xs, cs)}n

s=1.
The log-likelihood function of a CBN (G, P) with nodes

{Xi}N
i=1 with respect to the unlabeled sample {xs}n

s=1 is

l(G, P|Dn) =
N∑

i=1

∑

j ∈ Pai

∑

k ∈ Xi

ni, kj log Pi,kj , (1)

where ni, kj ≡
∑n

s=1
1(xs

i=k,pas
i=j} and ni,j ≡

∑
k
ni, kj .

Note that for each i we have
∑

j∈ Pai
ni,j = n. For a fixed

DAG G, the MLE P̂ of P is obtained by maximizing l(G,
P|Dn) as a function of P

Figure 1 Example of gene expression discretization and 3-nomial representation of gene interactions. Shown are 8 pairs of genes from
the Small Cell Lung Cancer pathway and observations from LNG1 data set. The class membership of the points is indicated in red and blue.

Overlaid on the cross plots are the discretization regions shaded according to the KL-values Pij log(Pij/P0
ij), i, j = 1, 2, 3 (regions with

higher values are shown lighter).
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l(G|Dn) ≡ max
P

l(G, P|Dn) =
N∑

i=1

N∑

j∈Pai

ni,j

N∑

k∈Xi

P̂i,kj log P̂i,kj ,(2)

where P̂i,kj ≡ ni,kj/ni,j is the point estimate of Pi,kj. It is
a well known fact that by increasing the complexity of
G, that is, by adding new edges in G, the likelihood (2)
can only increase. Therefore the MLE solution for G
based on (1) will tend to overfit the training data. The
latter can be overcome if, instead of the log-likelihood,
one optimizes a scoring function of the form l(G|Dn) −
lndf (G) [13], where ln is a penalization parameter
indexed by the sample size n. Some standard choices
include BIC, ln = 0.5log(n)/n, and AIC, ln = 1/n, how-
ever, no ‘universally’ optimal penalization criterion is
available. As we have already commented in the intro-
duction, data-driven approaches for selecting ln such as
CV are not necessarily optimal and their efficiency in
two-class discrimination problems is unclear. In con-
trast, our approach is based on a scoring function, very
similar to the likelihood ratio test, that can be used to
learn an optimal graph structure without involving addi-
tional penalization parameters.
Similarly to Pi,kj, let us define the conditional probabil-

ities pertaining to the first experimental class,
P0

i,kj = Pr(Xi = k|Pai = j, C = 0) and let P̂0
i,kj be the corre-

sponding point estimators as in (2), that is, P̂0
i,kj = n0

i,kj/n
0
i,j,

where n0
i,kj ≡

∑n

s=1
1{xs

i=k,pas
i=j,cs=0}. We then consider the

statistics

R(G|Dn) =
1
n

N∑

i=1

∑

j∈ Pai

∑

k∈ Xi

ni,kj log(P̂i,kj/P̂0
i,kj) (3)

and introduce the scoring function

S(G|Dn) =
R(G|Dn)

df (G)
, (4)

the intuition behind which is given below. Given a
collection G of DAGs with nodes {Xi}N

i=1, we propose the
following estimator of G

Ĝ = arg max
G∈G

S(G|Dn) (5)

which we shall tentatively refer to as BNKL estimator.
Equivalently, R can be expressed as

R(G|Dn) =
1
n

N∑

i=1

∑

j ∈ Pai

ni,jdK L(P̂i,j||P̂0
i,j),

where dK L denotes the Kullback-Leibler (KL) diver-
gence between the multinomial distributions P̂i,j = {P̂i,kj}k

and P̂0
i,j = {P̂0

i,kj}k. The optimization problem (5) aims at

finding a DAG that achieves maximum class separation
with respect to the accumulated KL-divergence between
the node conditional probability tables. Note that we

always have R(G|Dn) ≥ 0. Moreover, if P̂0
i,j are uniform

distributions, that is, P̂0
i,j = (1/[Xi])

[Xi]
i=1 , then (3) reduces to

(1) up to an additional constant due to the equality

1
n

N∑

i=1

∑

j∈ Pai

ni,jdK L(P̂i,j||P̂0
i,j) =

1
n

l(G|Dn) +
N∑

i=1

log([Xi]).

We can therefore look at R(G|Dn) as an extension of
the maximum log-likelihood l(G|Dn) to two-class
problems.
For a fixed DAG G, the statistics 2nR is in fact equiva-

lent to the likelihood ratio chi-squared statistics (also
known as G2 statistics) applied to nP̂ and nP̂0 viewed as
observed and expected counts, respectively. Not surpris-
ingly then, under the null hypothesis H0 : Pi,j = P0

i,j, for all
i, j, 2nκR(G|Dn) is asymptotically c2 distributed with
df (G) degree of freedom, where � = Pr(C = 0)/Pr(C = 1)
is the odds ratio for the first class (the formal proof of
this fact is out of the scope of this article).
The role of the factor df(G) in the denominator of (5)

is to assist model selection. From information-theoreti-
cal perspective, df(G) represents the amount of memory
required for saving all of the states of a CBN with DAG
G. Since R(G|Dn) measures the class differences with
respect to G, we can think of the scoring function (4) as
an estimate of the degree of class separation per unit
complexity. Let R(G) be the population version of (3)
obtained by replacing P̂ with the population probabilities
P, that is

R(G) =
N∑

i=1

∑

j∈ Pai

Pr(Pai = j)dK L(Pi,j||P0
i,j).

We say that G0 achieves most efficient class separation
in G if

G0 = arg max
G∈G

R(G)
df (G)

. (6)

Then, provided that G0 is unique maximizer, it can be
easily shown that Ĝ is a consistent estimator of G0, a
claim that makes (5) a sound statistical procedure.
We proceed into some computational aspects of pro-

blem (5). Because S(G|Dn) is usually highly non-regular
function (non-smooth and non-convex), finding the
optimal DAG essentially requires an exhaustive search
in G. In order to make the problem computationally
manageable we thus need to apply some strong restric-
tive conditions on G. First, we assume that the parent
sizes are bounded above by a constant M. The value of
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M should depend on the samples size n used for estima-
tion and we do not recommend M > 2 unless n is in the
hundreds. Second, we limit the search in (5) to DAGs
compatible with a fixed but optimally chosen node
order. An intuitive causality argument suggests that if
we believe that node conditional distributions are set
rather independently of each other than otherwise, for a
regulation X1 ® X2, it seems more plausible for X2 to
have higher between-classes marginal difference than
X1. If we accept this argument, we would be inclined to
assume that:

nodes with lower marginal class difference are upstream the DAG of the network; (7)

where ‘upstream’ is understand as earlier in the node
order of the DAG. In the context of gene regulations we
periphrase this principle in ‘target’ and ‘biomarker’ ter-
minology as follows: ‘target’ genes present lower differ-
ential expression in comparison to the ‘biomarker’ genes
and are thus situated upstream the regulation network
with respect to the latter. Hereafter we refer to an order
satisfying (7) as order of increasing differential expres-
sion or IDE.; see Algorithm 1 below for its estimation.
Formally, for the purpose of solving (5), we consider

collections of DAGs of the form

G(�, M) = {G|X�(1) ≺ X�(2) ≺ . . . ≺ X�(N), |Pai| ≤ M, ∀i}, (8)

where Ω satisfies (7). In the actual data analyses below
we use M = 2 as a compromise between degree of net-
work connectivity and computational complexity. For
classes G(�, M), the optimal DAG Ĝ can be found by an
efficient exhaustive search with polynomial complexity.
In fact, BN estimation restricted to type (8) classes of
DAGs is not new and can be traced back to [19]. The
BNKL algorithm is implemented in the sdnet package
for R, [20]. Below, we present average times of BNKL
estimation of random CBNs with different sizes N, 3
categories per node, maximum parent size M = 2 and
sample size n = 250 (Table 1).
The computational times are concordant with the the-

oretical complexity of the algorithm O(nNM + 1).

A network model for classification of gene expression
profiles
We return to the main goal of this investigation - devel-
oping a CBN-based classifier for two-class problems.
We have shown, Eq. (5), how we can choose a graph
structure that achieves optimal separation of a labeled
sample. We use the estimated structure as a common

DAG of two CBNs that model the two classes with dis-
tinct probability tables. This approach, ‘one DAG, two
probability tables’, has been previously adopted by other
BN-based classifiers [21].
Gene expression data is acquired by a multi-stage pro-

cess the result of which are continuous variables repre-
senting the expression levels of pre-specified gene
probes. Since CBN is a discrete model, the initial step in
our inference framework involves discretization - any
sample {ys}n

s=1 of observations on the gene-nodes {Xi}N
i=1

is transformed into categorical sample {xs}n
s=1. Gene

expression levels are often discretized into 3 categories -
‘under-expressed’, ‘baseline’ and ‘over-expressed’ [16].
Although more sophisticated procedures are certainly
possible, in our experiments we employ a 3-level uni-
form discretization as follows. After excluding 5% of the
most extreme values, a standard precaution against out-
liers, the range of y’s is divided into equal intervals and
an observation y is assigned a categorical value x
according to the interval into which y falls. The uniform
discretization is simple to implement and have good
performance in practice. We emphasize that, as should
be the case in all well designed training ® test predic-
tion studies, the discretization parameters (cut-off
points) are determined strictly from the training sample
and are used to discretize the test sample.
More formally, we assume that: (i) the class samples

D0 = D ∩ {c = 0} and D1 = D ∩ {c = 1} come from two
CBNs, (G0, P

0) and (G0, P
1), with DAG G0 and probabil-

ity tables P0 and P1; (ii) G0 is efficient in sense of (6);
(iii) G0 is compatible with an IDE order Ω and has a
maximum parent size of M. Since G0 is unknown in
advance, the assumptions (ii) and (iii) cannot be
checked. Instead, (ii) and (iii) should be considered tech-
nical assumptions specifying the properties of the esti-
mated networks. All prerequisites being set, we propose
Algorithm 1: the first part of it estimates G0, P

0 and P1,
while the second one performs classification of test
samples.
Algorithm 1 BNKL Classification

1. Training. Input: continuous labeled training sam-
ple {(ys, cs)}n

s=1.
(a) Node order estimation, IDE (7): For each i,
perform t-test on yi’s comparing the 2 classes.
Set �̂to be the order of decreasing (t-test) p-
values.
(b) Uniform discretization: For each i, set µik = q1 +
k(q2 − q1)/3, k = 1, 2, where q1 and q2 are the 2.5
and 97.5 percentiles of the training observations
yi’s. Discretize yi’s into 3 categories using the cut-
off points µi1 and µi2.
(c) Find the optimal DAG Ĝ in G(�̂) according
to Eq. (5).

Table 1

N 25 50 100 250 500

time(sec) 0.01 0.06 0.53 16 417
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(d) Define CBNs (Ĝ, P̂0) and (Ĝ, P̂1) by estimat-
ing the class-specific conditional probability
tables P̂0(Ĝ|D0) and P̂1(Ĝ|D1) as in Eq. (2).

2. Prediction. Input: continuous test observation z.
(a) For each i, discretize zi �→ xi using the train-
ing cut-off points µi1 and µi2.
(b) Calculate the log-likelihoods l0 = l(Ĝ, P̂0|x)
and l1 = l(Ĝ, P̂1|x) according to Eq. (1).
(c) Assign z to the class with greater log-likelihood l.

To avoid numerical instabilities in Algorithm 1, all
zero slots in the estimated conditional probabilities P̂0

and P̂1 are reset to a minimum positive value of 1/(3n)
(the resolution of a training sample of size n to populate
a 3-nomial distribution) and then re-normalized so that∑

k P̂i,kj = 1, for all i and j Î Pai.
Figure 1 shows some examples of gene expression

discretization and representation of gene interactions
with 3-nomial distributions. For instance, the probabil-
ities Pij = Pr(XAKT1 = i|XPIK3R3 = j) of the regulation
AKT1®PIK3R3 are Pi1 = (0.4, 0.4, 0.2), Pi2 = (0.23,
0.54, 0.23) and Pi3 = (0.17, 0.42, 0.41). The pro-
babilities corresponding to the first class only are
P0

i2 = (0.28, 0.14, 0.57), P0
i2 = (0.28, 0.14, 0.57) and

P0
i3 = (0.25, 0.5, 0.25). A formal test for the linear asso-

ciation between the two genes fails to detect significant
class difference (p-val = 0.18). The relatively large KL-
divergence score between P and P0 however, indicates
significant class difference (p-val≈0). The examples
also illustrate different types of regulations such as
activation (PIK3R3®AKT1, LAMB1®TRAF3) and
inhibition (FHIT®LAMB1). The BNKL model, recall,
is designed to detect changes in the interactions. For
example, FHIT®LAMB1 is apparently inhibitory for
the second class (in blue) but neutral for the first (in
red) and BNKL perceives that difference.

Benchmark classifiers
To evaluate the performance of the BNKL algorithm we
compare it to 3 established in practice classification
methods. We consider SVM with Gaussian kernel as
implemented in the e1071 package for R. The kernel
parameter g is tuned via CV on the training data for
optimality. The benchmark performance of SVM is well
established [22]. Our second choice is LASSO, an algo-
rithm based on l1-penalized linear regression that is
applied as follows. The expectation of the binary class
variable is assumed to be a linear combination of a
given set of gene-covariates. Then LASSO selects a sub-
set of significant predictor genes using a l1-norm-based
penalization criteria and discard the rest. The sum of
squared errors is used as classification criteria. We use
an implementation of the algorithm provided by the lars
package for R.

The third reference classifier, PC, employs a linear BN
model as follows: (1) a DAG Ĝ is fitted to the combined
sample D0 ∪ D1 using the PC algorithm [23] with Gaus-
sian test for conditional independence at a-level 0.05
(see pcalg package for R); thus a parent set Pai is
selected for each i; (2) for each i, two distinct sets of
(Yi|Pai)-regression parameters are estimated for each
class separately; (3) test samples are classified according
to the conditional likelihoods. Note that, SVM, LASSO
and PC, in contrast to BNKL, are applied directly to
continuous observations on (Xi)N

i=1.

Results
This section complements the preliminary results pre-
sented in [18] and provides a comprehensive evaluation
of BNKL on a diverse collection of gene expression
data. We consider 15 samples stratified in 5 groups by
cell type and disease condition. Table 2 provides a
detailed description of the microarrays including their
reference number, platform and class sample sizes. We
have 2 breast cancer data sets with subjects grouped by
survival status and 4 other using estrogen receptor (ER)
status as classification criteria. Also considered are 3
lung cancer data sets comparing adenocarcinoma and
squamous cell carcinoma, as well as, 3 gastric and 3
renal cancer related samples of disease vs. control. All
expression data sets are obtained from the Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)
and prior to the classification analysis are pre-processed
by applying the following three steps. First, the raw
expression sets are normalized using the RMA proce-
dure [24]. Then, the probe expression levels across sam-
ple records are standardized. If {ys

i)
n
s=1 are the expression

levels of the i-th probe, the standardization is performed
according to the formula ỹs

i =
√

n(ys
i − μi)/sdi, where µi

and sdi are the sample mean and standard deviation of
ys

i’s. Standardization is intended to account for some
gross disparities in the expression levels of probes com-
ing from different data sets which cannot be handled by
the normalization procedure. The latter is especially
true for microarrays produced on different platforms
such as KDN2 and KDN3. Finally, for each pair consid-
ered for across data set classification, we perform conso-
lidation by sub-setting to a common set of gene probes.
Again, this step is needed in order to be able to com-
pare between different platforms; for example, while
GPL570 can accommodate up to 54675 probes, GPL96
is limited to 22283 probes. For brevity, hereafter we
shall refer to gene probes simply as genes.
We carry out two classification strategies by applying the

considered algorithms on two categories of gene subsets:
(1) differentially expressed (DE) genes and (2) a collection
of curated gene pathways. Below we give more details on
these two approaches. The algorithms’ performance is
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evaluated by across data set prediction for pairs of compa-
tible data sets. The first prediction score we use is the
balanced accuracy given by ACC = 0.5(TP/P + TN/N),
where P and N are the number of test observations in the
two classes, while TP and TN are the number of correctly
assigned observations to the first and second class, respec-
tively. The ‘random guess’ procedure thus has accuracy of
0.5 on average and so does any algorithm that assigns all
observations to one class. As a second criteria we employ
the area under the curve between sensitivity TPR = TP/
(TP+FN) and FPR = TP/(TP+FN), known as AUC. An
AUC of 1 represents perfect class separation.
Tables 3, 4 and 5 present prediction results for 16

compatible data set pairs. We calculate the pairwise
ACC and AUC scores as follows. For a pair (A, B) with
sample sizes nA and nB respectively, we perform the
classifications A ® B (A training, B test) and B ® A (B
training, A test), and calculate the corresponding ACC
and AUC scores. Then we report the overall scores by
weighting the individual scores according to the test
sample sizes,

ACC = (nBACCA→B + nAACCB→A)/(nA + nB)

AUC = (nBAUCA→B + nAAUCB→A)/(nA + nB).

Class prediction using differentially expressed genes
A standard practice in comparative microarray studies is
to perform discrimination analysis employing biomar-
kers - genes manifesting differential expression between
contrasting experimental conditions. A DE-based
approach can be implemented by some routine statisti-
cal procedures such as linear discrimination analysis,
logistic regression and, from the above discussed algo-
rithms, SVM and LASSO. All these methods however

are essentially uni-variate for they do not account for
possible interactions among the biomarker genes. In
contrast, the proposed BNKL method, along with PC,
selects and accounts for significant gene interactions. It
is an open question of whether in practice discrimina-
tion analysis actually benefits from employing interac-
tion models. The results presented below partially
address this question.
We implement the following DE-based test frame-

work. For each training set, we identify DE genes by
performing two-sample t-tests and then order the genes

Table 2 Gene expression data sets used in the study

Name GEO Ref Platform Disease Condition Class Criteria Samples by Class Reference

BRS1 GSE1456 GPL96 Breast survival status 119+40 [25]

BRS2 GSE3494 GPL96 Cancer 181+55 [26]

BER1 GSE2990 GPL96 Breast ER status 34+149 [27]

BER2 GSE7390 GPL96 Cancer neg. vs. pos. 64+134 [28]

BER3 GSE20711 GPL570 45+42 [29]

BER4 GSE2034 GPL96 77+209 [30]

LNG1 GSE10245 GPL570 Lung adenocarcen. 18+40 [31]

LNG2 GSE18842 GPL570 Cancer vs. 32+14 [32]

LNG3 GSE31799 GPL14189 squamous cell 20+29 [33]

GST1 GSE33335 GPL5175 Gastric tumor 25+25 [34]

GST2 GSE27342 GPL5175 Cancer vs. normal 80+80 [35]

GST3 GSE37023 GPL96 112+39 [36]

KDN1 GSE15641 GPL96 Clear Cell disease 32+23 [37]

KDN2 GSE17818 GPL9101 Renal Cancer vs. control 102+13 [38]

KDN3 GSE22316 GPL10175 70+13 [39]

Table 3 Prediction performance using top 100 DE genes

ACC AUC

datasets BNKL SVM LAS PC BNKL SVM LAS PC

BRS1, BRS2 0.62 0.53 0.55 0.52 0.68 0.60 0.66 0.61

BER1, BER2 0.79 0.71 0.75 0.63 0.89 0.82 0.90 0.87

BER2, BER3 0.83 0.69 0.80 0.72 0.89 0.77 0.89 0.89

BER3, BER4 0.83 0.67 0.78 0.60 0.90 0.73 0.90 0.85

BER1, BER3 0.74 0.64 0.71 0.60 0.86 0.74 0.88 0.82

BER1, BER4 0.76 0.67 0.79 0.59 0.89 0.81 0.93 0.85

BER2, BER4 0.88 0.85 0.86 0.76 0.91 0.90 0.92 0.90

LNG1, LNG2 0.83 0.73 0.78 0.51 0.96 0.88 0.90 0.95

LNG1, LNG3 0.89 0.87 0.85 0.70 0.97 0.94 0.91 0.94

LNG2, LNG3 0.85 0.75 0.71 0.60 0.98 0.90 0.79 0.98

GST1, GST2 0.84 0.82 0.77 0.81 0.88 0.87 0.80 0.87

GST3, GST2 0.78 0.69 0.77 0.66 0.90 0.79 0.87 0.86

GST1, GST3 0.78 0.74 0.72 0.74 0.92 0.89 0.85 0.85

KDN1, KDN2 0.90 0.52 0.77 0.81 1.00 0.71 0.99 0.99

KDN1, KDN3 0.93 0.69 0.80 0.78 0.94 0.95 1.00 0.99

KDN3, KDN2 0.93 1.00 0.98 0.70 0.96 1.00 1.00 1.00

Average 0.82 0.72 0.77 0.67 0.91 0.83 0.89 0.89

Ranks 61 35 42 22 52 28 42 39
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according to increasing p-values. Then we select the top
25, 50, 75 and 100 DE genes as features and supply
them to each classifier. For more robust performance
evaluation, overall ACC and AUC scores are formed by
averaging the scores achieved on the above defined 4
DE sets. Since the selected genes are highly discriminat-
ing, we expect all classifiers to achieve their highest

potential prediction scores. In particular, we consider
the performance of LASSO to be representative of what
would be the best prediction accuracy of a routine bio-
marker approach.
Table 3 presents the prediction scores using the top

100 DE genes as described. Listed are ACC and AUC
for each data set pair as well as the overall average
scores and total ranks. The latter are obtained as fol-
lows. For each data set pair (table row) the classifiers
are ranked from 1 (lowest) to 4 (highest) according to
their scores and then the ranks in each column are
summed to obtain the total ranks. In terms of ACC,
BNKL most often achieves best accuracy and has the
best total rank of 61, followed by LASSO with rank 42.
With respect to AUC, the difference between BNKL and
LASSO is similarly prominent, rank 52 vs. 42. In terms
of average performance BNKL also achieves the best
ACC and AUC scores. These results clearly indicate the
potential value of incorporating BNKL in a biomarker
framework.

Pathway-based classification
In the field of systems biology, pathways have been
introduced as means for linking the functionality of
groups of genes to specific biological processes. Well
established methodologies such as Gene Set Enrichment
Analysis (GSEA) [40], employ pathways as functional
units to differentiate between experimental populations.
In the context of CBN learning, we utilize pathways as
priors to facilitate inference and lessen the computa-
tional complexity. First, BNKL learning benefits from
the limited number of genes in the pathways.
Second, since the genes in the pathways are putatively

related, it is reasonable to presume class differences in
their interactions. Note that when no significant interac-
tions are detected, BNKL is essentially equivalent to a
naive classifier.
In this second validation scenario, we consider a col-

lection of manually curated pathways based on expert
knowledge and existing literature obtained from the
Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/pathway.html). To limit the
computational cost, we consider only pathways of size
less than 400. The resulting collection contains 225
gene pathways of variable size, from 10 to 389. We
apply BNKL and the benchmark classifiers on each
selected pathway and record the achieved ACC and
AUC scores. Since for a particular sample phenotype or
disease condition only limited number of genes may
show expression activity, we cannot expect all pathways
to perform equally well in terms of prediction power.
We therefore propose to select the top 10% of the best
performing pathways for each classifier and report their
average prediction scores.

Table 4 Average scores of the top 10% of the best
performing KEGG pathways for each classifier

ACC AUC

datasets BNKL SVM LAS PC BNKL SVM LAS PC

BRS1,BRS2 0.61 0.57 0.56 0.61 0.64 0.63 0.61 0.64

BER1,BER2 0.77 0.75 0.74 0.74 0.84 0.87 0.87 0.82

BER2,BER3 0.75 0.72 0.77 0.69 0.82 0.80 0.86 0.78

BER3,BER4 0.71 0.65 0.75 0.68 0.80 0.73 0.85 0.77

BER1,BER3 0.69 0.65 0.68 0.65 0.75 0.74 0.79 0.74

BER1,BER4 0.74 0.69 0.72 0.73 0.82 0.79 0.85 0.80

BER2,BER4 0.83 0.81 0.81 0.76 0.88 0.89 0.89 0.83

LNG1,LNG2 0.77 0.76 0.78 0.82 0.92 0.92 0.92 0.91

LNG1,LNG3 0.90 0.90 0.86 0.83 0.94 0.95 0.91 0.89

LNG2,LNG3 0.81 0.80 0.81 0.78 0.91 0.95 0.93 0.87

GST1,GST2 0.82 0.78 0.85 0.75 0.87 0.88 0.88 0.83

GST3,GST2 0.78 0.79 0.80 0.71 0.85 0.89 0.89 0.79

GST1,GST3 0.82 0.77 0.82 0.71 0.90 0.88 0.92 0.80

KDN1,KDN2 0.89 0.85 0.82 0.80 0.98 0.97 0.95 0.96

KDN1,KDN3 0.89 0.82 0.86 0.76 0.98 0.97 0.99 0.97

KDN3,KDN2 1.00 1.00 0.99 0.82 1.00 1.00 0.99 0.99

Average 0.80 0.77 0.79 0.74 0.87 0.87 0.88 0.84

Ranks 53 35 47 25 46 42 50 22

Table 5 Classifier comparison based on ACC differences
over all tested pathways

GSE data sets BNKL-SVM BNKL-LAS BNKL-PC

BRS1, BRS2 2.65 (0) 3.32 (0) 0.86 (0)

BER1, BER2 0.45 (0.08) 2.04 (0) 6.89 (0)

BER2, BER3 3.26 (0) -1.32 (0) 10.58 (0)

BER3, BER4 6.33 (0) -2.01 (0) 7.59 (0)

BER1, BER3 2.32 (0) 0.20 (0.14) 5.09 (0)

BER1, BER4 3.64 (0) 0.42 (0.02) 3.37 (0)

BER2, BER4 2.79 (0) 2.04 (0) 12.64 (0)

LNG1, LNG2 -1.18 (0) -1.56 (0) 5.43 (0)

LNG1, LNG3 -1.35 (0) 4.67 (0) 12.68 (0)

LNG2, LNG3 -2.37 (0) -0.60 (0.17) 8.47 (0)

GST1, GST2 5.23 (0) -0.95 (.07) 20.48 (0)

GST3, GST2 -1.41 (0) -1.47 (0) 12.37 (0)

GST1, GST3 3.77 (0) 0.27 (0.56) 15.25 (0)

KDN1, KDN2 2.17 (0) 3.72 (0) 23.98 (0)

KDN1, KDN3 5.06 (0) 2.34 (0) 22.87 (0)

KDN3, KDN2 -1.72 (0) 0.90 (0) 31.27 (0)

Shown are the median differences and, in parentheses, the Mann-Whitney
test p-values (those less than 0.01 are set to 0).
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Table 4 shows the prediction scores for each sample
pair and the average score and total rank of each classi-
fier. The BNKL classifier achieves the highest overall
ACC score of 0.80. On the other hand, the AUC score
of 0.87 for BNKL is slightly lower than LASSO’s 0.88,
not significantly so however as we show in the compari-
son tests below. We thus conclude that the pathway-
based performance of BNKL and LASSO, unlike the DE
scenario, are similar.
In Table 5 we compare the algorithms’ performance in

terms of ACC based on the pathway scores as follows.
The pathway ACCs of the benchmark classifiers are sub-
tracted from that of BNKL and then Mann-Whitney test
is appied on each of the resulting 3 sets of 225 (the num-
ber of tested pathways) differences. A significant positive
median difference indicates better performance of BNKL,
a negative one favors the competing classifier. As shown,
BNKL performs significantly better than SVM for 10 out
of the 16 data set pairs. In the BNKL vs. LASSO compari-
son, BNKL is significantly better in 8 cases, while LASSO
in 4. On the other end, the PC-based algorithm presents
the lowest performance among the 4 classifiers.

Comparative performance summary with discussion
In the next table we conveniently summarize the
detailed results presented in Tables 3 and 4. We report
the mean ACC and AUC scores along with the standard
deviations in parentheses.
In addition, Figure 2 visualizes the above scores in form

of bar-plots. The best overall ACC (0.82) and AUC (0.91)
scores are achieved by BNKL using top 100 DE genes.
Interestingly, the top 10% pathways ‘ scores of SVM and
LASSO are slightly better than their DE-based scores.
We also perform a more formal comparison using the

ACC and AUC differences between BNKL and the 3
benchmark algorithms. We subtract the scores of SVM,

LASSO and PC from that of BNKL, report the median dif-
ferences and, in parentheses, the p-values corresponding
to Mann-Whitney tests hypothesizing equal scores. Note
that positive differences are in favor of BNKL and those
significant at 0.05 level are emphasized.
The above results demonstrate the strong comparative

performance of BNKL especially in terms of ACC.
The prediction scores of BNKL and LASSO are in close

range. It is noticeable that in the pathway scenario BNKL
losses the clear performance gain it has over LASSO in
the DE case. The most probable explanation of this fact is
that LASSO performs an active model selection by dis-
carding all insignificant genes from a given pathway as
model covariates; and this pruning improves its prediction
power. On the other hand, BNKL, although focused on
choosing the most significant regulations, does not
exclude from using even those genes which are found to
be in no interaction with the rest. As a result, including
insignificant genes in the log-likelihood (1) actually ham-
pers the prediction power of BNKL. The problem is not
observable in the DE scenario where only highly discrimi-
nating genes are used. We believe that this limitation of
BNKL can and should be addressed in future versions of
the algorithm. Another difference between BNKL and the
other 3 methods, the effect of which is yet to be investi-
gated in details, is due to the additional discretization step
involved in BNKL. Employing more sophisticated discreti-
zation procedures that provide better representation of the
marginal distributions of gene expression values is likely
to improve the performance of BNKL.
As a final comment, among the 4 algorithms PC trails

behind with the lowest scores, which we contribute to
its model selection insufficiency - close inspection
shows that PC fits too complex networks (data not
shown) thus overfitting the training data and degrading
its prediction performance.

Figure 2 Summary of the classification performance using DE genes and KEGG pathways. Shown are the average ACC and AUC over the
considered data set pairs along with the standard deviation.
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Differential regulation analysis of two types of lung
cancer
In a comprehensive study [2] of squamous cell lung car-
cinoma (SQCC), the importance of several genes impli-
cated in the disease condition have been reported,
among which TP53, CDKN2A, PIK3CA, RAS (HRAS
and KRAS), EGFR and NOTCH1. These are genes
involved in cell cycle control, apoptosis and cell differ-
entiation, and possibly express distinct alternation pat-
tern in SQCC in comparison to adenocarcinoma, the
other most common type of lung cancer. The presented
below pathway-based analysis corroborates with these
findings and serves as a validation of the proposed
BNKL methodology.
Table 6 shows the KEGG pathway-based ACC scores

for the (LNG1,LNG3) pair along with the top 16 path-
ways with best performance achieved by either one of the
4 classifiers. Small cell lung cancer, Wnt signaling and
Bile secretion are among the best performing pathways.
In Figure 3 we show some of the BNKL estimated DAGs
overlaid on the original, curated KEGG pathways. The
edges of the BNKL networks are color-coded in red and
blue to differentiate the class regulations. For the purpose
of illustration, different isoforms or versions of a gene are
represented by one node, which may result in loops see-
mingly incompatible with the original DAGs. As seen,
the BNKL networks are relatively sparse in comparison
to the curated KEGG networks for, recall, only associa-
tions with significant class differences are picked up by
BNKL. The plots also highlight a key feature of the pre-
sented framework - identification of differentially
expressed gene regulations that reveal easy to interpret

functional changes between disease conditions. We pro-
ceed with some more details.
First we observe that BNKL often represents indirect

actual associations, connecting with directed edges
genes which are at the end of regulation cascades in the
curated pathways. For example, in the Small cell lung
cancer there is a long chain of regulations connecting
the ECM-receptor LAMB1 and TRAF1 which is repre-
sented by a directed edge in BNKL - inhibition in the
first class (red tee arrowhead) and activation in the sec-
ond (blue arrowhead). LAMB1®BIRC3 is another
example of association shortcut. The edges in the Bile
secretion pathways are mostly indirect regulations. In
the Wnt signaling pathway the WNT16®CTTNB1 edge
selected by BNKL is a shortcut for the regulation chain
WNT16®FZD10®DVL1®GSK3B®CTTNB1. In other
cases however, BNKL draws edges between genes which
are known to interact directly such as PIK3R3®AKT1
in the Small cell lung cancer and GNAS®ADCY6 in
the Gap junction pathway. As a side note, the active
presence of PIK3R3 in the estimated BNKL network is
in agreement with the already established characteristic
role of PIK3 gene family in SQCC [41].
Next we inspect more closely the Gap junction path-

way, which regulates intercellular communication and is
involved in tumor progression. It has been reported in
[42] that the expression of one of the key genes involved
in this pathways, GJA1, which encodes the connexin43
protein, is reduced in human and mouse lung carcinoma
cells. According to the curated KEGG pathway, tubulin-
beta proteins (TUBB and TUBA) bind to connexin43
and the expression of the latter is inhibited by MAPK7.
In the BNKL reconstructed network there is an indirect
inhibition of MAPK7 by GNAQ which is stronger in the
case of adenocarcinoma. Moreover, TUBB6 is strongly
associated with TUBA1B, inhibits PRKACA and
expresses differential regulation on KRAS (activation in
case of adenocarcinoma and inhibition in case of SQCC)
thus emphasizing the importance of the regulation
changes in tubulin-beta for distinguishing the two types
of lung cancer. Another notable differential interaction
selected by BNKL is GNAS®ADCY6 (activation in ade-
nocarcinoma and suppression in SQCC) while, accord-
ing to KEGG, in normal cells we have a stimulating
effect of GNAS, the gene encoding the G-protein, on
ADCY6. An indirect association between EGFR and
ADCY6 is also detected. We recall that EGFR is a recog-
nized oncogene and is being investigated as a potential
therapeutic target [41].
Finally we identify and report the most connected

genes in the BNKL reconstructed pathways. For the pur-
pose, we integrate all estimated KEGG pathways and for
each gene we count the number of directed edges (in and
out-bound) to other genes. Then we rank the genes

Table 6 Top performing pathways by ACC prediction
accuracy for the (LNG1, LNG3) pair

Pathway BNKL SVM LAS PC

Axon guidance 0.87 0.93 0.83 0.70

Melanogenesis 0.92 0.83 0.66 0.72

Tight junction 0.92 0.88 0.89 0.73

p53 signaling pathway 0.92 0.91 0.76 0.72

Pathways in cancer 0.89 0.86 0.91 0.74

Complement and coagulation cascades 0.75 0.91 0.74 0.52

Fructose and mannose metabolism 0.82 0.91 0.82 0.60

Chronic myeloid leukemia 0.86 0.91 0.74 0.72

Bile secretion 0.90 0.87 0.72 0.67

Small cell lung cancer 0.87 0.90 0.71 0.69

Wnt signaling pathway 0.90 0.84 0.69 0.64

Cell adhesion molecules (CAMs) 0.88 0.90 0.67 0.53

Leukocyte transendothelial migration 0.90 0.89 0.81 0.54

Endocytosis 0.90 0.88 0.86 0.67

Non-small cell lung cancer 0.90 0.89 0.74 0.77

T cell receptor signaling pathway 0.88 0.88 0.76 0.74
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according to thus accumulated scores to obtain the most
connected ones; see Figure 4. These are genes with most
marked involvement in the differentiation between ade-
nocarcinoma and SQCC. Among them are CDC42 (cell

division control protein), PRKACA (cell signaling),
CTNNB1 (cell adhesion), CHP2 (cell proliferation and
tumor growth), PIK3R1 (cell proliferation and survival)
and KRAS (a known oncogene and potential lung cancer

Figure 3 Pathway analysis of the LNG1 data set. Four estimated BNKL networks with edges shown in red(first class) and blue(second class)
are overlaid on the corresponding KEGG pathways with edges drawn in gray. When available, also indicated are the type of regulations -
activation (normal arrowhead) and inhibition (tee arrowhead).
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drug target) which play key roles in cell-to-cell signaling,
as well as, cell growth, arrest and death.

Conclusion
Many of the problems accompanying the analysis of gene
expression profiles are caused by technological noise,
platform and lab related bias, and small sample size.
Categorical Bayesian networks mitigate some of these
problems by providing noise and bias reduction through
discretization, ability to handle non-linear gene interac-
tion effects and efficient multivariate model representa-
tion. We have developed a framework for discrimination
analysis, BNKL, based on the reconstruction of an opti-
mal graph structure from two-class labeled data. The
proposed score-based learning algorithm uses a KL-
divergence criteria to maximize the observed class
separation. The performed extensive analysis on real data
has demonstrated the competitive-ness of our approach
with respect to some established classification algorithms.
The distinctive advantage of BNKL - its utility in disco-
vering differentially expressed regulations between com-
parable conditions - has been applied for discriminating
cancer sub-types. In particular, we have utilized BNKL to
model the difference between adenocarcinoma and squa-
mous cell lung cancers.
Understandably, the BNKL classifier is limited by the

computation complexity of its learning algorithm and its
direct application to multi-thousand gene sets can be
prohibitive. In our experiments we have restrained the
complexity by using manually curated pathways and sub-
sets of differentially expressed genes. However, a whole
genome analysis can be also achieved by restricting the
number of allowed parents for each gene-node. Potential
parents can be selected according to the degree of asso-
ciation with the child genes or using some prior informa-
tion such as the KEGG pathway database of gene
interactions. The current software realization of the algo-
rithm [20] allows for implementation of such strategies.
We want to point to other application possibilities of

BNKL beyond the microarray expression data used in this
study. Next generation sequencing technologies provide
an ample source of new genetic samples. For example,

single-nucleotide polymorphism (SNP) samples, being
genuinely discrete, can be immediately utilized. Adapting
BNKL to new data modes and extending its area of appli-
cation is a subject of ongoing investigation.
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