	all	Ad	non Ad	
	(n=44)	(n=34)	(n=10)	p value
Number of days from transplant to FN onset	8.3±3.3	7.6±3.1	10.0 ± 3.4	0.0728
Clinical laboratory test value at onset of FN				
body temparture	38.2 ± 0.6	38.3 ± 0.7	37.9 ± 0.5	0.245
WBC	121.1 ± 66.3	112.9 ± 61.9	148.8±76.7	0.116
Hb	10.0 ± 9.4	10.6 ± 10.6	8.0±1.1	0.157
Plt	1.9 ± 1.4	2.1 ± 1.5	1.3 ± 0.7	0.101
Neu	75.4 ± 75.0	59.9 ± 41.2	81.6 ± 46.6	0.157
AST	15.7±8.0	16.0 ± 7.0	14.6 ± 11.1	0.261
ALT	24.1 ± 29.9	24.1 ± 32.5	24.2 ± 20.3	0.44
sCr	0.66 ± 0.23	0.67 ± 0.25	0.62 ± 0.16	0.823
CCr	127.9 ± 46.6	126.3 ± 48.5	133.5 ± 40.8	0.499
Alb	3.5 ± 0.4	3.4 ± 0.36	3.7 ± 0.4	0.212
T-Bil	0.7 ± 0.4	0.6 ± 0.3	0.8 ± 0.5	0.543
Duration of neutropenia				
ANC<100	10.4±7.0	10.9 ± 7.3	8.5 ± 5.6	0.462
ANC<500	17.0±8.0	17.1 ± 8.5	16.4 ± 6.2	0.899
ANC<1000	22.5 ± 10.4	22.3±10.1	23.0 ± 12.0	0.933
Antimicrobial agent switched at the onset of FN				0.644
Cefepime	6 (13.6)	5 (14.7)	1 (10.0)	
Meropenem	23 (52.3)	18 (52.9)	5 (50.0)	
Doripenem	4 (9.1)	4 (11.8)	0 (0)	
No switching	11 (25.0)	7 (20.6)	4 (40.0)	
duration	14.9 ± 7.8	14.9 ± 8.0	15.0 ± 7.7	0.966
Number of days with a CVC in place prior to FN	19.9 ± 3.9	19.3 ± 4.0	22.1 ± 3.1	0.0338
Anti MRSA agent				
Vancomycin	25 (73.6)	25 (73.6)	-	
Teicoplanin	6 (17.6)	6 (17.6)	-	
Daptomycin	3 (8.8)	3 (8.8)	-	
Duration of anti-MRSA agent	11.8 ± 6.3	11.8 ± 6.3	-	
Initial trough value				
Vancomycin	12.75 ± 3.92	12.75 ± 3.92	-	
Teicoplanin	22.03±8.44	22.03±8.44	-	
Duration of fever	6.4±3.7	6.8±4.0	5.2±2.5	0.225
90-day mortality rate after onset of FN	2 (4.5)	1 (2.9)	1 (10.0)	0.407
Hospitalization	1039+696	1119 + 766	769+220	0 199

Disclosures. All authors: No reported disclosures.

203. Correlating Cardiac PET Results with Intra-Operative Findings in Infectious Endocarditis

Sami El-Dalati, MD¹; Richard Weinberg, MD, PhD²; Venkatesh Murthy, MD²; Anna Owczarczyk, MD, PhD²; Jamie Riddell, IV, MD²;

Sandro Cinti, MD² and Christopher Fagan, MD²; ¹Fellow, Ann Arbor, Michigan; ²University of Michigan, Ann Arbor, Michigan

Session: 37. Bacteremia, CLABSI, and Endovascular Infections

Thursday, October 3, 2019: 12:15 PM

Background. Care for patients with infectious endocarditis is complicated by delays in diagnosis and relatively low sensitivity of existing diagnostic algorithms, particularly the Duke Criteria. In recent years, cardiac positron emission tomography (PET) has been identified as a useful tool in detecting occult endocardial infections. Multiple prospective studies have demonstrated that when incorporated with conventional imaging modalities cardiac PET can improve the sensitivity of the Duke Criteria by 27-38 percent. These studies used as their gold standard for diagnosis the consensus opinion of an endocarditis team and were characterized by a relatively low percentage of patients who underwent surgery. We reviewed 4 years of surgically managed IE cases at a tertiary care center where cardiac PET was used to aid diagnosis.

Methods. Between July 1, 2014 and December 31, 2018 we retrospectively reviewed 68 surgically managed cases of endocarditis. Cases were identified using ICD-9 and ICD-10 codes of patients who underwent surgical valve replacement for endocarditis as well as all patients who had cardiac PET scans to rule out endocarditis. Variables including PET results, operative findings, valve culture, pathology and PCR testing were recorded.

Results 14 patients were identified who underwent cardiac PET prior to their surgical intervention. 9 cases were classified as possible endocarditis by Duke Criteria and 10 involved prosthetic valves. 12/14 scans were interpreted as suggestive of or consistent with endocarditis. Twelve positive PETs were associated with either operative findings of infection and/or positive PCR testing on the excised valve (positive predictive value: 100%). The 2 patients with negative scans were found to have noninfectious vegetations intra-operatively, negative valve cultures and negative pathology.

Cardiac PET correlates closely with intra-operative findings in Conclusion. patients with endocarditis. In patients with suspected endocarditis it may help guide surgical decision making. Cardiac PET should be considered for addition to the Modified Duke's Criteria similar to the European Society of Cardiology guidelines.

10010 11 11	e operativ	- and mero	operative main	igo in 14 ourgroui	ing managed	chaotoratas e	05051
Organisms	Duke	PET	OR Findings	Endocardial	OR Culture	Pathology	Valve PCR
	Criteria	Results		Manifestations			
MSSA	Definite	Positive	Infection	Abscess /	GPCs	Not	N/A
				Vegetations		performed	
MSSA/MRSA	Possible	Positive	Infection	Abscess	No growth	Dystrophic	N/A
						calcification	
Staphylococcus	Definite	Positive	Infection	Purulent	No growth	Not	Staphylococcus
epidermidis				Vegetations		performed	epidermidis
Staphylococcus	Possible	Positive	Infection	Abscess	Coag	Endocarditis	Enterobacteriaceae
lugdunensis/					negative		spp.
Citrobacter spp.					staph		
Streptococcus	Definite	Positive	Infection	Abscess /	Strep Mitis	Not	N/A
mitis				Vegetations		performed	
Streptococcus	Definite	Positive	Infection	Abscess /	No growth	Not	Streptococcus
mutans				Vegetation		performed	mutans
Streptococcus	Definite	Positive	Infection	Purulent	No growth	Not	N/A
bovis				Vegetation		performed	
Streptococcus	Possible	Positive	Indeterminate	Leaflet	No growth	Endocarditis	N/A
agalactiae				Destruction			
Corynebacterium	Possible	Positive	Infection	Purulent	No growth	Endocarditis	N/A
spp.				Vegetations	-		
Aggregatibacter	Possible	Positive	Infection	Abscess	No growth	Dystrophic	N/A
spp.					-	calcification	
Culture Negative	Possible	Positive	Infection	Leaflet	No growth	Dystrophic	Granulicatella spp.
				Destruction	-	calcification	
Culture Negative	Possible	Positive	Non-	Fractured	Not	Not	Bartonella spp.
			infectious	Leaflet	performed	performed	
Culture Negative	Possible	Negative	Non-	Fractured	Not	Not	N/A
-			infectious	Leaflet	performed	performed	
Culture Negative	Possible	Negative	Non-	Thrombus	No growth	Not	N/A
			infectious			performed	

Table 1 Dec and

Table 2. Sensitivity and Positive Predictive Value of various diagnostic modalities for infectious endocarditis.

	Duke Criteria	TTE	TEE	Cardiac PET	Valve Culture
Sensitivity (%)	42%	33%	50%	100%	25%
Positive Predictive Value	100%	80%	83%	100%	N/A

Disclosures. All authors: No reported disclosures.

204. Antagonistic Effect of Colistin on Vancomycin Activity Against Methicillin-Resistant Staphylococcus aureus in in vitro and in vivo Studies Sungim Choi, Master¹; Taeeun Kim, Doctor²; Seongman Bae, MD³;

Eunmi Yang, MD³; Su-Jin Park, Doctor⁴; Heungsup Sung, PhD³;

Mi-Na Kim, PhD3; Jiwon Jung, MD3; Min Jae Kim, MD3

Sung-Han Kim, MD³; Sang-Oh Lee, MD³; Sang-Ho Choi, MD³;

Jun Hee Woo, PhD3; Yang Soo Kim, MD3 and Yong Pil Chong, MD3; Dongguk University Ilsan Hospital, Ilsandong-gu, Goyang-si, Kyonggi-do, Republic of Korea; ²Division of Infectious Diseases, Nowon-gu, Seoul-t'ukpyolsi, Republic of Korea; ³Asan Medical Center, Songpa-gu, Seoul-ťukpyolsi, Republic of Korea; ⁴Center for Antimicrobial Resistance and Microbial Genetics, Seoul, Seoul-t'ukpyolsi, Republic of Korea

Session: 37. Bacteremia, CLABSI, and Endovascular Infections Thursday, October 3, 2019: 12:15 PM