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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the global coronavirus
disease 2019 (COVID-19) pandemic. Despite several single-cell RNA sequencing (RNA-seq) studies, conclusions
cannot be reached owing to the small number of available samples and the differences in technology and tissue
types used in the studies. To better understand the cellular landscape and disease severity in COVID-19, we
performed a meta-analysis of publicly available single-cell RNA-seq data from peripheral blood and lung samples
of COVID-19 patients with varying degrees of severity. Patients with severe disease showed increased numbers of
M1 macrophages in lung tissue, while the number of M2 macrophages was depleted. Cellular profiling of the
peripheral blood showed a marked increase of CD14", CD16" monocytes and a concomitant depletion of overall
B cells and CD4", CD8™ T cells in severe patients when compared with moderate patients. Our analysis indicates
the presence of faulty innate-to-adaptive switching, marked by a prolonged innate immune response and a
dysregulated adaptive immune response in severe COVID-19 patients. Furthermore, we identified cell types with
a transcriptome signature that can be used as a prognostic biomarker for disease state prediction and the effective
therapeutic management of COVID-19 patients.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
infected millions of people and caused more than 2 million fatalities
worldwide, resulting in the coronavirus disease 2019 (COVID-19)
pandemic. Most COVID-19 patients have mild to moderate symptoms,
but approximately 20% develop more severe systemic inflammation
accompanied by acute respiratory distress syndrome (ARDS), often
leading to death [1,2]. Multiple studies have implicated the immune
response in severe cases, which plays a crucial role in determining the
outcome of COVID-19 patients [3-11]. However, these studies were
heavily reliant on either the local or peripheral response and included
limited numbers of patient samples. Thus, an understanding of the local
and peripheral immune landscape in relation to disease severity and

progression is required and would help improve the therapeutic man-
agement of COVID-19 symptoms.

Recent single-cell RNA sequencing (RNA-seq) studies of severe
COVID-19 patients have provided evidence of a reduced lymphocyte
count and higher numbers of inflammatory myeloid cells [3-5]. Other
studies have found that severe COVID-19 patients have abundant
pro-inflammatory monocytes or monocyte-derived macrophages in
bronchoalveolar lavage fluid (BALF) [6-8]. Older COVID-19 patients
exhibit more severe symptoms compared with children and young
adults. However, the molecular mechanisms that underlie the imbal-
anced host response leading to disease severity remain unclear.

Innate immune cells act as the first line of defense against invading
viruses and clear the infection by producing type I interferon (IFN) [12].
Severe and terminally ill patients exhibit higher levels of cytokines and
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Fig. 1. Schematic flow diagram of the dataset curation and meta-analysis process. N denotes the number of GEO datasets, n denotes the number of patients.

chemokines, such as IL6, IL36G, CXCL2, CXCL10, CCL2, CCL3, and
CCL5. This finding points toward an overactive innate immune
cell-mediated cytokine storm, leading to the development of ARDS.
However, the type I IFN-mediated innate immune response is reportedly
impaired and delayed [13], suggesting a dynamic shift in the overall
immune response.

The adaptive immune response controls the excessive innate immune
response; thus, lower lymphocyte counts in severe COVID-19 patients
partly explain the observed hyperactivated innate immune response
[14]. Furthermore, recent studies reported that a lower lymphocyte
count and a reduced ratio of lymphocytes in the blood contribute to the
increase in myeloid cells in the blood and BALF [15,16]. Indeed, older
patients aged 60 years or more exhibit low numbers of CD4" and CD8" T
cells [17], whereas children with SARS-CoV-2 infection have normal
lymphocyte counts [18]. Therefore, we posit that this weakened adap-
tive response, along with a hyperactivated innate immune inflammatory
response, may increase the fatality rate.

To understand the immune landscape in the lungs and blood of
COVID-19 patients, we collated single-cell RNA-seq datasets from
healthy controls and moderate, severe, and fatal cases. Our meta-
analysis revealed phenotypic switching of immune cell types and pro-
portionality in the lung and blood of severe cases. Principal component
analysis (PCA) of important cell types could discriminate disease
severity. Furthermore, cells that were strongly associated with severe
disease or mortality had high expression levels of inflammatory genes.

2. Materials and methods
2.1. Ethics statement

All required ethical guidelines were followed, and ethics committee
approvals were obtained by the original study groups.

2.2. Datasets

Single-cell RNA seq raw datasets were collected from the gene
expression omnibus (GEO) of the National Center for Biotechnology
Information database. GSE163668 [19] and GSE166992 [20] were used

for the analysis of blood samples, while GSE168215 [21], GSE169471
[22], and GSE145926 [6] were used for lung samples. GSE157344 [23]
was used for both blood and lung samples. Briefly, patients who were
not admitted to an ICU for longer than 3 days and did not require me-
chanical ventilation/intubation were designated as moderate patients.
Patients admitted to an ICU for a longer period and/or required me-
chanical ventilation/intubation were designated as severe patients.

2.3. Single-cell data analysis

Seurat (version 4.0.2) in the R program environment (4.0.1) was
used for the data quality control and analysis, as comprehensively out-
lined by the package developer [24] and others, owing to its fast pro-
cessing time and ability to integrate multiple datasets across platforms
[25]. Briefly, Seurat objects were created from individual expression
matrices. Unique molecular identifier (UMI) counts were scaled by li-
brary size and a natural log transformation. Gene counts for each cell
were divided by the total UMI count of that cell, scaled by a factor of 10,
000, and then transformed via the natural log plus 1 function, “Nor-
malizeData”. The normalized data were further scaled with the “Scale-
Data” function so that the mean expression across cells was 0 and the
variance was 1. PCA was used with the “RunPCA” function in Seurat to
reduce the dimensionality of the data by clustering similar cells from
different datasets. Next, we identified anchors across datasets using the
“FindIntegrationAnchors” function in Seurat by embedding cells in a
k-nearest neighborhood-based approach to identify mutual neighbors
from different datasets and scored them based on their mutual nearest
neighbors. Noise and batch effect variances among the datasets were
taken into consideration by using reference cells from each dataset.
These anchors were then used to integrate data across datasets using the
“IntegrateData” function. The uniform manifold approximation and
projection (UMAP) method [26] was used to visualize high-dimensional
cellular data in an easy and comprehensive manner. Differentially
expressed genes (DEGs) were identified using the default “FindMarkers”
function in Seurat based on the non-parametric Wilcoxon rank-sum test.
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Table 1
Clinical information of patients and healthy controls who donated blood samples.

GSE Type Status GSM ID Sex Age ICU Symptoms onset to sampling days Publication status

GSE163668 Blood Healthy GSM4995449 Male 49 N/A N/A Yes (ref:19)
Healthy GSM4995451 Male 52 N/A N/A
Healthy GSM4995453 Male 30 N/A N/A
Healthy GSM4995454 Male 34 N/A N/A
Healthy GSM4995455 Female 28 N/A N/A
Healthy GSM4995456 Male 41 N/A N/A
Healthy GSM4995459 Female 34 N/A N/A

GSE166992 Blood Healthy GSM5090446 - - N/A N/A Yes (ref: 20)
Healthy GSM5090448 - - N/A N/A
Healthy GSM5090454 - - N/A N/A

GSE163668 Blood Moderate GSM4995431 Male 41.1 General ward Not available Yes (ref: 19)
Moderate GSM4995432 Male 58.6 ICU 4
Moderate GSM4995434 Male 73.2 General ward Not available
Moderate GSM4995435 Female 45.5 General ward 6
Moderate GSM4995436 Female 85 General ward 2

GSE157344 Blood Severe GSM4762161 Female 68 ICU Not available Yes (ref: 23)
Severe GSM4762168 Male 67 ICU Not available
Severe GSM4762163 Male 77 ICU Not available
Severe GSM4762164 Male 65 ICU Not available
Severe GSM4762165 Female 51 ICU Not available

GSE163668 Blood Severe GSM4995437 Male 44.2 ICU 20 Yes (ref: 19)
Severe GSM4995438 Female 61.4 ICU 14
Severe GSM4995442 Female 48.3 ICU 6
Severe GSM4995446 Male 62.4 ICU Not available
Severe GSM4995447 Male 44.1 ICU 6

GSE157344 Blood Dead GSM4762162 Male 58 ICU Not available Yes (ref: 23)
Dead GSM4762167 Male 80 ICU Not available
Dead GSM4762169 Male 69 ICU Not available
Dead GSM4762171 Male 71 ICU Not available
Dead GSM4762172 Male 68 ICU Not available

2.4. Cell type annotation

The automated cell annotation program scCATCH (version 2.1) [27]
was used in the R environment. scCATCH uses paired comparisons and
evidence-based scoring to identify potential marker genes and annotate

clustered cells.

2.5. Gene ontology analysis

Metascape [28] (web version) was used to assess the functional
enrichment of DEGs. Metascape queries publicly available databases,
such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes [29],
and assigns DEGs to their respective enriched pathways by calculating
the pairwise similarity between any two terms. The hypergeometric test
and Benjamini-Hochberg p-value correction algorithm were used to
identify significantly enriched ontology terms.

Table 2
Clinical information of patients and healthy controls who donated lung tissue samples.

GSE Type Status GSM ID Sex Age ICU Symptoms onset to sampling days Publication status

GSE169471 Lung Healthy GSM5206782 Male 76 N/A N/A Yes (ref: 22)
Healthy GSM5206783 Male 56 N/A N/A
Healthy GSM5206784 Male 56 N/A N/A
Healthy GSM5206785 Male 55 N/A N/A
Healthy GSM5206786 Female 57 N/A N/A
Healthy GSM5206787 Male 18 N/A N/A

GSE145926 Lung Moderate GSM4339769 Male 36 General ward 11 Yes (ref: 6)
Moderate GSM4339770 Female 37 General ward 9
Moderate GSM4339772 Male 35 General ward 13
Severe GSM4339771 Male 66 ICU 11
Severe GSM4339773 Male 62 ICU 18
Severe GSM4339774 Male 63 ICU 14

GSE168215 Lung Severe GSM5134112 Not available - Intubated Not available Preprint (ref: 21)
Severe GSM5134116 Not available - Intubated Not available
Severe GSM5134117 Not available - Intubated Not available
Severe GSM5134119 Not available - Intubated Not available

GSE157344 Lung Severe GSM4762139 Female 68 ICU Not available Yes (ref: 23)
Severe GSM4762146 Male 67 ICU Not available
Severe GSM4762141 Male 77 ICU Not available
Severe GSM4762142 Male 65 ICU Not available
Severe GSM4762143 Female 51 ICU Not available
Dead GSM4762140 Male 58 ICU Not available
Dead GSM4762145 Male 80 ICU Not available
Dead GSM4762147 Male 69 ICU Not available
Dead GSM4762149 Male 71 ICU Not available
Dead GSM4762150 Male 68 ICU Not available
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2.6. Principal component analysis

We performed PCA on selected gene expression changes (log2 fold
change) of target cell types to distinguish the COVID-19 disease states (i.
e., control, moderate, severe, deceased). The PCA involved six steps. In
step 1, we standardized the expression changes in the target feature gene
list by calculating the mean and standard deviation. In step 2, the
covariance matrix for the feature genes was calculated. In step 3, the
eigenvalues and eigenvectors for the covariance matrix were calculated.
In step 4, eigenvalues and their corresponding eigenvectors were sorted.
In step 5, k = 2 eigenvalues were selected to form a matrix of eigen-
vectors. In step 6, the original matrix was transformed (i.e., feature
matrix * top k eigenvectors = transformed data). In this analysis, we
selected the first two PCs because the variances explained by them were
significant for evaluating the disease state. Loading plots of the first two
PC coefficients for the various disease states showed that the gene
expression changes (log2 fold change) widely varied among the mod-
erate, severe, and deceased COVID-19 patients and healthy controls.

3. Results
3.1. Indications of lymphopenia and an abundance of monocytes in blood

Fig. 1 presents an overview of the dataset curation and analysis. We
assigned the datasets into healthy control, moderate, severe, and
deceased groups. The datasets, comprising several individuals, were
combined and integrated for each group (Table 1 and Table 2). Visual-
ization using UMAP showed distinct differences between the COVID-19
patient groups and the healthy controls. Moderate COVID-19 cases were
comparable to the controls in terms of the presence of immature tran-
sitional B cells and CD8" T cells, whereas these cell types were depleted

in severe and fatal cases (Fig. 2A and Fig. 2B). Moderate cases had a
slight increase of CD14" monocytes and memory B cells (Fig. 2A and B).
We did not observe any non-classical CD16" monocytes in healthy
controls or moderate cases; however, CD16" monocytes were increased
in severe cases and constituted approximately 50% of the total cell ratio
in fatal cases. These data indicate an imbalance between lymphocytes
and monocytes in the blood of severe COVID-19 cases. Our analysis also
revealed significant alterations in B-cell subsets. In moderate cases, we
detected transitional B cells and memory B cells, which constituted
approximately 50% of the total cell population. In contrast, these B-cell
subsets accounted for only 1%-4% of the total cell population in severe
and fatal cases (Fig. 2B). Interestingly, we observed platelets only in
fatal cases (Fig. 2A), suggesting a role of platelets in blood clot forma-
tion, which may be a decisive factor in the outcome of SARS-CoV-2
infection.

3.2. Macrophage class switching was evident in severe COVID-19 patients

The lungs are the most severely affected organ in SARS-CoV-2
infection, and therefore we focused our analysis on the variability of
the cellular landscape in lung. M2 macrophages resolve inflammation,
and are known as anti-inflammatory macrophages, and were abundant
in the lungs of healthy controls (Fig. 3A and Fig. 3B). The total number
of M2 macrophages was decreased in moderate, severe, and fatal cases,
and the number of M1 (pro-inflammatory) macrophages increased with
the progression of disease severity (Fig. 3A and B). The number of
airway secretory cells was increased in severe cases and accounted for
approximately 45% of the total cell ratio in fatal cases (Fig. 3B).



M.Z. Hasan et al.

A Airway secretory cells
10910(9)
ohee 1 2
GO:0010951 of activity
1 GO:0031424: keratinization
R-HSA-6798695: Neutrophil degranulation
R-HSA-418594: G alpha (i) signalling events
GO:0016999: antibiotic metabolic process
R-HSA-6803157: Antimicrobial peptides
GO0:0030155: regulation of cell adhesion
G0:0097190: apoptotic signaling pathway
GO0:0050891: water i
0 GO:0001578: microtubule bundle formation
GO:0007566: embryo implantation
GO:0070661: leukocyte proliferation
GO:0048568: embryonic organ development
G0:0043129: surfactant homeostasis
G0:0097529: myeloid leukocyte migration
urfactant metabolism
umoral response
3 8 2 ¢
8 3 % §
w = S
C M2 macrophage

GO:0052547: regulation of peptidase activity

GO:0051702: interaction with symbiont

GO:0048871: multicellular organismal homeostasis

0:0062012: regulation of small molecule metabolic process

0:0002521: leukocyte differentiation

;
7 positive regu of cell migration

-HSA-9024446: NR1H2 and NR1 N3-me§ua(ed signaling

G0:0042116: macrophage activat

GO 003| 349: positive regulauon of defense response

- antigen processi esentation of antigen via SS

G0:0051129: negative regulation of cellular component organization
ko04142: Lysosome
0:0050865: regulation of cell activation
g. 68: leukocyte actvation involved in immune response
synapse pruning
_— 0:0050727: regulation of inflammatory response
0:1901214: regulation of neuron death
R-HSA-8957275: Post: protein phosphory

sal Ne!
_ R-HSA-3000480: Scavenqma by Class A Receptors
> 2 °
£ § g ¢
S = w
2 28 8 »n
=

Computers in Biology and Medicine 137 (2021) 104792

B M1 macrophage

1og10P)

M53' PID INTEGRIN3 PATHWAY
hsa04380: Osteoclast differentiation
GO 0002576: platelet degranulation
WP2806: Human Complement System
E-RAGE s-gnalmgepalhway in diabetic complications
GO 0097435: supramolecular fil
0:0051129: negahve ve19u|al|on of cellular component organization
—[ M145 PID P53 REAM PATHWAY

r organization

G0:0002468: dendritic cell antigen processing and presentation

‘_:( 0:0032963: collagen metabolic process
—— m}
0:0002683: negative regulation of inmune system process
R-HSA-1474228: Degradation of the extracellular matrix
M5885: NABA MATRISOME ASSOCIATED
R-HSA-6783783: Interleukin-10 signaling
GO:0019058: viral life cycle

[ 1 GO: 0006959 humoral immune resp nse
ntig

-H ost-translational prolem phosphorylation

| ] GO 0002548 monocyte chemotaxis
° 2 @
© ] ]
e
-] s H
B @
=
D Macrophage
[ 10910%)
ko05134: Legionellosis
GO:000698! to protein
R-HSA-226: 752: Cellular to stress
GO: 1 to virus

G0:003210. posmve to external stimulus

of
GO! 5
G0:0060326: cell i
M5685: NABA MATRISOME ASSOCIATED

GO 12: : positive reg\’llahon of cytokine producllon

GO. activity
| L GO 961 response to bacterium

koodus Phagosome

GO:0030

Il adhesion

G0O:0006909:
[ | GO m33 of g pathway
of cei’
GO 0043408: regulahon of MAPK cascade
) — WP2806: Human Complemem System
R-HSA-6785807: 4 and in-13 siy
GO:0019932: d i

Severe
Healthy

Dead
Moderate

Fig. 5. Hierarchical clustering of lung cells based on gene set enrichment analysis. (A) Hierarchical clustering of the regulated pathways of significantly
modulated genes in airway secretory cells from different disease states. (B) Hierarchical clustering of the regulated pathways of significantly modulated genes in M1
macrophages from different disease states. (C) Hierarchical clustering of the regulated pathways of significantly modulated genes in M2 macrophages from different
disease states. (D) Hierarchical clustering of the regulated pathways of significantly modulated genes in macrophages from different disease states. The dendrograms
are colored according to the p values; gray cells indicate a lack of significant enrichment.

3.3. Gene set enrichment analysis showed a lack of adaptive response in
the blood of fatal cases

The cellular landscape was altered in SARS-CoV-2 infection, and the
dynamic shift was associated with the degree of COVID-19 severity. We
next analyzed whether the functional properties of the investigated cells
were also altered. Gene set enrichment analysis (GSEA) was performed
with the top 30 genes of the cells that demonstrated a large dynamic
shift, either positively or negatively. GSEA showed that moderate cases
had an adaptive response in immature transitional B cells, whereas these
cells were absent in severe and fatal cases (Fig. 4A). In moderate cases,
the CD8™ T cells showed a similar pattern as in healthy controls, with a
nearly identical adaptive response (Fig. 4B). However, the CD8" T cells
in severe and fatal cases did not express genes involved in the adaptive
immune response. These data demonstrate the requirement for a
lymphocyte-mediated adaptive response for the successful resolution of
SARS-CoV-2 infection.

Interestingly, CD16™ monocytes were not found in healthy controls.
However, CD14" monocytes did not exhibit much difference among the
disease states, apart from a milder response in terms of positive regu-
lation of the defense response in severe and fatal cases (Fig. 4C). The
GSEA of CD16" monocytes closely clustered severe and fatal cases and
indicated a strong response of the lipopolysaccharide-like phenotype
and neutrophil migration (Fig. 4D). This could lead to prolonged
inflammation and the development of a sepsis-like condition.

3.4. Fatal cases showed dysfunctional surfactant metabolism in the lung
Intriguingly, airway secretory cells accounted for almost half of the

total cell population in the lung of fatal cases (Fig. 3B). The GSEA of
airway secretory cells identified dysfunctional surfactant metabolism in

all COVID-19 patient groups, whereas airway secretory cells from
healthy controls were enriched with genes involved in surfactant
metabolism (Fig. 5A). We were unable to detect M1 macrophages in
healthy controls; by contrast, M1 macrophages were increased in severe
cases. The GSEA showed that M1 macrophages activate antigen pro-
cessing and presentation (Fig. 5B). Interestingly, M2 macrophages
demonstrated a similar phenotype of antigen processing and presenta-
tion via MHC class II in moderate, severe, and fatal cases (Fig. 5C).
Macrophages that were positive for FCGR3A and FCGR3B were unable
to initiate phagocytosis in severe and fatal cases (Fig. 5D). This not only
indicates that the cellular landscape was altered but that cellular func-
tion was also impaired by SARS-CoV-2 infection.

3.5. Principal component analysis could discriminate COVID-19 disease
states

Functional alterations of the cellular landscape were evident and
may decide the outcome of patients infected with SARS-CoV-2. We next
investigated whether differential cellular landscapes and gene expres-
sion patterns could distinguish between disease states. We performed
PCA on significantly altered cell types individually. The PCA of imma-
ture transitional B cells shifted directions in accordance with gene
expression (Fig. 6A). Immature transitional B cells exhibited almost
identical gene expression in healthy controls and the moderate patient
group (Fig. 6A). CD8™ T cells were not present in fatal cases, but the gene
expression patterns could discriminate between the healthy controls,
moderate cases, and severe cases (Fig. 6B). CD14% monocytes were
clearly discriminatory among the groups. Severe and fatal cases were in
close proximity to each other and distinct from healthy controls and
moderate cases (Fig. 6C). Auto-regulatory genes such as LAGLSI,
LGALS3, and S100A4 were upregulated in the CD14" monocytes of
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COVID-19 patients but not in healthy controls. Notably, the classical
monocyte markers SI00A8 and S100A9 were upregulated in moderate
cases, but their expression levels were reduced in severe and fatal cases
(Fig. 6C). Non-classical CD16" monocytes were not present in healthy
controls, but their gene expression pattern could distinguish moderate
cases from severe and fatal cases. Compared with severe cases, CD16"
monocytes from moderate cases had higher expression levels of com-
plement factors such C1QA/B/C; they also showed higher interferon-
induced transmembrane protein 3 expression compared with these
cells from severe and fatal cases. Severe and fatal cases distinctively
expressed inflammatory chemokine CXCL8 and other inflammatory
marker genes such as PTGS2, S100A12, S100A8, and MMP9 (Fig. 6D).

The airway secretory cells of healthy controls expressed numerous
S100 fused-type proteins (SFTPs). The PCA of airway secretory cells
clearly demonstrated that COVID-19 cases did not express these SFTP
genes (Fig. 7A). M1 macrophages from moderate cases expressed IF130,
but this expression diminished with disease severity. Notably, M1
macrophages from all disease states expressed several chemokines, such
as CCL2, CCL7, and CXCL10 (Fig. 7B). Additionally, genes responsible
for inflammation, such as APOE, CD68, GRN, human leukocyte antigen
(HLA)-DQA1, HLA-DQB1, HLA-DRB1, SERPINA1, and CCL18, were
induced in M1 and M2 macrophages (Fig. 7B and C), indicating that
macrophages play a predominantly inflammatory role. The PCA of
macrophages revealed distinct clustering among groups. Macrophages
from severe and fatal cases expressed HSPA1A, HSPB1, and HSPA®6,
indicating that an unfolded protein response was triggered. Further-
more, the severe and fatal cases showed higher expression levels of
CCL3L1 and CCL4L2, indicating a chemokine-mediated action or
neutrophil chemotaxis activation (Fig. 7D).

4. Discussion

Mapping the immunological cell landscape of SARS-CoV-2 infection
is of great importance to help combat the COVID-19 pandemic. An
enormous effort by scientists across the globe has enabled us to under-
stand the pathological nature of this virus. However, many in-
vestigations have been directed toward specific target tissues, and a lack
of synchronized effort in collecting different tissues across the disease
severity spectrum makes it difficult to form a complete picture. Here, we
provide a comprehensive understanding of the varying disease states
based on the cellular landscape of blood and lung in moderate, severe,
and fatal COVID-19 cases.

Cross-sectional data analysis of moderate, severe, and fatal COVID-
19 cases enabled us to identify links between the cellular landscape
and disease outcome. For instance, we observed the abundant presence
of lymphocytes in the blood of moderate cases, while B-cell subtypes and
CD8™ T cells were largely missing in severe and fatal cases. This was also
evident in previous studies [30-32] and in cases of SARS-CoV-1 infec-
tion [33]. T cells control hyperactive innate immune responses [34]. The
loss of B-cell subtypes and CD4" and CD8" T cells may heighten the
innate immune response for a prolonged period. This is in accordance
with Zhou et al. [35], who identified a heightened innate immune
response in the BALF of COVID-19 patients.

We observed that increased numbers of non-classical CD14" and
CD16" monocytes were present in severe and fatal cases. Monocytes
from older adults exhibited a higher proportion of non-classical mono-
cytes but expressed a basal level of cytokines [36,37]. Another study
reported that COVID-19 patients with ARDS have a higher percentage of
intermediate CD14" and CD16" monocytes, which constitute almost
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50% of the total cell population [38]. In our study, CD14" and CD16"
monocytes comprised approximately 13% of the total cell ratio; how-
ever, this was increased to 31% and 57% in severe and fatal cases,
respectively. Interestingly, the CD14" and CD16" monocytes expressed
the macrophage marker FCN1, suggesting monocyte differentiation into
macrophages upon SARS-CoV-2 infection. Moreover, we noted that the
expression of HLA-DRA/DPA1 was absent in CD16" monocytes isolated
from severe and fatal cases. Such downregulation may hamper antigen
presentation to CD4" T cells and is often associated with a sepsis-like
condition [39]. We also observed that immature transitional B cells in
moderate patients activated CD4" T-cell differentiation (Fig. 4A), and
convalescent COVID-19 patients exhibited a virus-specific CD4" T-cell
response [40]. This is an indication that moderate cases may have un-
dergone proper switching from the innate to adaptive response, whereas
this switching did not take place in severe cases.

To date, most severe and fatal cases occur in older adults, and the
clinical symptoms in children are mostly mild [41], raising concerns of
immunosenescence. Indeed, naive CD4" T cells and CD8" T cells
decrease as we age [42], whereas naive CD4" T cells obtained from
gestational age 18-22 weeks differentiate into the FoxP3+, CD25" Treg
phenotype [43]. This may explain the high fatality rate in older people
and supports the idea, in line with our findings, that the depletion of T
cells is linked to COVID-19 severity.

We also investigated lung epithelial cells and their immune
connection using cross-sectional datasets obtained from lung or BALF. A
dramatic increase of airway secretory cells and M1-like macrophages
was evident. In severe and fatal cases, airway secretory cells were devoid
of SFTPs. This indicates a surfactant dysfunction-like disorder that may
induce breathing difficulties, leading to ARDS, which often requires

mechanical ventilation. Indeed, surfactant therapy is effective in
reversing the impaired oxygenation in COVID-19 patients with ARDS
[44]. Macrophages accounted for 50% of the total cell population in
severe and fatal cases in our analysis, which is in line with previous
observations in which post-mortem lungs from Middle East respiratory
syndrome (MERS) and SARS-CoV-1 patients exhibited a predominant
presence of macrophages [45]. Macrophages exert their effect as innate
immune cells by triggering the adaptive immune response, initiating the
phagocytosis process [46,47]. However, in our data analysis, macro-
phages from severe and fatal cases exhibited a complete decline in
phagocytosis. This suggests not only quantitative changes but also
qualitative changes in the immune landscape of COVID-19 patients.
Notably, CD163+ macrophages have been reported as intermediate
macrophages and are increased in severe COVID-19 patients [48,49].
This is in agreement with our analysis because M1 macrophages that
exhibited high CD163 expression in severe COVID-19 cases accounted
for 20% of the total cell population. We found that macrophages ob-
tained from severe and fatal COVID-19 cases expressed various
neutrophil and monocyte attractant chemokines, such as CCL2, CCL3,
CCL4, CCL7, CCL8, CXCL8, CXCL9, CXCL10, and CXCL11. Patients
requiring mechanical ventilation exhibited an extensive occurrence of
these chemokines [50-52]. These chemokines may conceivably attract
more inflammatory cells to local sites in the lung and prolong local
inflammation, thereby initiating pulmonary dysfunction [53]. Thus,
these chemokines can be used as prognostic biomarkers of severity, and
the early detection of these markers may help in designing effective
therapeutic interventions.

To the best of our knowledge, this is the first cross-sectional study
using single-cell RNA-seq datasets from COVID-19 patients with various
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degrees of severity. We identified that the immunological cellular
landscape in blood was altered in severe and fatal cases. Notably, T-cell
and B-cell subsets were reduced, and the number of monocytes was
increased (see graphical abstract). This resulted in an aberrant periph-
eral adaptive immune response. We also found that macrophages in lung
acquired an inflammatory phenotype, with a high abundance of
CD163+ M1-like macrophages. Our data revealed a qualitative alter-
ation because these immune cells adopted a pro-inflammatory pheno-
type and secreted an extensive set of chemokines that could continue to
recruit additional inflammatory immune cells to local sites. Despite
these distinct findings, our study had some limitations. Owing to the
limited number of severe and fatal cases in children and young adults,
we were unable to draw direct comparisons between T-cell depletion
and aging. Because the number of T cells may be the determining factor
for successful viral clearance, future studies should focus on the rela-
tionship between T-cell numbers and disease severity among children,
young adults, and those over 65 years of age. This will shed light on the
differential outcomes between children and older adults with SARS-
CoV-2 infection.
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