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Abstract: Diabetes mellitus (DM), one of the metabolic diseases which is characterized by sustained
hyperglycemia, is a life-threatening disease. The global prevalence of DM is on the rise, mainly in
low- and middle-income countries. Diabetes is a major cause of blindness, heart attacks, kidney
failure, stroke, and lower limb amputation. Type 2 diabetes mellitus (T2DM) is a form of diabetes that
is characterized by high blood sugar and insulin resistance. T2DM can be prevented or delayed by a
healthy diet, regular physical activity, maintaining normal body weight, and avoiding alcohol and
tobacco use. Ethanol and its metabolites can cause differentiation defects in stem cells and promote
inflammatory injury and carcinogenesis in several tissues. Recent studies have suggested that dia-
betes can be treated, and its consequences can be avoided or delayed with proper management. DM
has a greater risk for several cancers, such as breast, colorectal, endometrial, pancreatic, gallbladder,
renal, and liver cancer. The incidence of cancer is significantly higher in patients with DM than
in those without DM. In addition to DM, alcohol abuse is also a risk factor for many cancers. We
present a review of the recent studies investigating the association of both DM and alcohol abuse
with cancer incidence.

Keywords: diabetes mellitus; alcoholism; breast cancer; pancreatic cancers; gastric cancer; colorectal
cancer; hepatocellular carcinoma; bladder cancer

1. Introduction

The possible biological links between diabetes mellitus or impaired glucose toler-
ance and cancer comprise hyperinsulinemia, hyperglycemia, and fat-induced chronic
inflammation. DM is a known risk factor for several cancers [1], resulting from insulin
resistance induced by a paraneoplastic syndrome [2] or pancreatic β-cell dysfunction [3].
Mechanistically, hyperglycemia may cause hyperinsulinemia, providing growth signals to
positively stimulate the expansion of cancer [4–6]. In addition, it has been demonstrated
that moderate alcohol intake had no significant impact, whereas high alcohol intake was
associated with an increased risk of breast and gastrointestinal cancer [7–10].

According to the National Diabetes Statistics Report, a periodical publication by the
Centers for Disease Control and Prevention (CDC), during 1999–2016, the age-adjusted
prevalence of total diabetes significantly increased among adults aged 18 years or older.
Prevalence estimates were 9.5% in 1999–2002 and 12.0% in 2013–2016. Among the overall
US population, the crude estimates for 2018 were that 34.2 million people of all ages or
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10.5% of the US population had diabetes. Furthermore, 34.1 million adults aged 18 years or
older, or 13.0% of all US adults, had diabetes. Age-adjusted data for 2017–2018 indicated
that non-Hispanic blacks (8.2 per 1000 persons) and people of Hispanic origin (9.7 per
1000 persons) had a higher incidence of diabetes compared to non-Hispanic whites (5.0 per
1000 persons). According to the National Institute of Diabetes and Digestive and Kidney
Diseases, diabetes is the seventh leading cause of death in the United States.

In 2017, the International Agency for Research on Cancer (IARC) concluded that
obesity is a risk factor of cancer of 13 anatomic sites [11]. The direct association of diabetes
mellitus with pancreatic, liver, breast, endometrium, bladder, and kidney cancer has been
demonstrated. In addition to obesity and diabetes, other risk factors of cancer are alcohol
abuse, genetics (family history), smoking, and exposure to toxic chemicals (Figure 1).
Recent studies have shown an association between the incidence of cancer and anti-diabetic
medications. Furthermore, the use of metformin (a drug for type 2 diabetes mellitus) is
associated with a reduced risk of cancer [12–16] or cancer mortality [17]. The objective of
this review paper is to update and summarize the mechanisms of association of diabetes
mellitus and alcohol abuse with major cancer.
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to environmental factors but a small percentage are involved in gene mutations and hereditary traces. Peutz–Jeghers syn-
drome (PJS) is caused by mutations in the tumor suppressor STK11 gene. 

  

Figure 1. Risk factors of cancer. There are several risk factors for cancer. Obesity (IL-1β, TAN, PSC, desmoplasia), diabetes
mellitus (IGF-1, p38 MAPK, IL-6, TNF-β, VEGF, and NF-κB), and genetics (mutations in K-ras, BRCA2, and STK11) are
biological risk factors for cancer. Toxic chemicals (chlorinated hydrocarbons and polycyclic aromatic hydrocarbons), alcohol
abuse (acetaldehyde, ROS, ADH1, and ALDH2), and smoking (nicotine, hydrogen cyanide, formaldehyde, lead, arsenic,
ammonia, benzene, carbon monoxide, nitrosamines, and polycyclic aromatic hydrocarbons), are external or environmental
risk factors of cancer. Smoking is known as a strong carcinogen in many cancers. Most cancer cases are attributed to
environmental factors but a small percentage are involved in gene mutations and hereditary traces. Peutz–Jeghers syndrome
(PJS) is caused by mutations in the tumor suppressor STK11 gene.
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2. Diabetes

Diabetes is a chronic disease that occurs either when the pancreas does not produce
enough insulin (a hormone that regulates blood sugar) or when the body cannot effectively
use the insulin it produces. There are three major types of diabetes mellitus (DM)—type
1, type 2, and gestational diabetes. Type 1 diabetes mellitus (T1DM), insulin-dependent
diabetes mellitus, or juvenile-onset diabetes may account for about 5% of all cases of
diabetes. T1DM is characterized by a genetic predisposition manifested in one of several
human leukocyte antigens. Type 2 diabetes mellitus (T2DM), non-insulin-dependent
diabetes mellitus, or adult-onset diabetes, account for about 90% (285 million people),
and this number is projected to grow to 438 million by 2030. T2DM is a form of diabetes
mainly characterized by high blood glucose, insulin resistance, and relatively a weaker
insulin-stimulated response under hyperglycemic conditions. In obese individuals with
euglycemia, peripheral insulin resistance is present but compensated by increased insulin
secretion [18–20]. Insulin resistance progressively worsens in predisposed individuals,
along with progressive β-cell dysfunction and the reduction of β-cell mass, eventually
leading to T2DM [18–20]. DM is not only related to retinopathy, neuropathy, nephropathy,
and cardiovascular diseases but is also related to several liver diseases such as nonalcoholic
fatty liver disease (NAFLD), steatohepatitis, and liver cirrhosis. Long-standing T2DM,
insulin resistance, and obesity have been shown to modestly increase the risk of several
types of cancers [21–28]. According to the World Health Organization, obesity is defined
by the body mass index of more than 30 kg/m2, and overweight is 25–30 kg/m2. Obesity
causes chronic inflammation of the body and is a risk factor for many cancers. There
are a number of conditions associated with diabetes, such as thyroid disease, coeliac
disease, polycystic ovary syndrome, diabetes insipidus, necrobiosis lipoidica diabeticorum,
mastopathy, muscular conditions, dental health complications, and certain types of cancer.
Growing evidence suggests that patients with colorectal, breast, liver, endometrial, and
gastric cancers and leukemia [29,30] who also have DM are at increased risk of cancer
recurrence and mortality [31].

Upon digestion of dietary sugar, glucose is absorbed by the intestine, which results
in a rise in the blood glucose level (Figure 2). In the liver, insulin regulates glucose pro-
duction/utilization. When glucose levels increase in the blood and insulin is secreted by
pancreatic β-cells. Intestinal cells secrete DPP4, which inhibits the production of incretins
such as GLP-1 and GIP; they act on pancreatic β-cells to regulate insulin production. In
physiological states, the combined action of glucagon and insulin allows the precise regula-
tion of hepatic glucose output. Although glucagon induces hepatic glucose production,
insulin acts as a potent inhibitor of glucose production when its concentration in the blood
rises. In addition to inducing glycogen synthesis, insulin also inhibits hepatic glucose
production. In the case of insulin resistance, physiologic levels of circulating insulin are
insufficient to elicit the appropriate insulin response in hepatic cells. In the liver, insulin
resistance impairs glycogen synthesis, fails to suppress glucose production, enhances
lipogenesis, and increases the synthesis of proteins. Insulin resistance occurs due to a
decrease in the metabolic response of insulin-responsive cells to insulin or, at a systemic
level, an impaired/lower response to circulating insulin by blood glucose levels. In skeletal
muscle, insulin resistance is considered to be an important extra-pancreatic factor in the
development of T2DM. Under physiological conditions, insulin stimulates muscle glycogen
synthesis by enhancing glucose uptake from plasma.
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β-cells to regulate insulin production. Although glucagon induces hepatic glucose production, insulin acts as a potent 
inhibitor of glucose production when its concentration in the blood rises. Undigested/unabsorbed glucose is excreted from 
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(CYP2E1) pathway also metabolizes ethanol into acetaldehyde, as well as reactive oxygen 
species (ROS). However, this pathway is more active when a high alcohol intake is con-
sumed [36]. Acetaldehyde is further metabolized into acetate by aldehyde dehydrogenase 
(ALDH), in particular, the form encoded by ALDH2 on chromosome 12 [36]. The break-
down of alcohol into acetaldehyde and then acetate mainly takes place in the liver. Some 
alcohol metabolism also occurs in other tissues, such as the pancreas and the brain. Addi-
tionally, small amounts of alcohol are metabolized to acetaldehyde in the gastrointestinal 
tract. Recently, ALDH2 deficiency has been linked with the risk, pathogenesis, and prog-
nosis of various cancers, and has emerged as a promising therapeutic target [37]. Ethanol 
and acetaldehyde can cause differentiation defects in stem cells and promote inflamma-
tory injury and carcinogenesis in several tissues [38,39]. Disulfiram and calcium car-
bamide can inhibit ALDH2 activity. 
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Figure 2. Mechanisms of diabetes. Upon digestion of dietary sugar, glucose is absorbed by the intestine, which causes an
increase in the blood glucose level. Glucose levels increase in the blood and insulin is secreted by pancreatic β-cells. Insulin
enhances uptake of glucose into cells. Glucose is stored as glycogen in the liver or utilized for energy production in muscles.
If blood sugar levels are low, glucagon breaks down glycogen in the liver to release glucose and increase glucose levels.
Intestinal cells secrete DPP4, which inhibits the production of incretins (e.g., GLP-1 and GIP). They act on pancreatic β-cells
to regulate insulin production. Although glucagon induces hepatic glucose production, insulin acts as a potent inhibitor of
glucose production when its concentration in the blood rises. Undigested/unabsorbed glucose is excreted from the body.

3. Alcohol Metabolisms

Alcohol has been classified as a human carcinogen for the liver by the International
Agency for Research on Cancer (IARC). Ethanol metabolism is shown in Figure 3. Chronic
ingestion of alcohol and its metabolite acetaldehyde may initiate and/or promote the
development of cancer in the liver, oral cavity, esophagus, stomach, gastrointestinal tract,
pancreas, prostate, and female breast. During ethanol metabolism, ethanol is oxidized to
acetaldehyde by alcohol dehydrogenases (ADH) in the presence of NAD+ [32,33]. Another
source of acetaldehyde is bacteria living in the gastrointestinal tract [34,35]. The CYP
p450 (CYP2E1) pathway also metabolizes ethanol into acetaldehyde, as well as reactive
oxygen species (ROS). However, this pathway is more active when a high alcohol intake
is consumed [36]. Acetaldehyde is further metabolized into acetate by aldehyde dehy-
drogenase (ALDH), in particular, the form encoded by ALDH2 on chromosome 12 [36].
The breakdown of alcohol into acetaldehyde and then acetate mainly takes place in the
liver. Some alcohol metabolism also occurs in other tissues, such as the pancreas and
the brain. Additionally, small amounts of alcohol are metabolized to acetaldehyde in the
gastrointestinal tract. Recently, ALDH2 deficiency has been linked with the risk, patho-
genesis, and prognosis of various cancers, and has emerged as a promising therapeutic
target [37]. Ethanol and acetaldehyde can cause differentiation defects in stem cells and
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promote inflammatory injury and carcinogenesis in several tissues [38,39]. Disulfiram and
calcium carbamide can inhibit ALDH2 activity.
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Figure 3. Ethanol metabolism. Ethanol, an alcohol found in nature and alcoholic drinks, is metabo-
lized through a complex catabolic metabolic pathway. In humans, in the presence of enzyme alcohol
dehydrogenase and NAD+, ethanol is metabolized to acetaldehyde, which is further converted to
acetate and acetyl-CoA in the presence of acetaldehyde dehydrogenase and NAD+. Once acetyl-CoA
is formed, it becomes a substrate for the citric acid cycle, ultimately producing cellular energy and
releasing water and carbon dioxide (not shown). The liver is the major organ that metabolizes
ethanol. Disulfiram and calcium carbamide can inhibit ALDH2 activity. Excess acetaldehyde can
cause hangover.

Alcohol (ethanol) and its major metabolite, acetaldehyde, are classified by the IARC
as Group 1 carcinogens [40]. Although alcohol has been classified as carcinogenic, it is
thought that metabolites of ethanol are probably the most important in terms of causal
carcinogens. This is based mainly on the observation that metabolites of ethanol such as
acetaldehyde and ROS can induce DNA lesions [41]. Several factors have been shown
to contribute to the development of alcohol-associated cancer [42–46]. Recent studies
have demonstrated that the effect of alcohol is modulated by polymorphisms in genes
encoding enzymes for ethanol metabolism (e.g., ADH, ALDH, and cytochrome P450 2E1),
folate metabolism, and DNA repair. The mechanisms by which alcohol consumption
exerts its carcinogenic effect are not well understood. Actions such as a genotoxic effect of
acetaldehyde, increased estrogen concentrations, a role as a solvent for tobacco carcino-
gens, production of ROS and nitrogen species, and changes in folate metabolism have
been implicated. Acetaldehyde reacts with DNA and acts as a carcinogen. In addition,
highly reactive, oxygen-containing molecules (generated during alcohol metabolism) can
damage the DNA and induce carcinogenesis [47,48]. In healthy adults, the spontaneous
consumption of alcoholic beverages within 30 g ethanol per day for men and 15 g per day
for women is considered acceptable. The daily consumption of more than 80 g of alcohol
(more than five to six drinks) with smoking increases the risk of developing cancers by
50 fold or more [34,49].

4. Diabetes, Alcohol, and Breast Cancer

Obesity, diabetes mellitus, and unhealthy lifestyle behaviors (alcohol dependence,
smoking, low physical activity) are risk factors for breast cancer [50]. The Mediterranean
diet, which consists of fish, monounsaturated fats from olive oil, a high omega-3-to-omega-
6 ratio, fruits, vegetables, whole grains, legumes/nuts, and moderate alcohol consumption,
has been shown to reduce the risk and prevent the development of depression, diabetes,
obesity, and breast cancer [51,52]. Obese or overweight women at the time of breast
cancer diagnosis are at increased risk of cancer recurrence and mortality compared with
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leaner women [53,54]. Obesity is associated with adverse outcomes in both pre- and post-
menopausal women with breast cancer [53]. Hyperinsulinemia may promote mammary
carcinogenesis. Insulin resistance has been linked to an increased risk of breast cancer and
is also characteristic of T2DM [53]. The Nurses’ Health Study showed that women with
T2DM had a modestly elevated incidence of breast cancer (hazard ratio (HR) = 1.17; 95%
CI 1.01–1.35) compared with women without diabetes [54]. Metformin compared to the
use of other oral antidiabetic drugs is associated with a lower risk of cancer in patients
with T2DM [55]. Metformin may induce ferroptosis by inhibiting autophagy via lncRNA-
H19 [56]. Metformin induced the activation of AMP-induced protein kinase (AMPK),
suppressed the phosphorylated-eukaryotic translation initiation factor 4E-binding protein
1 (p-4E-BP1), decreased cyclin D1 levels, and inhibited COX-2 expression [57]. Metformin
inhibits mTORC1 directly or through the inhibition of AMPK. The inhibition of AMPK
by metformin results in the induction of p53 and the inhibition of Mdm2. Interestingly,
metformin can also downregulate cyclin D1 and upregulate p53 expression through an
AMPKα-independent mechanism in breast cancer [58]. Furthermore, metformin suppresses
tumor growth by inhibiting the activation of Akt, MEK/ERK, NFkB, and Stat3.

Drinking within recommended limits is socially acceptable and prevalent in most
of the world. It is believed that consuming no more than one alcoholic drink per day,
preferably red wine, is beneficial for health. Strong epidemiological data exist showing
associations between moderate alcohol consumption and the risk of diabetes and breast
cancer. Alcohol intake has been associated with an increased risk of breast cancer and
decreased risk of coronary heart disease [59]. CYP2E1 exerts a significant role in mammary
carcinogenesis, and thus provides a potential link between ethanol metabolism and ad-
vanced stages of breast cancer [60]. Factors that are differently distributed among ethnic
groups, such as obesity, diabetes, metabolic syndrome, alcohol consumption, and smoking,
predict survival after breast cancer diagnosis and therefore might mediate part of the
observed social disparity in survival [61].

5. Diabetes, Alcohol, and Pancreatic Cancer

Pancreatic cancer (PC) is one of the ten most common cancers in humans. Most of
these cases are pancreatic exocrine cancer; only 1–2% of cases of PC are neuroendocrine
tumors. It causes 7% of all cancer deaths. It is the fourth highest cause of cancer-related
death in both men and women in the United States each year [62]. In the United States,
the number of new cases of PC was 12.4 per 100,000 men and women per year based on
2009–2013 cases. The five-year survival rate for PC is 7.7% (2006–2012) [63]. The common
risk factors for developing PC are tobacco products, obesity, diabetes, chronic pancreatitis,
hereditary conditions, and a family history of PC [62].

DM, or impaired glucose tolerance, is concurrently present in 50–80% of patients
with PC. DM is a known risk factor for PC [64–66], and in another aspect, new-onset DM
could be an early manifestation of PC [1], resulting from insulin resistance induced by a
paraneoplastic syndrome [2] or pancreatic β-cell dysfunction [3]. In addition, it has been
demonstrated that moderate alcohol intake had no significant impact, whereas high alcohol
intake was associated with an increased risk of PC [7–9].

There was a three-fold risk of pancreatic malignancy in patients with diabetes [67].
Consistently, the risk of PC increased with a longer duration of diabetes in a prospective
study with a hazard risk of 2.0 in both men and women [68,69]. In a Taiwanese cohort,
diabetes mellitus was associated with a relative risk of 2.75 in relation to developing PC
and other gastrointestinal tumors [70]. It was established that HbA1C is a predictor and
prognostic factor in PC [71], requiring further studies to clarify the function of HbA1C
in the pathogenesis of PC. Under-treated DM patients had a higher risk for PC than all
DM populations [72]. New-onset DM is significantly associated with reduced survival,
whereas long-standing DM does not affect overall survival significantly [73]. The new-onset
DM could be attributed to the paraneoplastic phenomenon mediated by tumor-secreted
products, whereas long-standing DM is induced by non-paraneoplastic factors.
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Several studies show that obesity is one of the leading risk factors for PC [74–76].
Along with an increased risk of developing PC, patients with increased pancreatic fat
have poorer outcomes than those who develop cancer in a lean pancreas [77]. Emerging
evidence shows that the increase of certain hormones in obese patients, such as insulin,
adipokines, and resistine and systemic oxidative stress may have a role in the development
of PC [78,79].

Adipocytes in obesity secrete high IL-1β recruit tumor-associated neutrophils (TAN),
which induce the activation of pancreatic stellate cells (PSC). IL-1β, TAN, and PSC induce
the aggravation of desmoplasia, which is modulated by the angiotensin-II type-1 receptor
and promotes PC progression [80]. Obesity is associated with increased systemic levels
of placental growth factor (PLGF) [81,82]. PLGF and its receptor VEGFR-1 have been
shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM)
recruitment and activity [83–85]. Targeting PLGF/VEGFR-1 signaling reprogramed the
tumor immune microenvironment and inhibited obesity-induced PC progression [86].

The markedly higher risk of PC in patients with new-onset diabetes when compared
with long-standing diabetes indicates that PC itself can cause diabetes. Based on epidemi-
ological studies, most PC patients have glucose intolerance [87] and about 80% of PC
patients are either glycemic or diabetic. Dysfunctions of β-cell and insulin resistance are
often seen in PC. Serum betatrophin levels were significantly correlated with PC-associated
diabetes [88]. Betatrophin has been implicated in glucose metabolism and β-cell prolifera-
tion [89]. It promotes pancreatic β-cell proliferation and improves glucose intolerance in
mouse models of insulin resistance [90]. Typical risk factors for T2DM (such as older age,
obesity, and a family history of diabetes) are also risk factors for pancreatic cancer-induced
diabetes [91]. Hence, it is difficult to identify if diabetes is the cause or outcome of PC.
However, in some situations, pancreatic cancer-induced diabetes has also been reported.
Resection of the cancerous parts of the pancreas improves diabetes [91,92]. Furthermore,
supernatants from PC cell lines have been shown to induce insulin resistance in cultured
hepatocytes [93,94] and myoblasts [95], as well as β-cell dysfunction in vivo [96] and
in vitro [97–101]. Gene profiling using microarray analysis of PC cell lines showed 18 up-
regulated proteins [98], among which adrenomedullin, a 52-amino-acid peptide known
to inhibit insulin secretion [102,103], was identified. Another mechanism of PC-induced
diabetes is insulin resistance. Similarly to T2DM, this resistance in PC is thought to occur at
the post-receptor level. Differences in glycogen synthesis and glycogen breakdown in skele-
tal muscles were observed in patients with PC-induced diabetes compared with those with
non-diabetes PC and healthy controls. Furthermore, islet amyloid polypeptide (IAPP) [104]
and S-100A8 N-terminal peptide [105,106] also induce insulin resistance in vitro.

Heavy alcohol intake has been associated with a higher risk of pancreatitis. The risk
of developing pancreatitis increases with increasing doses of alcohol (80 to 150 g/d). In
comparison to pancreatitis, the role of alcohol consumption remains less clear in PC. Low
to moderate alcohol consumption does not appear to be associated with PC risk, and
only chronic heavy drinking increases the risk of PC. If the patients consume alcohol, the
acetaldehyde concentrations in the stomach increase 6.5-fold [107].

It is also possible that heavy alcohol consumption influences PC development inde-
pendently of chronic pancreatitis. A positive association between alcohol intake and PC
risk was observed only among individuals with low total folate intake; the association
was attenuated among individuals with high total folate intake [108]. Alcohol has been
demonstrated to regulate folate bioavailability and interrupt critical folate-driven biolog-
ical processes; inadequate levels of folate can disrupt DNA methylation, synthesis, and
repair [109]. In addition, it is plausible that alcohol consumption may only affect PC risk
among individuals with low folate intake [109]. Individuals with heavy consumption
of alcohol may have a reduced folate status, making the pancreas susceptible to carcino-
genesis [110,111]. However, in another study, no evidence for the interaction of alcohol
consumption with folate in PC risk was found [112]. This disparity could be due to the low
number of cases in this study.
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6. Diabetes, Alcohol, and Liver Cancer

The major risk factors for hepatocellular carcinoma (HCC), the most frequent histo-
logical type of primary liver cancer, are persistent infection with hepatitis B virus (HBV)
and hepatitis C virus (HCV), both of which increase the risk of liver cancer to 20-fold [113].
Other established risk factors include non-alcoholic fatty liver disease (NAFLD), tobacco
smoking, alcohol abuse, exposure to aflatoxin-contaminated food, and some rare inherited
disorders, including hereditary hemochromatosis [47,48,114–117].

Emerging evidence supports a positive association between diabetes and liver can-
cer [118,119]. The impact of obesity, genetic factors, and a sedentary lifestyle on liver
diseases is shown in Figure 4. Diabetic patients undergoing insulin treatment are at in-
creased risk of developing HCC because of the mitogenic effects of high insulin [120].
Patients with diabetes are also more likely to have hepatic steatosis [121,122], and a fatty
liver may increase liver cancer risk through excess inflammation, oxidative stress, and
other mechanisms [123–126]. Steatosis can lead to nonalcoholic steatohepatitis and even
to fibrosis, cancer, and cirrhosis of the liver. Serum glucose was found to be positively
associated with liver cancer (OR 1.88); serum insulin and diabetes were associated with
a higher risk of liver cancer mortality (OR 3.42 and 2.95, respectively) [127]. Insulin can
exert a potentially mitogenic effect by activating the insulin receptor and then triggering
intracellular signaling cascades that have the potential to be both mitogenic and anti-
apoptotic due to activation of the phosphatidylinositol 3-kinase-AKT pathway [128] and
by interacting with the insulin-like growth factor-1 (IGF-1) receptors which enhance cancer
cell proliferation [129]. Elevated insulin can also increase free IGF-1 (i.e., the bioactive form
of IGF-1) in the blood by reducing the production of IGF-1-binding proteins 1 and 2 in
the liver, thereby positively enhancing tumor development [130]. NAFLD development
and liver insulin resistance are linked through an interaction between the accumulation
of free fatty acids, hepatic inflammation, and increased oxidative stress. Hyperglycemia
among diabetic patients can increase oxidative stress in the cells due to an overload of
glucose oxidation and other mechanisms, leading to the production of ROS such as hy-
droxyl radical [131]. ROS can bind DNA, can cause gene mutations, and may induce
cancer development. Obesity in DM promotes elevated levels of pro-inflammatory factors
such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 and decreases the levels of
adiponectin with anti-inflammatory actions, resulting in chronic inflammation, which can
promote hepatocarcinogenesis [132].

In addition to the carcinogenicity of acetaldehyde, several other biological mecha-
nisms have been proposed to explain the effect of alcohol on HCC. These include chronic
inflammation, resulting in increased oxidative stress and the induction of cytochrome P-450
2E1, leading to increased ROS production, lipid peroxidation, DNA damage, a decrease
in antioxidant defense and DNA repair, disturbed methyl transfer associated with DNA
hypomethylation, decreased hepatic retinoic acid, iron overload, and impairment of the im-
mune system [133]. ALDH2 deficiency exacerbates alcohol-associated HCC development.
Furthermore, after chronic alcohol exposure, ALDH2-deficient hepatocytes produced a
large amount of harmful oxidized mitochondrial DNA via extracellular vesicles, which are
capable of activating multiple oncogenic pathways and promoting HCC development [37].
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Figure 4. Impact of obesity, genetic factors, and a sedentary lifestyle on liver diseases. Obesity, genetic factors, and a
sedentary lifestyle enhance the deposition of visceral fat. These events can play a significant role in the development
of non-alcoholic fatty liver disease (NAFLD). About 12–40% of cases of NAFLD develop into NASH. About 15–17% of
NASH cases may advance to cirrhosis due to an increase in inflammation and fibrosis. A subset of cirrhosis (1–3%) will
finally advance to hepatocellular carcinoma (HCC). High levels of insulin and IGF-1 during insulin resistance can accelerate
the development of HCC. Alterations of intestinal microbiota can cause inflammation and visceral fat deposition. The
absorption of Fe and Cu in the gut, and immune cells, M1 macrophages, myeloid-derived suppressor cells (MDSCs), and
Treg can regulate the development of HCC. In addition, ROS and fatty acid ethyl esters induce cellular damage.

7. Diabetes, Alcohol, and Gastric Cancer

The morbidity and mortality rate of gastric cancer has declined rapidly over the past
few decades, probably due to the recognition of certain risk factors such as Helicobacter
pylori and dietary and environmental risks factors [134]. Gastric cancer is more common
in men and people aged 50 years or older. Obesity, smoking, and Helicobacter pylori
(H. pylori) infection are important risk factors [113,135]. Few studies have focused on
the relationship between DM and the development of gastric cancer. Some systematic
meta-analysis reviews have shown the higher risk and mortality of gastric cancer in DM
patients [136,137]. However, others have shown that there is no clear association between
DM and the risk of gastric cancer [138,139]. Recently, it was found that DM increases the
risk of early gastric cancer development within an average of 70 months of follow-up [140].
All gastric cancers in this study were identified in patients with gastric atrophy, and no
cancer was identified in patients without gastric atrophy, which is a typical presentation of
H. pylori infection. However, a small percentage of gastric atrophy patients will develop
gastric cancer. It was also reported that hyperglycemia and HbA1c increased the risk of
gastric cancer induced by H. pylori infection [141]. The production of ROS, which causes
DNA damage [142], is increased in hyperglycemia, and a high glucose level itself has been
shown to contribute to DNA damage not only in vitro but also in patients with DM [143].
Hyperinsulin in DM has a mitogenic effect by activating the mitogen-activated protein
(MAP) or phosphoinositide 3 (PI3) kinase pathway via insulin receptors [144,145] and the
signaling of insulin-like growth factor receptors (IGF-Rs) [146].
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The relationship between drinking alcohol and the risk of gastric cancer is biologically
plausible. However, it is still a matter of debate whether alcohol consumption elevates
the risk of gastric cancer. Previously, moderate and heavy drinking increased the risk
of gastric cancer [147]. However, in another study, no association of gastric cancer with
dose-dependent alcohol consumption was observed [148]. Instead, the combination of
alcohol consumption and an ALDH2 polymorphism—found in rs671 A allele carriers—
could be a risk factor for gastric cancer [149]. Alcohol consumption enhances acid secretion
from the stomach, which leads to gastric mucosal damage [149] and the generation of ROS,
subsequently promoting the carcinogenesis of gastric cancer [150]. Alcohol is endogenously
broken down into acetaldehyde, which can produce DNA strand breakage and abnormal
binding to proteins, potentially leading to cancer development [151]. A recent study has
demonstrated that chronic alcohol consumption enhances intestinal tumorigenesis and
tumor invasion and metastasis in genetically susceptible mice, as well as increases in
polyp-associated mast cells and mast cell-mediated tumor migration [152], suggesting that
mast cell-mediated inflammation could promote carcinogenesis [152].

DM increases the risk of colorectal cancer by up to three times greater than that of
the general population, which makes colorectal cancer one of the most common cancers in
patients with DM. It was reported that insulin and IGF-1 in DM promoted the phosphory-
lation of extracellular-signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase
(JNK). ERK1/2, P38, and JNK are the three major MAPK families found to be activated
in colorectal cancer. These kinases increased B-cell lymphoma 2 (Bcl-2) and increased
Bcl-2-associated X protein (Bax) expression, inducing anti-apoptosis and the proliferation
of colon tumors [151].

There was a positive association between alcohol consumption and CRC risk in
humans [153–155]. However, pre-diagnostic wine consumption is associated with more
favorable survival after CRC [156]. It was also known that moderate wine consumption has
been linked to lower levels of inflammatory markers [157]. Red wine contains resveratrol
and polyphenols. Studies using mice found that resveratrol and its nano-formulation
triggered apoptosis in cancer cell lines [158] and inhibited intestinal genes involved in cell
proliferation or cell cycle progression [159,160]. Interestingly, CRC risk factors in patients
vary by sex. Smoking and heavy alcohol consumption were significant risk factors of CRC
in males compared to females [161]. However, female patients with a BMI ≥ 25 kg/m and
abdominal obesity were at a higher risk of developing CRC than males [161].

8. Diabetes, Alcohol, and Bladder Cancer

Most studies have suggested a positive association between DM and a greater risk of
bladder cancer morbidity and mortality, particularly in men [162–164]. A recent cumulative
meta-analysis showed that DM was positively associated with bladder cancer mortality in
both men and women [162]. Some studies have provided further evidence of a potential
risk of bladder cancer associated with insulin. Insulin enhances bladder cancer cell growth
by activating epidermal growth factor and PI3K pathways [165,166]. Chronic exposure
to hyperinsulinemia or hyperglycemia induces tumor cell proliferation and metastasis,
which increases insulin-like growth factor (IGF)-1 in diabetic patients, stimulates cellular
proliferation, and inhibits apoptosis [167]. In DM patients with bladder cancer, the dif-
ferential regulation of cadherin expression and the degradation of glycosaminoglycans
were observed. Furthermore, reduced expression of E-cadherin was associated with poor
outcomes in bladder cancer patients, which demonstrated an increase in metastasis.

The association between elevated plasma-free fatty acid (FFA) concentrations and
insulin resistance has been demonstrated. Although the relationship between FFAs
and insulin resistance is complex, a study demonstrated negative correlations between
plasma FFA levels and the expression of peroxisome proliferator-activated receptor-gamma
cofactor-1 (PGC-1) and nuclear-encoded mitochondrial genes. It was concluded that an
increase in FFAs decreases the expression of PGC-1 and nuclear-encoded mitochondrial
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genes and also enhances the expression of extracellular matrix genes in a manner similar to
those of inflammatory diseases [168].

A meta-analysis showed that alcohol consumption was not associated with bladder
cancer [169]. However, another study conducted in the Netherlands found an elevated risk
of bladder cancer in heavy drinkers [170,171]. This disparity could be attributed to gene–
environment interactions, in which ALDH2 (rs671, Glu504Lys) and ADH1B (rs1229984,
His47Arg) polymorphisms showed the highest risk of bladder cancer, whereas among
never-drinkers, no significant elevation of risk was observed with ALDH2 Glu/Lys com-
pared with Glu/Glu [172]. Furthermore, the concentration of acetaldehyde in urine
30–300 min after alcohol intake was 2–6 times higher among those with ALDH2 Glu/Lys
or Lys/Lys genotype than those with Glu/Glu [173], suggesting that heavily alcoholic
individuals with ALDH2 Glu/Lys are subject to prolonged exposure to acetaldehyde in
urine. Acetaldehyde, by binding to DNA and cellular proteins, forms adducts, which can
activate proto-oncogenes, inactivate tumor suppressor genes in replicating cells, and inhibit
numerous important enzymes of DNA synthesis pathways [174].

9. Conclusions

Diabetes, obesity, alcoholism, smoking, chemical exposure, and dietary patterns are
closely associated with cancer risk. Although DM and cancer share many common risk
factors, several population-based retrospective cohort studies have demonstrated that DM
may potentiate gastroenterological carcinogenesis. Thus, avoiding these risks will attenuate
the morbidity and mortality of cancers. Furthermore, the discovery of new cancer-related
genes is very important for cancer screening strategies and prevention. DM, alcohol misuse,
and cancer attract public concern because they are not only medical and health issues but
also represent social and financial burdens globally. Therefore, health authorities, social
workers, and government agencies should manage DM, alcohol consumption, and cancer in
such a way so that these diseases can be prevented and treated simultaneously. Eventually,
a better comprehension of pathogenesis and novel therapies should be extensively studied
to lower or eliminate DM, alcoholism, and cancer and save human lives.
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