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Abstract 
Background: Cyanobacteria have a worldwide distribution in the terrestrial habitats, occurring predominantly on the 
surface of the soils, stones, rocks, and trees, practically in moist, neutral or alkaline aeries. The unique natural and 
bioactive compounds from cyanobacteria with various biological activities and an extensive range of chemical classes 
have a significant capability for expansion of the pharmaceuticals and other biomedical purposes. 
Objectives: Regardless of the progresses in our knowledge on cyanobacteria, however, cyanobacteria are still viewed 
as an unexplored source of potential drugs. In this study presence of bioactive compounds among the cyanobacteria 
culture collection of Iran, where a wide variety of strains can be found, was investigated. 
Material and Methods: We explored one Nostoc strain isolated from rice fields in Golestan province of northern Iran 
for searching for novel products. The chemical construction of the new bioactive compound was clarified by application 
of liquid chromatography-mass spectrometer (LC-MS) and Marfey’s analysis of the degradation products. 
Results: We found a novel peptide aldehyde compound from a hydrophilic extract of the Nostoc sp. Bahar_M, which is 
composed of the three subunits, 2-hydroxy-4-(4-hydroxyphenyl) butanoic acid (Hhpba), L-Ile, and L-argininal. 
According to the structural information, we predicted that the novel peptide-aldehyde compound probably to be 
trypsin inhibitors. 
Conclusions: Results demonstrated that terrestrial cyanobacteria are a promissing resource of bioactive natural 
products. 
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1. Background
The Nostoc species produce a large number of 
pharmaceutical compounds with varying bioactivities 
(1). 
The ecological implication of the Nostoc strains expands 
beyond their production, though, as many of these 
prokaryotes are able to adjust their territory due to the 
synthesis of the pharmaceutical products (2). 
These compounds reveal various ranges of medicinal 
activities, together with unique cyclic and linear 
lipopeptides, fatty acids, alkaloids, and other organic 
chemicals (3). A huge amount of innovative 
antimicrobial mediators have been recognized from the 
genus Nostoc with cytotoxic (4), antifungal (5), 
antibacterial (6), immunosuppressive, enzyme 
inhibiting, and antiviral (7) activities. 

2. Objective
Cyanobacteria which are considered as the good 
producers of bioactive products, produce a number of 
linear and cyclic peptide inhibitors of the serine 
proteases, like aeruginosin, spumigin, banyasin, 
cyanopeptolin, micropeptin, anabaenopeptin, 
kempopeptins, microginin, Nostocarboline, and 
microviridin (8-16). 
Such findings have signified cyanobacteria as a hopeful, 
but, still unknown natural source for holding lots of 
natural compounds valuable for the pharmaceutical 
manufacturing. However, the bioactive compounds of 
terrestrial cyanobacteria in Iran remain to be evaluated. 
Consequently, the major point of this study is the 
identification of the structure and bioactivity of a new 
peptide aldehyde compound, by using LC-MS and 
Marfey’s. 
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3. Materials and Methods 

3.1. Culture and Purification of Nostoc Strain 
Soil samples were collected in September 2010 from five 
rice fields in Golestan province in northern Iran. To 
grow cyanobacteria, soil samples were transferred to the 
sterilized and sufficient quantities of the liquid BG110 
media (17) without NaNO3 and pH was maintained at 
7.1. For providing a constant pH, CO2 supply was 
constant; however, there may be a little variation in pH. 
Cultures were kept at 28°C for two weeks in a culture 
chamber provided with continuous artificial 
illumination with a light density of approximately 1500-
2000 lux (18). Hormogonia were used for the 
purification and preparation of the uni-algal cultures. 
The Nostoc strain was regularly tested for the axenicity 
by microscopic examination as well as inoculation on an 
R2A (LAB163) medium for the bacterial colonies. The 
morphological observations were examined by the 
bright-field microscopy and use of phase-contrast 
illumination. The subsequent factors were chosen to 
explain the morphology of the strain and finally, the 
strain was identified according to (19). Finally, One 
strain of heterocystous cyanobacteria (Nostoc sp. 
Bahar_M), which was mainly found strain in the rice 
fields (20), was selected for molecular identification and 
estimation of the chemical analysis. 

3.2. Chemical Analysis 

3.2.1. 15N- Labeling Culture 
Two different sets of methods were used for further 
structural characterization of the new peptide aldehyde 
compound. The first method screened the methanolic 
extracts of the Nostoc cells, and the second method was 
labeling the culture with 15N- urea. A new 15N-labeled 
peptide aldehyde compound was found as explained by 
(21). In this experiment, 15N- urea (98 + % 15N, 
ISOTEC, USA) and nitrogen-free argon (with 20.9 % 
O2 and 0.45 % CO2; quality5.7; AGA Gas Ab, Sweden) 
were used as nitrogen supply into the culture to avoid 
the nitrogen fixation through the air. To maximize the 
degree of labeling in new peptide aldehyde compound, 
Nostoc was consequently cultivated three times and the 
cells from the fourth cultivation were used in LC-MS 
analysis. 

3.2.2. Preparation of Extracts for LC-MS Analysis 
Nostoc sp. Bahar_M was grown in the Z8 liquid medium 
(22-24). The harvested biomasses were freeze-dried 
using Edwards lyophilizer. The extract for the sample 
analysis was prepared from 50 mg freeze-dried sample. 
The microtube containing the culture was 
supplemented with glass beads and the methanol and 
the cells were cracked automatically using a Fast Prep 
device (FP120, Bio101, Thermo Electron Corporation, 
Qbiogene, Inc., CA, USA). The homogenized 
combination was centrifuged and injected into LC-MS 

to identify the bioactive compounds of the strain. The 
Luna C8 (2) reverse phase column was used for 
separation and detection of the new compounds. The 
mobile phase A consisted of the formic acid (0.1 %) 
(Fluka, Sigma Aldrich, Steinheim, Germany) and the 
mobile phase B was consisted of the Isopropyl alcohol. 
The inoculation amount of each sample was 10 μL, 
respectively.  

3.2.3. PCR Amplification of the NOS Gene and Analysis 
The coding sequence for the NOS gene were amplified 
by PCR using two oligonucleotide primers set NOSF 
and NOSR (25). After purification of the NOSF and 
NOSR fragments, sequencing was done using the Big 
Dye Terminator Cycle Sequencing kit and analyzed on 
the ABI 310 Genetic Analyser. The BLASTX search of 
the partial NOS genes of Nostoc sp. Bahar_M was used 
to discover similar sequences. The NOS gene sequence 
and reference sequences were aligned with 
CLUSTALW. The maximum likelihood trees were 
constructed by the MEGA version 7 using the Kimura 
two-parameter model. The robustness of the tree was 
estimated by performing 1000 bootstrap (Fig. 1). 

3.2.4. Reduction of New Peptide-Aldehyde Compound 
Freeze-dried biomass (3g) was extracted twice with 
methanol (120 mL). The extract was partitioned 
between water and dichloromethane according to the 
proportion of 1:1:1. The water layer was evaporated by 
a rotary evaporator and residues were dissolved in 
methanol. The obtained solution was incubated with 
NaBH4 to reduce the aldehyde version of the new 
peptide-aldehyde compound into alcohol version. The 
evaporated solution was dissolved in acetonitrile and 
analyzed with LC-MS (26). 

3.2.5. Amino Acid Hydrolysis Analysis 
The structure of central part of the peptide-aldehyde 
compound was still ambiguous, therefore partial amino 
acid hydrolysis of peptide-aldehyde compounds was 
performed by dissolving peptide in HCl and hydrolysis 
at 105 °C (Fig. S1) (26). The acid was diapered, and the 
residue solubilized in water. D-Leucine, L-Leucine, D-
Isoleucine, Leupeptin, and L-Isoleucine (DAA-20, 
Sigma Aldrich, Germany) were used as a standard. The 
amino acid fragmentation products were analyzed with 
LC-MS software version 2.1. 

4. Results 
The analysis of methanol extract of the freeze-dried 
biomass of Nostoc sp. strain Bahar_M with LC-MS 
yielded, a new peptide-aldehyde compound m/z 450.2 
(Fig. 2). The total ion chromatogram (TIC) and 
extracted ion chromatogram (EIC) showed that the 
protonated [MH+] is a new peptide aldehyde 
compound (450.2 m/z), (M + H2O + H+) (468 m/z) 
and (M + IPA + H+) (510.2 m/z) as shown in Figure 3. 
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Figure 1. Consensus bootstrap tree on the basis of the maximum likelihood distances of the 41 amino acids long partial-length nos gene of Nostoc sp. 
Bahar M and the sequences that were taken from the GenBank. Numbers near nodes indicate bootstrap values for ML analyses (Bar = 0.06 mutations 
per amino acid position). 

 

 
Figure 2. +MS fragmentation patterns of the protonated new peptide aldehyde compound (450.3 m/z), [M + H2O + H+] (468.3 m/z) and [M + IPA + 
H+] (510.2 m/z). m/z= Mass-to-charge ratios, The intensity of the ion on the y-axis is given as counted ions per second (cps) and the mass-to-charge 
ratio (m/z) on the x-axis. 

 

 
Figure 3. Total ion chromatogarm (TIC) and extracted ion chromatogarm (EIC) of the protonated [MH+] new peptide aldehyde compound (450.2 
m/z), [M + H2O + H+] (468 m/z) and [M + IPA + H+] (510.2 m/z). The x-axis represents retention time (min), and the y-axis represents signal intensity. 
Intensity is measured in counts per second (cps). 

 
N15 labeling experiment was performed to confirm the 
subunit structure of the new peptide aldehyde 
compound. By comparing the LC-MS results of the 
labeled with that of the unlabeled extract of the ASN 
biomass, a 5-Dalton shift was observed, and 5 nitrogen 

atoms confirmed the existence of Ile/Leu or Val (1 
nitrogen) as well as argininal (4 nitrogens) (Fig. 4) 
(Fig. S2). 
The MS2 fragmentation patterns indicated a reduction 
of the protonated 15N-labeled new peptide aldehyde 
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compound (452 m/z) by NaBH4 (Fig. 5) (Fig. S3). 
The chromatogram obtained by the Marfey’s analysis 
and hydrolysis of amino acid from the original 
containing compounds indicated the presence of L-ILE 
amino acid. This result showed that the structure of the 
peptide aldehyde compound in comparison to 
spumigins and aeruginosins is a new peptide, 
respectively (Fig. 6 and 7). 
The structure of the new peptide aldehyde compound 
showed an identical structure with that of spumigins, 
and aeruginosins, expect, in the middle amino acid (Fig. 
S1). Initially isolated from Nodularia spumigena AVI, 
spumingins are structurally analogous to the 
aeruginosins, while Choi is changed to the (2S, 4S)-4-
methylproline (Fig. S4). 

The results of the PCR amplification showed that a 358 
bp fraction of the NOS gene was lucratively amplified 
from the PCR amplicon taken from Nostoc sp. strain 
Bahar_M. Moreover, the result of NCBI-BLAST search 
showed that amplified sequence from the Nostoc sp. 
Bahar_M (KT763390.1) is responsible for coding of a 
conserved hypothetical protein, therefore this sequence 
are not involved in the biosynthesis of the 4-
methylproline. The maximum likelihood tree is shown 
in Fig. 1 and the partial NOS gene sequence has been 
deposited in the Data Bank of Japan (DDBJ) under the 
accession No. MG726068 and named as conserved 
hypothetical protein (Nostoc sp. Bahar_M).

 

 
Figure 4. +MS fragmentation patterns of the protonated from 15N-labeled new peptide aldehyde compound (455 m/z), [M + H2O + H+] (473 m/z) 
and [M + IPA + H+] (515 m/z). The +MS fragmentation patterns of the protonated (450.3 m/z), and the 15N-labeled new peptide aldehyde compound 
(455 m/z) showed an increased mass spectrum by 5 nitrogen atom. m/z= Mass-to-charge ratios, The intensity of the ion on the y-axis is given as counted 
ions per second (cps) and the mass-to-charge ratio (m/z) on the x-axis. 

 

 
Figure 5. MS2 fragmentation pattern of the protonated from of the 15N-labeled new peptide aldehyde compound (452 m/z) after reduction by NaBH4. 
m/z= Mass-to-charge ratios. The intensity of the ion on the y-axis is given as counted ions per second (cps) and the mass-to-charge ratio (m/z) on the 
x-axis. 

 
Figure 6. An overall structure prediction of the new peptide aldehyde compound by LC-MS. The predicted structure is composed of three units, 
HHPBA, L-IIe, and argininal/argininol.  
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Figure 7. Marfey’s analysis and hydrolysis of the amino acid indicate the presence of L-ILE amino acid in the new peptide aldehyde compound in 
comparison to Leupeptin which has L-Leu amino acid. The x-axis represents retention time (min) and the y-axis shows the peak area as expressed by 
absorbance units (mAU). 

This is evidence that the structure of the new peptide 
aldehyde compound is new. Monophyletic origin of 
heterocystous cyanobacteria was supported by the 
phylogenetic tree and three well supported evolutionary 
lineages (cluster H1-H3) within heterocystous 
cyanobacteria were found. Unfortunately, not all of the 
relationships are well supported by the bootstrap values. 
However, the conserved hypothetical protein of the 
studied strain (Nostoc sp. Bahar_M) falls into the 
Cluster H3 (bootstrap value of 60% ML). This cluster 
was divided into two main subclusters (H3-1 and H3-2) 
(Fig. 1). Since aeruginosin and spumigin inhibitory 
effect on serine protease has already been proven by 
others (9), therefore, we considered the new peptide 
aldehyde compound might be a new protease inhibitor 
from Nostoc sp. Bahar_M.  

5. Discussion 
During the past few years numerous innovative and 
miscellaneous secondary natural combined with 
application in pharmaceutics and biological activities 
(e.g. antibiotic, enzymes, antiviral, anticancer, 
antifungal, anti-inflammatory mediator, and protease 
inhibitors) have been found in cyanobacteria which 
obviously has made cyanobacteria to have a precious 
potential for extracting new and varied natural 
compounds for drug and could be evaluated as a major 
source for drugs (27). Experiments have signified the 
occurrence of non-ribosomal peptide synthetases 
(NRPS) and polyketide synthases (PKS) secondary 
metabolite pathways in a diversity of cyanobacteria (28-
33). The extent of the synthesis of natural products has 
aided cyanobacteria species survival in many 
competitive ecological niches (34). For all of these 
reasons, researchers try to find novel and 

pharmacologically active cyanobacterial metabolites 
(35-39). 
Numerous evaluations have illustrated the multiple 
pharmaceutical and biological compounds isolated from 
marine cyanobacteria. However, freshwater and 
terrestrial cyanobacteria have also contributed 
molecules with noteworthy biological activities (30, 
31). 
4-mPro is an uncommon amino acid, which has been 
found in a small number of bioactive compounds 
identified from cyanobacteria. The 4-mPro is a special 
non-proteinogenic amino acid, in which the methyl 
group is connected to the second carbon of the side 
chain. In cyanobacteria, it was discovered in 
nostopeptolide A and Nostocycleopeptide A (40, 41). 
However, both of these compounds showed no 
bioactivity after the discovery. The biosynthesis of the 4-
mPro has been revealed by Luesch et al., 2003 (42). A 
zinc-dependent long-chain dehydrogenase and a Δ1-
pyrroline-5-carboxylic acid (P5C) reductase, which are 
coded by genes NOSE and NOSF in Nostoc sp. GSV 
224, convert L-Leu into 4-mPro. Later on, 4-mPro 
biosynthetic genes were also found in the biosynthetic 
gene cluster of Nostocycleopeptin A in Nostoc sp. ATCC 
53789, nostopeptolide A in Nostoc sp. GSV 224, 
nostopeptolide in Nostoc punctiforme PCC 73102 and 
spumigin E in Nodularia spumigena CCY9414 (Fig. S4) 
(9, 25, 43-45). The gene clusters of 4-mPro containing-
compounds in cyanobacteria show that they have 
conserved distribution with an open reading frame (orf) 
and one ATP-binding cassette transporter (ABC 
transporter). Therefore, it is possible to make use of 
methylproline genes to screen new natural products 
from cyanobacteria with PCR (25). In this research, the 
result of the NCBI-BLAST search showed that the 
amplified sequence is not involved in the biosynthesis of 
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4-methylproline and its only responsible for coding a 
conserved hypothetical protein. This is evidence that 
the structure of the new peptide aldehyde compound is 
new.  
Up to now, numerous strains of the genus Nostoc have 
been verified to be producer of the natural product. 
Moreover, numerous depsipeptides with 
pharmaceutical activities, chiefly protease inhibitors 
have been described from Nostoc species (46, 47). 
Furthermore, nostodione A formerly extracted from 
Nostoc commune was also extracted from this strain and 
nostodione A is recognized to be proteasome inhibitor 
with an IC50 value of 50 µM (48). It is probable that the 
protease inhibitors created by Nostoc species act as anti-
grazing compounds, however, further research is 
essential to validate this hypothesis (29, 30). 
Moreover, cyanobacteria produce a plethora of serine 
protease inhibitors with a broad range of chemical 
structures (47). Since protease compounds are are 
involved in a diverse pharmaceutical application, and 
several proteases are classified as drug targets (48, 49), 
the detection of the novel protease compounds is 
essential to the expansion of the pharmacological tools 
as well as prospective therapeutics impacts. For 
instance, cancer cells are more sensitive to the pro-
apoptotic effects of the proteasome inhibition than 
normal cells. Thus, proteasome inhibitors can be 
potential anticancer agents. Protease inhibitors can be 
produced by both toxic cyanobacterial strains (e.g., 
those that produce hepatotoxins or neurotoxins) and 
nontoxic cyanobacterial strains of Microcystic, 
Anabaena, Planktothrix/Oscillatoria and Nostoc (50). 
Quite a lot of protease inhibitors extracted from 
cyanaobacteria have been studied including 
aeruginopeptins, anabaenopeptilides, cyanopeptins, 
micropeptins, nostopeptins, oscillapeptins, 
miroviridins, aeruginosins, microcins, anabaenopeptins, 
oscillamides, banyasin A, largamides A-H, 
lyngbyastatins 4-7, planktocyclin, kempopeptins A and 
B, nostodione A and others (13, 48, 50-52).  
Additionally, a number of protease inhibitors may also 
find function in medicine for curing of stroke, coronary 
artery occlusions, and pulmonary emphysema. For 
instance, inhibitors of the serine protease, thrombin, 
could be used to control blood clot formation in these 
diseases. Thrombin works by slicing a peptide fragment 
from fibrinogen which then guides to the production of 
fibrin, a key element of the blood clots. In the same way, 
angiotensin-switching enzyme inhibitors are being 
expanded as anti-hypertensive mediator. Protease 
inhibitors are also used in the treatment of HIV 
infections (53, 54). These inhibitors include linear and 
cyclic peptides, as well as depsipeptides and have been 
isolated mostly from Microcystis and Oscillatoria strains 
(55).  
As a member of the protease family, trypsin has been 
revealed to play a significant role in a diversity of cancers 
or brain development. The trypsin-like protease (or 

called trypsinogen) has been found in many types of 
carcinomas, such as ovarian neoplasm, pancreatic 
cancer, lung neoplasm and colorectal cancers (55). The 
high level of tumor-associated trypsinogen 2 is able to 
cause an increased rate of tumors occurrence (56, 57). 
In the brain, trypsin IV has shown to have wide 
distribution. Through the activation of PAR (protease-
activated receptors)-1 or PAR-2, trypsin IV could 
perform neuroprotection from toxic insults in the brain 
(58). In addition, trypsin IV was also proposed to 
contribute to the neurogenic inflammation and pain by 
inducing PAR-2-dependent hyperalgesia to thermal and 
mechanical stimuli (58). Therefore, trypsin or trypsin-
like protease could be used as a good target for designing 
new drugs, and trypsin inhibitors will be one of the ideal 
drug leads. Here we have identified a new trypsin 
inhibitor, nostoginosin. These findings increased the 
diversity of the bioactive secondary metabolites 
characterized from cyanobacteria and provide new leads 
for drug research. 
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