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We discuss the influence upon the fields of robotics and AI of the manner one conceives

the relationships between artificial agents’ perception, cognition, and action. We shed

some light upon a widespread paradigm we call the isolated perception paradigm

that addresses perception as isolated from cognition and action. By mobilizing the

resources of philosophy (phenomenology and epistemology) and cognitive sciences,

and by drawing on recent approaches in AI, we explore what it could mean for robotics

and AI to take distance from the isolated perception paradigm. We argue that such a

renouncement opens interesting ways to explore the possibilities for designing artificial

agents with intrinsic motivations and constitutive autonomy. We then propose Artificial

Interactionism, our approach that escapes the isolated perception paradigm by drawing

on the inversion of the interaction cycle. When the interaction cycle is inverted, input

data are not percepts directly received from the environment, but outcomes of control

loops. Perception is not received from sensors in isolation from cognition but is actively

constructed by the cognitive architecture through interaction. We give an example

implementation of artificial interactionism that demonstrates basic intrinsically motivated

learning behavior in a dynamic simulated environment.

Keywords: cognitive architecture, intrinsic motivation, constructivism, active perception, constitutive autonomy

INTRODUCTION

From a superficial phenomenological point of view, the subjective experience we have as humans
tells us that perception, cognition, and action are three separate realms. Perceiving amounts to
merely receiving information about the state of the world. Cognition, then, is about processing this
newly acquired information in light of already possessed information, possibly to select an action
suited to the current state of the world and to given goals. The appeal of this commonsensical
view about perception as isolated and independent from cognition and possible consecutive actions
may not come as a surprise. It relates to what Husserl calls the “natural attitude” of day-to-day
life, according to which we do not question the existence of objects presented to us in perceptual
experience (Husserl, 1982). This natural attitude is irreducible and drives our attention away from
any consideration of processes possibly at play in the constitution of experience. Basic biological
knowledge reinforces this naïve commonsense picture: sensory organs collect information about
the world (perception), that is transmitted to the brain, which processes it (cognition) and drives
motor organs (action).
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This commonsense model of perception constitutes the
ground for an extremely widespread analogy when describing
the functioning of a robot or an AI program. It is very
common to take a robot’s input data coming from its sensors
as its perception. The processing of input percepts then stands
for the robot’s cognition, possibly leading to setting output
data traditionally labeled action. Output data drive the robot’s
actuators. In resonance with the naïve picture sketched just
above, sensors stand for the robot’s sensory organs, computation
for its cognition, and actuators for its motor organs. Echoing our
natural tendency to project our intentional life in artifacts we
build (Searle, 1980, p. 419), it then becomes tempting to claim
that the robot perceives, thinks, and acts as humans do.

This naïve view about perception and cognition does not only
influence the general public, feeding fantasies about AI nature
and future developments (according to which we would be on
the verge of the emergence of strong AI, artificial systems that
would reach and exceed the human level). It also influences
researchers and engineers and pervades the fields of computer
science, robotics, and AI. One of the most influential textbooks in
AI defines the latter as the “study of agents that receive percepts
from the environment and perform actions. Each such agent
implements a function that maps percept sequences to actions
(. . . )” (Russell et al., 2010, p. vii). Russell and Norvig go on:

An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through actuators. (. . . ) A human agent has eyes, ears, and other
organs for sensors and hands, legs, vocal tract, and so on for
actuators. A robotic agent might have cameras and infrared range
finders for sensors and various motors for actuators. A software
agent receives keystrokes, file contents, and network packets as
sensory inputs and acts on the environment by displaying on the
screen, writing files, and sending network packets.

We use the term percept to refer to the agent’s perceptual inputs at
any given instant. (. . . ) By specifying the agent’s choice of action
for every possible percept sequence, we have said more or less
everything there is to say about the agent” (Russell et al., 2010,
p. 34–35).

According to this explanation, the algorithm defining actions
an agent will perform in response to every possible sequence
of perceptual inputs completely describes this agent. This leaves
little room for escaping the idea that perception, cognition, and
action constitute three separate realms. The agent’s cognition
lies in the process of selecting actions in response to specific
perceptual inputs. Thereby, perceptions and actions are what they
are, independent of cognition so defined1.

In the rest of this text, we call this conception of perception
as radically separated from cognition and action the isolated
perception paradigm. Despite its pervasiveness in computer
science, robotics, and AI, the isolated perception paradigm has

1The quotation from Russell et al. (2010) we reproduced just above comes with a

figure that is particularly representative of this conception (therein Figure 2.1, p.

35): it includes the term percepts to denote a component impacting sensors (and

thus pre-existing the sensors and any form of cognition on the agent’s behalf).

been widely discussed and criticized for instance in philosophy
and epistemology as well as from within cognitive sciences
themselves. A few approaches in robotics and AI explicitly
develop alternatives to this isolated perception paradigm.We will
review them and describe our original proposition.

Through this paper, we intend to contribute to the study of
what it could mean for AI and robotics to take distance with
the isolated perception paradigm. We argue that abandoning
this paradigm may lead to original ways of designing artificial
agents. We thus propose Artificial Interactionism as a possible
framework that rejects the paradigm of isolated perception.
Before detailing this original framework, we first ground our
discussion of the possibility to take distance with isolated
perception in the broader scope philosophy (phenomenology
and epistemology), which provides interesting insights about
the relationships between perception, cognition, and action. We
then focus upon the manner these relationships are discussed in
cognitive sciences and AI, which leads us to bring to the fore the
question of extrinsic vs. intrinsic motivations. We finally expose
underlying principles of Artificial Interactionism together with
the first implementations and experiments.

PERCEPTION, COGNITION, AND ACTION
IN PHILOSOPHY

The topic of perception is widely discussed in philosophy, not
only through efforts to explain and account for perceptual
experience, but also with the study of the role of perception in
knowledge acquisition. Let’s first focus on interesting insights
from philosophical accounts of perception.

Philosophical Insights Upon Perception
Among typical issues philosophical studies strive to address, one
can mention the challenges of describing what are the contents
of perception, of explaining perceptual intentionality—the fact
that we have experiences about (what we hold to be) objects of
the world and their properties—or of elucidating the difference
between veridical and non-veridical perceptual experiences.

The first philosophical stream deserving mentioning is
Empiricism (Lock, Berkeley, Hume, Reid . . . ). Empiricists
describe perception as the experience of “effects in one produced
by things in the world,” namely sensations or sense-data (Sarkar
and Pfeifer, 2006, p. 545). The perceiver is directly aware of
sensations or sense data. A strength of this empiricist approach
is to provide a way of differentiating (conceptually and in
an externalist fashion) veridical and non-veridical experiences.
Veridical experiences are experiences of sensations caused by
the right objects in the world while non-veridical ones are
not. At first sight, empiricists seem to present perceivers as
passively experiencing sense data, thus resonating with the
isolated perception paradigm. However, things may be less
straightforward. To the extent that effects that things in the world
cause in perceivers can mobilize their cognitive processes, such
approaches may well-depart from isolated perception.

This being said, many thinkers consider that empiricism fails
at providing a satisfying account of perception as it does not
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explain how experiences of sensations (mental or bodily events)
can present the world as being a certain way, can provide access
to objects of the world and their properties (access to knowledge
of the world and its objects). To the extent that perception is
subjective contents, experiences of effects internal to perceiver
that are caused by interactions with objects of the world, why
should we consider that certain sensations present properties of
things of the world (like the redness of a fruit) while other do
not (like pain when we hit our foot against a stone)? A way of
phrasing this difficulty is to say that sensations or sense-data
alone are not sufficient to account for the “intentional content
of an experience—how it presents things as being” though this
intentional content “is given immediately with the experience”
and is core to perceptual consciousness (Sarkar and Pfeifer,
2006 p. 546–547). A possible answer (that is in fact as much
an elimination of the problem) is phenomenalism, according to
which “objects and states of affairs are themselves just patterns
of organization in subjective states of consciousness” (Sarkar
and Pfeifer, 2006). “Physical objects are reducible to subjective
sensory experiences, or sense-data” (Blaauw and Pritchard, 2005,
p. 114). Thereby, perceptual access to, and knowledge of, physical
objects are unproblematic. They are not external objects after all.

This discussion directly leads us to the work of Kant,
whose account of perception clearly opposes the isolated
perception paradigm. With his famous distinction between
things in themselves we never perceive and phenomenal
objects, Kant could, at first sight, be seen as defending a
form of phenomenalism. But, this would miss most of Kant’s
transcendental idealism and its account of perceptual experience.
Although Kant argues that we can only perceive the phenomenal
world (the world as it appears to us), he nonetheless indicates
that we experience objects and states of affairs and that sensations
alone are not enough to account for this intentional dimension
of perceptual experience (Kant, 1998). According to Kant’s
description, perceptual experience involves three faculties of the
mind allowing acts of synthesis. An act of synthesis is an “act of
putting different representations together with each other and
comprehending their manifoldness in one cognition” (p. 210).
With the faculty of sensibility, the synthesis of apprehension
organizes disparate perceptual inputs (intuitions) along with the
a priori forms of space and time.We are never aware of intuitions
independently of their organizations within these a priori forms
of sensitivity. The faculty of understanding then allows the
synthesis of recognition in a concept (with at minimum the
Categories of the intellect such as the concepts of number, quality,
and modality, together with the concept of the object that is
recognized). The faculty of imagination permits the synthesis
of reproduction for the mind to make the connection between
intuitions and concepts.

This Kantian account of perceptual experience also implies
that only phenomenal objects are perceived while things in
themselves remain irremediably out of cognitive reach. We only
perceive objects resulting from the acts of synthesis of the mind.
We will return to this epistemological question below. What is
important for now is that, for Kant, perception is irremediably
conceptualized and entangled with cognition. “Thoughts without
content are empty, intuitions without concepts are blind”

(p. 193–194). Kant even describes acts of synthesis of recognition
under concepts as judgments of apperceptions (p. 236). In sum,
Kant grants to the mind and its cognitive processes an irreducible
active role in perceptual experience. This does not necessarily
mean that perception is entirely conceptualized. It is interesting
to make the distinction between the intentional content of an
experience as it presents the world being a certain way and the
phenomenal character of experience, how it feels to have this
experience (Blaauw and Pritchard, 2005, p. 52). While it is clear
that intentional contents require cognition (acts of synthesis),
one can appeal to non-conceptual contents such as qualia to
approach the phenomenal dimension.

In a similar vein, Husserl also claims that sensations are not
sufficient to account for perceptual experience (Husserl, 1982). In
fact, an experience, in its intentional dimension (an experience
of a given object), can be veridical or not, even though relying
on the same sensations. Husserl’s phenomenological analysis
put the focus on the natural attitude we mentioned earlier.
Through this natural attitude, perceivers take the experience
of the presence of objects for granted independently of the
veridical or non-veridical nature of these experiences. This
natural commitment to the existence of perceived objects is an
irreducible component of perception. Husserl thus argues that
phenomenology of perception must study intentional contents of
perceptual experiences independently of any assumption about
the existence of perceived objects. Such assumptions must be
bracketed (Husserl’s famous epoché). The fact that an object
really exists in the world or not when a perceiver has a
perceptual experience of this object shall not enter into the
phenomenological analysis of perception. Husserl calls noema
this content of perceptual experience phenomenology shall study.
As with Kant, Husserl’s noema includes, but does not reduce
to, non-intentional and non-conceptual sense impressions (hýle).
Husserl indicates that perceiving something as a given object
requires the background of an intentional horizon composed of
the many expectations one has about this object in terms of other
possible (future) experiences. Again, the intentional content of
perceptual experience irreducibly mobilizes cognition. Although
with less intellectual coloration, similar connections between
perception and cognition are brought to the fore by Heidegger
and Merleau-Ponty (Dreyfus, 2007). Notably, Merleau-Ponty
describes a “feedback loop between the embodied coper and the
perceptual world” he calls “the intentional arc.” For him, what
we learn in our past and what we see possible in our future is
“sedimented” in how things look to us (Dreyfus, 2007, p. 1144–
1145). Husserl and Merleau-Ponty, like Kant, do not rely on
the isolated perception paradigm. The intentional horizon or the
intentional arc at play in perceptual experience clearly involves
the knowledge and cognition of perceivers.

Remaining on the side of the phenomenological analysis of
perception, one can evoke few other elements at odd with the
isolated perception paradigm. First, Husserl and Merleau-Ponty
can be understood as arguing that cognition is at play when
we perceive ourselves as evolving in mind-independent reality.
As long as we remain in the realm of phenomenology and
Husserl’s epoché, whether we really are in contact with a mind-
independent reality is irrelevant (it is rather an epistemological
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question). Thus, notwithstanding their veridical or non-veridical
nature, “some experiences are about things in the world external
to the mind in virtue of representing possible interaction between
the subject and the thing represented” (Siegel, 2021, Section 5.4).
Notably, we can take different perspectives onmind-independent
objects, which are then expected to take different looks. As
we already evoked, such expectations about mind-independent
objects enter what Husserl calls the intentional horizon in a quite
conceptual approach. In slight contrast, Merleau-Ponty adopts
a more action-oriented position, with mind-independence being
connected to “‘readiness’ on the part of the subject to move her
body relative to an object to get a better view, if she so wished”
(Siegel, 2021). In addition, one could as well-mention indexical
contents of perceptual experiences, “contents that must be
specified by the use of indexical expressions, such as ‘over there’,
‘to the left’, ‘here’, ‘in front of/behind me’, ‘just a second ago’, ‘since
a few second ago’, and so on” (Siegel, 2021, Section 3.4). These
indexical contents seem necessary for experience to present
spatially and temporally located events. To the extent they appeal
to self-consciousness and situation awareness, these indexical
contents would involve cognition and their irreducibility in
perceptual experiences would mean opposition to the isolated
perception paradigm.

Perception and Epistemology
Let’s now turn to epistemological analyses of the role perception
plays in knowledge acquisition and the insights they can
provide to discuss the paradigm of isolated perception. In this
respect, we can start from the “objectivist conception of science”
(Baghramian, 2014) that promotes a universal and neutral
scientific method permitting us to reliably infer knowledge
about reality from empirical evidence and tools of logic. This
conception relies on the famous dichotomy between analytic and
synthetic statements, between statements “justifiable by a priori
reasoning” and statements “justifiable only a posteriori” on the
ground of empirical observation—“tertium non datur” (Uebel,
2014, p. 90–91). Arguably, the isolated perception paradigm is
at play here. We reach analytic statements through cognition,
with results warranted by the application of the laws of reasoning.
By contrast, synthetic statements get their epistemic strength
from their ground in neutral observation one can tie to isolated
perception. Perceptions are reliable because they provide raw
information about the world, information that is independent of
what observers think or know.

Insights about the limits of the isolated perception paradigm
we collected from philosophical accounts of perception are
highly significant with respect to the validity of this objectivist
epistemological conception. They resonate with many studies
from epistemology and philosophy of science. One of the
most famous among these is the work of Thomas Kuhn (1996
[1962]), who defends that scientific investigation relies on sets
of methods and concepts or taxonomies (together with other
elements forming paradigms) that are historically situated. In
line with the criticism of isolated perception, Kuhn argues
that this influence of paradigms reaches perceptual experience
itself that relies on concepts available at a given place and
time. In consequence, shifts in paradigms (for instance at

the occasion of scientific revolutions) can trigger changes in
perceptual experience (at least in its intentional dimension; see
Bird, 2000, p. 102–104). Through this view he calls the world-
change thesis (Kuhn, 1996, chapter 10), Kuhn radically opposes
the objectivist conception of science: experimental facts collected
through perception cannot be considered as neutral grounds for
(scientific) knowledge acquisition.

As introduced with Kant’s transcendental idealism, the
irreducible role of concepts and cognition in perception leads
many authors to claim mind-independent reality either is
unknowable or does not even exist. We can only know objects
as they appear to us (phenomenal objects) depending on our
concepts and cognitive processes. However, such conclusions
are not inescapable. For instance, the theory-ladenness of
empirical observation does not necessarily mean that empirical
evidence cannot contribute to theory choice (Brewer and
Lambert, 2001). In this respect, it may be fruitful to distinguish
between two types of neutrality that one could require from
observational statements (Sober, 2014). One can (1) demand
a set of observation statements that is independent of any
theory and can be employed to test any theory (absolute
theory neutrality) or, more modestly, (2) impose mobilizing
observation statements that are independent of the theory to
be tested (relative theory neutrality). With this second version,
cognitive access to mind-independent reality may remain
possible. Moreover, one can wonder whether the world-change
thesis applies to any possible notion of world or whether one
may be entitled to distinguish between scientific worlds that
change with paradigm shifts and an empirical ordinary world
that is left untouched during such modifications (Ghins, 2003).
But, even in such a more optimistic epistemological framework,
the detachment from the isolated perception paradigm remains.
It is not the role of concepts and cognition that is at
stake. It is rather the degree of stability of different sets
of concepts.

With his commonsense realism, Putnam also defends the
possibility of genuine cognitive access to mind-independent
reality despite the acknowledgment of the irreducible role of
concepts and cognition (Putnam, 1999). Drawing on the work of
American classical pragmatists such as James or Dewey, Putnam
deploys an Aristotelian understanding of concepts (Aristotle’s
direct realism) to which he subtracts essentialism: “when I
think [or apperceive] that something is that way, and when the
thing is that way, the ‘way’ in question is one and the same”
(Putnam, 2002, p. 106). In sum, a correct conception is direct
cognitive contact with mind-independent reality and allows
direct cognitive contact with it in perception under the form of
apperception. Apperceiving something involves this something.
Apperceiving is a cognitive ability that functions “‘with long
arms,’ arms that reach out to the environment” (Putnam, 2012,
p. 352). We could reformulate this by saying that Putnam put
upside down the discussion of issues induced by abandoning
the isolated perception paradigm. There is no question about
the way we could perceive and know mind-independent reality
despite the involvement of cognition in perception. Perception
and knowledge of mind-independent reality are possible thanks
to (correct) cognition.
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To conclude this brief review of questions associated with
the isolated perception paradigm and its rejection, one can
recall the epistemological shift operated in physics during the
twentieth century. With the development of modern physics
(Einstein’s relativity and quantum mechanics), the ideal of
an observer looking at the world from the outside (as if
she was not herself in the world) became more and more
problematic (assuming that one could neglect specificities and
actions of observers became less and less tenable). With
Einstein’s relativity, spatial-temporal distances between events
are relative to observers’ states of movement and situations in
gravitational fields. With quantum mechanics, descriptions of
particles include reference to observers’ choices and actions (to
effective experimental settings and devices experimenters settle
to observe these particles). By contrast, classical physics was
attempting to provide a picture of the world from the “God’s
Eye point of view” (Putnam, 1981, p. 49) with no reference
to observers. The increasing efficiency of experimental devices
progressively unveiled that such an ideal was misled and that
neglecting situations and actions of observers could be nothing
but (at best) an acceptable provisory approximation. Even in
the very controlled and refined scientific practice of empirical
observation, looking at the world mobilizes very complex
networks of components that include observers’ situations, some
of their cognitive processes, and actions (choices and judgments
outcoming in particular experimental structures).

We now propose to explore the manner these first insights
from philosophy resonate within the fields of cognitive sciences
and AI.

PERCEPTION, COGNITION, AND ACTION
IN COGNITIVE SCIENCES AND AI

We begin this section by analyzing in more detail the manner the
isolated perception paradigm is at play in cognitive sciences and
AI. In a second time, we turn to the discussion of alternatives to
this paradigm and of the consequences for AI.

Isolated Perception
To better understand the isolated perception paradigm and
its pervasiveness in cognitive sciences and AI, it is interesting
to evoke the “foundation of traditional cognitive science”
constituted by “the representational and computational
model of cognition” (Newen et al., 2018, p. 5). This model
pictures cognition as the syntactic manipulation of mental
representations. Somehow, the mind computes over a kind
of representational “mental code” (Hutto and Myin, 2018, p.
101). This classical cognitivism takes its roots in philosophical
views of thinkers such as Descartes—mental representations are
the substrates of the mind’s activity—and Hobbes—thinking
amounts to operating on representations (Hutto and Myin,
2018, p. 96). Though maybe not inescapably, this traditional
conception in cognitive sciences naturally leads to the isolated
perception paradigm. “According to the standard cognitivist
account, information is supposed to be picked up via the senses
through multiple channels, encoded and then further processed

and integrated in various ways, allowing for its later retrieval”
(Hutto and Myin, 2018, p. 100). Perception is thereby separated
from cognition. It provides information that becomes available
for cognition through their encoding in mental representations.

On the ground of this traditional conception, cognitive
sciences and AI mutually influenced themselves. The works of
Shannon and Turing settled a bridge between the notion of
cognition (as the processing of information in so far as it means
something) and the work computers can do (the mechanistic
processing of information qua physical object). One can also
mention Newell and Simon’s physical symbol system hypothesis
(Newell and Simon, 1976) according to which cognition amounts
to the mechanical processing of physical symbols. Through such
bridges, both traditional cognitive sciences and AI came to
share the tendency to conceive cognition as syntactic-mechanical
processing of representations. This idea is often associated with
functionalism, “which claims that cognitive phenomena are fully
determined by their functional role and therefore form an
autonomous level of analysis” (Newen et al., 2018, p. 5). They
could thus be adequately described by algorithms susceptible
to be implemented in various information processing devices
(biological as well as artificial).

This widespread common ground contributed to instating
isolated perception as an influential paradigm in AI. Again, if
cognition is about processing information through operations
upon representations (possibly to select actions to perform), then
perception is easily confined to the isolated role of providing
contents to some of these representations. One can easily
recognize the face of this isolated perception paradigm when
Russell and Norvig themselves explain the important role for
AI development of the premises of cognitive psychology in
the middle of the twentieth century. They mention Craik who
“specified the three key steps of a knowledge-based agent: (1)
the stimulus must be translated into an internal representation,
(2) the representation is manipulated by cognitive processes
to derive new internal representations, and (3) these are in
turn retranslated back into action” (Russell et al., 2010, p. 13).
Cognition occurs only during the second step, in isolation from
perception and action. A more recent and emblematic example
is the development of AI algorithms capable of playing multiple
games through Deep Reinforcement Learning (Mnih et al., 2013).
A convolutional neural network is used to learn a control policy
directly from sensory input (raw pixels of the Atari game scene).
In this example, perception is isolated from the AI algorithm
because a ready-made representation of the state of the game is
provided as input to the AI algorithm. Moreover, the reward at
the end of the game (win, draw, or lose) is also provided as though
the agent could directly sense the world state value.

A clarification is in order here. Isolated perception as we
intend it in this paper should not be understood as perception
independent from computation or information processing. So
defined, isolated perception would be an empty notion. Any
sensor comes with a certain dose of information processing (at
minimum in the filtering it operates by collecting only some
of the information available in its environment). For instance,
most cameras embed microcontrollers for low-level signal
processing (noise filtering, implementation of communication
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protocols, etc.). Perception cannot be isolated in virtue of being
independent of computation or data processing in general.
Rather, and more precisely, there will be isolated perception in an
(artificial) agent when the computational structures intervening
in perception are independent of the rest of the agent’s
computational architecture in charge of generating outputs (such
as selection of actions to perform). This somehow echoes the
discussion of the scope of Kuhn’s world-change thesis we evoked
in the previous section. We saw in this respect that perceptual
experience is irremediably mediated by available concepts.
Nevertheless, the most radical form of the world-change thesis
occurs when mediating concepts belong to, or depend on, sets of
concepts empirical observation is meant to test.

Moreover, the depth of computation mobilized in an agent’s
perception is irrelevant to assess whether the latter is isolated
or not. One can for example mention Marr’s account of visual
perception (Siegel, 2021, Section 8.1) that involves several
layers of computation (from 2D levels of gray to reflectance
information, then to isometric sketches, and finally up to
3D representations of objects). Though quite complex, this
perceptual computation remains in the scope of the isolated
perception paradigm as long as it operates independently of
a larger cognitive architecture. The same applies even when
powerful algorithms, such as pre-trained neural networks, are
integrated into sensors themselves (following the logic of Edge
computing). In itself, this is not enough to escape the isolated
perception paradigm. We could even have isolated perception
in an agent equipped with life-long learning of perceptual
module based on reinforcement learning (in case the rest of
the cognitive architecture of the agent does not intervene in the
reward definition).

Now that the notion of isolated perception is clearer
(perceptual processes independent from the rest of an agent’s
cognitive processes, in particular, those in charge of selecting
actions to perform), we can turn to what it could mean for AI
to take distance with this paradigm.

Theoretical Alternatives to Isolated
Perception
As classical cognitivism is tightly connected with the isolated
perception paradigm, let’s have a look at approaches in cognitive
sciences that reject this traditional conception. We can start by
mentioning the different views Albert Newen, Leon De Bruin,
and Shaun Gallagher recently gathered under the umbrella
term 4E-cognition (Newen et al., 2018). This stream departs
from classical cognitivism by picturing cognition as Embodied
(involving the body beyond the brain), Embedded (depending
on extrabodily components), Extended (involving extrabodily
components), and-or Enacted (with an active role for the agent
in its environment). For instance, Hutto and Myin defend
“Radically enactive and embodied accounts of cognition, REC”
(Hutto and Myin, 2018, p. 96–97) according to which “cognitive
processes are not, for example, conceived of as mechanisms
that exist only inside individuals. Instead, they are identified
with nothing short of bouts of extensive, embodied activity

that takes the form of more or less successful organism-
environment couplings.” Similar to what Putnam proposes with
his commonsense realism exposed in the previous section, with
REC “perceiving is a matter of getting a grip on the world as
opposed to representing it.” REC clearly opposes the isolated
perception paradigm. REC’s cognition extends up to organism-
environment couplings instead of operating upon the results
of perception.

Ecological approaches pioneered by Gibson (1979) and
direct perception theories pertain to this stream. They oppose
“conventional theories that suppose (at least tacitly) that
nervous systems register impoverished, ambiguous, or otherwise
inadequate variables of stimulation” (Michaels and Carello, 1981,
p. 157). Gibson’s pioneering work is directed against Marr’s
conception of visual perception as a computational process
construing 3D representations on the ground of 2D information
captured in the retinal images (Sarkar and Pfeifer, 2006, p.
547–550; Siegel, 2021, Section 8.1). According to ecological
approaches, perception involves the perceiver as a whole (not just
his brain) who sense “structured energy that invariantly specifies
properties of the environment of significance to [her]” (Michaels
and Carello, 1981, p. 156). For tenants of this line of thought,
perception cannot be seen as isolated. The perceiver is “an
active explorer of the environment—one who will make an effort
to obtain sufficient information” (Michaels and Carello, 1981,
p.157–158). This is in line with the shift operated in quantum
physics concerning the status of empirical observation whose
active nature is fully acknowledged and accounted for. It also
echoes theories of active perception according to which the brain
should not be seen as passively receiving data from or during
perception. On the contrary, perception is better conceived of
along the analogy of an internet search, the brain playing the
role of a query machine. “An agent is an active perceiver if it
knows why it wishes to sense, and then chooses what to perceive,
and determines how, when and where to achieve that perception”
(Bajcsy et al., 2018, p. 178).

The role of action is also core to constructivist theories,
such as Piaget’s, which propose to keep perception and action
entangled in sensory-motor schemes (Piaget, 1954). According
to constructivist epistemology, an agent learns through active
interaction with its environment and constructs a dynamic
data structure that characterizes its current situation (Riegler,
2002). For the same reasons, an agent does not passively
receive percepts from the outside world, but actively constructs
perception in his inner subjective realm, in compliance with
his sensorimotor experience. This type of conception has an
interesting resonance with Kant’s transcendental idealism and
the active role of synthesis it grants to the mind. In this
constructivist stream, we shall also mention O’Regan and Noë’s
famous theory of perception based on implicit knowledge
of regular patterns in sensory-motor schemes (O’Regan and
Noë, 2001). This constructivist approach strongly resonates
with Husserl and Merleau-Ponty’s accounts of perception. In
granting an irreducible role in perception for active exploration
based on available knowledge, it clearly departs from the
isolated perception paradigm. Various studies in AI attempt at
implementing these Piagetian and constructivist principles (see
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for instance: Thórisson, 2012; Miller, 2018). More specifically,
Piagetian sensorimotor schemes have inspired a range of
computer implementations called schema mechanisms (Arkin,
1989; Drescher, 1991; Stojanov et al., 1997; Holmes and
Isbell, 2005; Guerin and McKenzie, 2008; Perotto, 2013).
These implementations have however been criticized for
their insufficient account of the core ideas of constructivist
epistemology (Bettoni, 1993), as we will examine in the
technical discussion in Section Towards an Interactionist
Cognitive Architecture. In line with a different interpretation
of constructivist epistemology, other authors have suggested
following Wiener’s Cybernetics theory (Wiener, 1948) and the
idea that an agent’s input data constitute feedback from action
(Powers, 1973; Oyama, 1985; Pfeifer and Scheier, 1994; Laming,
2001; Georgeon and Cordier, 2014; Friston et al., 2017). These
authors thus propose an inversion of the interaction cycle in
which output data conceptually precedes input data. We will
further develop this idea at the technical level in Section Towards
an Interactionist Cognitive Architecture.

Beyond the idea of actively constructing knowledge through
interaction, Piaget also theorized that agents construct
themselves and autonomously develop their intelligence.
This idea has been followed up in recent cognitive science with
the concept of constitutive autonomy (e.g., Vernon et al., 2015).
Froese and Ziemke (2009) argued that constitutive autonomy is
necessary for sense-making, which makes it a desirable feature
to achieve in artificial agents. Constitutive autonomy implies
that the coupling between the agent’s cognitive processes and
the environment evolves autonomously, meaning that the
way the agent perceives the world should evolve through the
agent’s development.

Redefining the Goals and Motivations of
Artificial Agents
Theoretical alternatives to isolated perception have implications
on the goals and motivations of artificial agents. When we
delegate our goals to artificial agents we provide them with
“criteria and policies for making decisions” instead of explicitly
programming them with “every detail of what [they] should do
in various circumstances” we give them motivation (Lieberman,
2020, p. 71–72). On this ground, one can distinguish between
extrinsic and intrinsic motivation (Blank et al., 2005; Oudeyer
et al., 2007; Lieberman, 2020). “Intrinsic motivation is like
listening to music. You do it because you enjoy it for its own sake.
Nobody has to force you or pay you to listen to music. Extrinsic
motivation is when you are motivated for reasons other than the
activity itself—you are paid a salary to work at a job, you get a
reward, a gold star, social status, etc. (of course, some situations
have both kinds of motivation)” (Lieberman, 2020, p. 73).

The extrinsic approach of agents’ goals is extremely
widespread in AI as it permits solving problems of interest
for human designers (board games, self-driving cars . . . ). Most
recent AI applications based on machine learning that produced
impressive technological achievements belong to this category
(e.g., Vinyals et al., 2019). Interestingly enough, typical issues
traditional cognitive sciences study also seem to correspond

to extrinsic motivation—like playing chess or Hanoi tower, by
contrast with problems 4E-cognition tends to focus on such as
perception, action, or emotional interaction (Newen et al., 2018,
p. 5). In fact, extrinsic motivation is so widespread that intrinsic
motivation has yet mostly been used in reinforcement learning
as a means to better fulfill extrinsic goals. For example, Kulkarni
et al. (2016) have demonstrated the utility of intrinsic motivation
to help an agent to win games.

We believe there is a strong connection between this
prominence of extrinsic approaches of agents’ goals in AI and
the pervasiveness of the isolated perception paradigm. Extrinsic
motivation problems request artificial agents to reach or produce
specific states of the world through the selection of specific
actions. It appears like a straightforward first step to divide agents
into separated (computational) modules who will (1) operate on
representations (some of them being representations of states
of the world) to select adequate actions to reach a goal itself
defines in terms of states of the world (cognitive module), and (2)
perceive the state of the world the agent is in (perceptionmodule)
to provide inputs to the cognition module. Maybe the connection
becomes clearer when we consider the rejection of the isolated
perception paradigm. When an artificial agent’s perception
involves the rest of its cognitive architecture, the designer loses
control over the manner the agent represents its environment.
Specifying directly goals the agent should reach in terms of
states of the world becomes impossible. This makes designs
principles that would reject the isolated perception paradigm
highly unsuited for the achievement of extrinsic goals. Although
it may not be impossible to specify extrinsic goals indirectly,
no doubt it would prove extremely (and uselessly?) difficult. By
contrast, we think that the rejection of the isolated perception
paradigm may open interesting perspectives to design artificial
agents with intrinsic motivations. Defining intrinsic goals does
not require controlling the representations an artificial agent
possesses of the external world. Rejecting the isolated perception
paradigm acts as a kind of warrant that goals provided to artificial
agents remain intrinsic. Different forms of intrinsic motivation
have been proposed, among which curiosity (Oudeyer et al.,
2007), the autotelic principle (Steels, 2004), the principle of
data compressibility (Schmidhuber, 2010), predictability-based
exploration (Bugur et al., 2021), minimization of uncertainty
through minimization of free energy (Friston et al., 2017). We
have also proposed the notion of interactional motivation that
seems to us highly compatible with a renunciation of isolated
perception (Georgeon et al., 2012). Intrinsic motivation can be
seen more like a drive or a value system than as a goal in the sense
that it guides the behavior of the agent in an open-ended fashion.

Alternative Objectives for Research in AI
Now, one could wonder why we, as human designers, should
create intrinsically-motivated artificial agents. What could be
our goals when attributing intrinsic goals to artificial agents?
The answer to this question is manyfold. Intrinsic motivation
may enter the design of an AI capable of autonomous mental
development (Oudeyer et al., 2007; Nagai and Asada, 2015).
Another goal could be to improve our understanding of natural
cognition by trying to implement sensorimotor theories of
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cognition such as the theory of sensorimotor contingencies
(O’Regan and Noë, 2001). In the shorter term, implanting
intrinsic motivation in artificial agents may allow designing
robots who display increased levels of autonomy and with
whom it would be interesting to interact and play. To measure
progress in such directions we will need a measure of intelligence
that does not involve the capacity to reach a predefined goal.
The measure should however reflect higher-level behavior than
merely controlling a setpoint as it is done in control theory.
Chollet’s measure of intelligence could be promising as it involves
the capacity of the agent to acquire and reuse information on
the flow (Chollet, 2019). We could also use subjective evaluation
of the agent’s behavior by human observers with questions such
as “does the agent exhibit curiosity? Playfulness? Does it appear
to pursue its own interests? etc..” This would constitute an
adaptation of the Turing test to simple activities performed
by robots.

ARTIFICIAL INTERACTIONISM

In this section, we propose a technical approach we call Artificial
Interactionism that rejects the isolated perception paradigm and
implements intrinsic motivation. It relates to the frameworks
of embodied cognition in that the agent learns through active
interaction with its environment and constructs a dynamic data
structure that characterizes its current situation (Riegler, 2002).
We consider this approach to be constructivist and to contribute
to the study of artificial developmental learning because the agent
autonomously constructs its knowledge of the world and has
some room for cognitive constitutive autonomy. We first detail
the proposed cognitive architecture before presenting an example
of implementation.

Toward an Interactionist Cognitive
Architecture
Our approach integrates the inversion of the interaction cycle
design principle introduced in Section Theoretical Alternatives
to Isolated Perception. This contrasts with most cognitive
architectures that are designed according to a perception-action
cycle in which, conceptually, perception precedes action. The
interaction cycle revolving indefinitely, one may question why
the order matters. This is because inverting the cycle already
means taking distance with the isolated perception paradigm.
The cognitive architecture’s input data do not constitute percepts
representing some features of the environment but merely
constitute feedbacks from motor controls. Other authors have
implemented computer simulations following the inverted
interaction cycle design principle (e.g., Porr et al., 2006; Franchi,
2013; Roesch et al., 2013) but, to our knowledge, we propose the
first cognitive architecture based on this principle.

More specifically, our implementation rests upon the notion
of primitive interaction. A primitive interaction works as a
reference to a predefined subprogram that specifies how a control
loop can be enacted involving both motor control and expected
feedback. An example of primitive interaction is moving a touch
sensor during a predefined time while receiving a tactile feedback

signal within a certain range. By contrast with most other
cognitive architectures, the interactionist cognitive architecture
does not manipulate isolated percepts and actions. Primitive
interactions are the atomic items. The concepts of output data
(written in output registers by the robot’s software) and input
data (read from input register by the robot’s software) remain but
they are not managed at the level of the cognitive architecture.

Formally, we define the system as a tuple (S, I, q, v). S is the
set of environment states. I is the set of primitive interactions
offered by the coupling between the agent and the environment.
q is a probability distribution such that q(st+1|st, it) gives the
probability that the environment transitions to state st+1 ǫ S
when the agent chooses interaction it ǫ I in state st at step
t. v is a probability distribution such that v(et|st, it) gives the
probability that the agent receives the input et ǫ I after choosing it
in state st. We call it the intended interaction because it represents
the interaction that the agent intends to enact at the beginning
of step t; and et the enacted interaction because it represents
the interaction that the agent records as having been actually
enacted at the end of step t. If the enacted interaction equals
the intended interaction (et = it) then the attempted enaction
of it is considered a success, otherwise, it is considered a failure.
The series of enacted interaction e0 to et is the only source of
information available to the agent about the environment.

There are three major differences between this formalism
and the reinforcement learning formalism as it is typically
implemented in a Partially Observable Markov Decision Process
(POMDP) (Kaelbling et al., 1998): (a) the cycle does not start
from the environment but from the agent; (b) the agent’s input
and output belong to the same set I rather than two different sets
(observations O and actions A); (c) there is no reward defined as
a function of the states (to avoid isolated perception).

The agent’s policy π(et, Kt) → it+1 is the function that
selects the intended interaction it+1 based on the enacted
interaction et and the data structure Kt. The agent progressively
constructs Kt from the experience of enacting interactions e0
to et. Kt includes a representation of long-term knowledge
learned over the agent’s lifetime and a representation of the
short-term situation of the agent. We implement π and the
knowledge construction mechanism as a schema mechanism
related to those introduced in Section Theoretical Alternatives
to Isolated Perception. Our implementation, however, differs
from Drescher-style schema mechanisms which model Piagetian
schemes as 3-tuples (pre-perception, action, post-perception). In
our analysis, these implementations fall within the framework
of isolated perception by directly including percepts in schemes,
and, in so doing, they miss an important aspect of Piaget’s
constructivist theory.

Instead of 3-tuples, our schema mechanism constructs
hierarchies based on 2-tuples (pre-interaction, post-interaction)
called composite interactions. Composite interactions are
recursively recorded on top of primitive interactions in a
bottom-up fashion. A first-level composite interaction is a
sequence of two enacted primitive interactions (et−1, et). Higher-
level composite interactions are sequences of two lower-level
composite interactions all the way up from primitive interactions.
We presented the details of this algorithm in a previous paper
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FIGURE 1 | The interaction control mechanism. Cylinders and cubes with

arrows represent predefined primitive interactions enacted through control

loops. The interaction learning mechanism (top) learns composite interactions

(flat arrows) made of hierarchies of interactions organized in time and space.

The interaction selector (center) selects a previously learned interaction for

enaction (right). The interaction enactor controls the sequential enaction of the

selected interaction in time and space (bottom) and returns the enacted

interaction (left), which may differ from that selected depending on the

environment. The coupling between the interaction selector and the interaction

enactor constitutes the cognitive coupling. It is distinct from the software/world

coupling defined by the input and output registers.

(Georgeon and Ritter, 2012). This kind of bottom-up pairwise
hierarchical chaining has also been studied by Martensen (2020)
and Thórisson (2020). Hierarchical composite interactions
are illustrated at the top of Figure 1 that pictures our agent’s
interaction control mechanism.

At any given time, the agent stores a list of recently enacted
interactions (primitive and composite) in short-term memory.
Interactions in short-term memory are organized in time and
possibly in space if information about their approximate location
relative to the agent is available. This implies that space and time
are amongst the presuppositions hardcoded in the system. In
this respect, our approach echoes Kant’s transcendental idealism
that pictures space and time as indispensable a priori material of
perception. In line with Husserl’s notion of intentional horizon or
with what Gibson called affordances (Gibson, 1979), the content
of short-term memory constitutes a characterization of the
agent’s current situation in terms of possibilities of interactions.

Interactions in short-term memory may match the beginning
of previously-learned higher-level interactions. When that
happens, the continuation of these higher-level interactions is
proposed for subsequent enaction. The agent then selects the
next interaction to try to enact from among the proposed
interactions. The center of Figure 1 illustrates this interaction
cycle. The interaction selector selects a composite interaction
to try to enact from amongst previously-learned composite

interactions that are proposed in the current context. The criteria
used for selecting interactions define the intrinsic motivation
of the agent. For example, if the criteria consist of selecting
interactions that have seldom been selected in this context, the
robot will exhibit curiosity to try new things; if the criteria are
based upon predefined valences of interaction, the robot will
appear motivated by hedonist pleasure because it seeks to enact
interactions that have a positive valence and avoids interactions
that have a negative valence.

The selected interaction is processed by the interaction enactor
that controls the enaction of the interaction through motor
controls sent via the output registers and feedback received
through input registers. The bottom of Figure 1 illustrates the
enaction of primitive interactions. It is always possible that
the attempt to enact an intended interaction fails due to the
unexpected configuration of the environment. For example,
an interaction consisting of touching an object may fail due
to the absence of the object in the expected position. The
actually enacted interaction (in this example, moving without
touching anything) is returned by the interaction enactor to the
interaction selector.

The enaction of primitive interactions takes place at the
level of the software/world coupling. The behavior selection
mechanism, however, takes place at a higher level called cognitive
coupling. We define the higher-level policy 5(ET, KT) → IT+1

ǫ KT over a higher-level time scale, where ET is the previous
enacted composite interaction at time T, and IT+1 is the next
composite interaction to try to enact. As the agent learns new
composite interactions, the cognitive coupling defined by the
policy 5 rises away from the software/world coupling, as if
the agent saw the world in terms of increasingly sophisticated
possibilities of interaction.

From the researcher-designer point of view, an interesting
goal is to design agents and robots that have complex shapes
and can interact with objects and environments of all kinds
of configurations. The robot may need to coordinate different
body parts to achieve specific interactions in an environment
where different objects may be simultaneously moving. To
this end, we built a cognitive architecture to extend the
interaction control mechanism presented up to this point in
adding specific features suitable to ensure the processing of
spatial and temporal information. Like Rudrauf et al.’s (2017)
Projective Consciousness Model, our cognitive architecture uses
multiple points of view on a spatial representation of the
world based on active inference principles. We draw inspiration
both from philosophy (notably with the approach of Kant
mentioned above) and from biological or cognitive sciences
studies. We build upon the analyses of mammalian brains, which
evolution has endowed with complex structures to handle space.
In return, we expect our models to shed some light on the
role those structures play in organizing behavior. For example
(Grieves and Jeffery, 2017) list numerous spatially modulated
structures in the brain beyond the well-known hippocampus.
Such literature suggests that artificial cognitive architecture will
need similar functionalities to generate well-adapted behaviors
in complex environments. Moreover, authors like Buzsáki and
Moser (2013) have emitted the hypothesis “that the neuronal
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FIGURE 2 | Interactionist cognitive architecture (adapted from Georgeon et al., 2020). As in Figure 1, interactions are represented as 3D blocks along a timeline to

highlight the fact that they carry 3D spatial and temporal information. The interaction timeline (bottom) represents interactions as the robot experiences them over

time. The cognitive architecture incorporates a hierarchical learning module (top right), different kinds of spatial memories (egocentric and allocentric) used to localize

and track the position of interactions (center), and the phenomenal ontology (left) which stores categories of phenomena (objects as they appear through interaction)

defined by the interactions that they afford. Enacted interactions activate (1) representations of the context in spatial and temporal memory. Phenomenal

representations of objects are progressively constructed (2). When an object is recognized, the interactions that it affords can be activated (3) in spatial memory. The

spatial representation of the context affords (4) subsequent composite interactions. In return, afforded interactions can be simulated (5) in spatial memory. The policy

5 selects a new interaction, and the robot tries (6) to enact it (7).

algorithms underlying navigation in real and mental space are
fundamentally the same” (p. 130), suggesting that spatiotemporal
functionalities could lay the ground toward abstract intelligence.
To progress in this direction, we envision the interactionist
cognitive architecture depicted in Figure 2.

With this interactionist cognitive architecture, we assume
that the robot has some means to locate interactions in
space, at least approximately, and to keep track of its own
displacements in space (e.g., through an inertial measurement
unit as an analogy to the vertebrate’s vestibular system). The
interaction timeline (Figure 2, bottom) represents events of
interaction as the robot experiences them, whether they are
initiated by the robot (e.g., moving forward and hitting an
obstacle) or not (e.g., the robot is pushed into an obstacle).
Information related to the distal sensory system (vision, audition,
olfaction) is also handled as interactions that are, as much as
possible, located at the source of the interaction—the assumed
phenomenon that causes the interaction. This allows the agent
to update an internal representation (in terms of interactions) in
spatial memory (Figure 2, center), and simultaneously construct
temporal hierarchies of sequences of interactions (Figure 2, top).
The robot must also construct representations of objects as
it experiences them (i.e., phenomena) stored in phenomenal

ontology (Figure 2, left). Among other types of phenomena, we
study how the robot can learn a representation of its own body
through interaction and store this representation in phenomenal
ontology just as other types of objects. The relations between
these different modules are complex and open to research.

In essence, the architecture constructs various data structures
that characterize the agent’s current situation distributed
across several modules: spatial memories, hierarchical temporal
memory, phenomenal ontology. These dynamical data structures
can be described as a kind of distributed perception that is
not obtained in isolation from the other parts of the cognitive
architecture. In line with phenomenological approaches of
perception of external objects we recalled in Section Perception,
Cognition, and Action in Philosophy (notably with Husserl and
Merleau-Ponty), this kind of perception also relates to what
Endsley (1995) called situation awareness in humans, in the sense
that these data structures work as operational knowledge of the
situation by informing the selection of future behavior based on
anticipation of outcomes.

Example of Implementation
We now present an experiment to demonstrate the behavior that
can be obtained with the interactionist cognitive architecture.
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FIGURE 3 | An interactive experiment in a dynamic simulated environment (screenshot from Georgeon, 2021). (Top) two agents (sharks) interact with each other and

with three kinds of objects: solid blocks (1 × 1 × 1 cubes), go-through tiles (1 × 1 × 0.5 tiles), food tiles (1 × 1 × 0.5 violet tile). Solid blocks and tiles are opaque to

the agent’s visual system. The user can add and remove objects and agents in the environment through a mobile cursor (the wired cube). (Bottom) control panels of

each agent: visual inputs (12 “pixels” spanning 180◦), tactile input (feeling solid blocks around the agent), outcome (bumping into a solid block, socializing by touching

another agent, eating food). Egocentric spatial memory (head upward) recording phenomena in the surrounding of the agent. Agent 2’s spatial memory shows that

Agent 2 remembers the presence of a violet tile at its rear right even though the tile exited the agent’s visual field.

Agents in this experiment figure sharks evolving in a basin,
as illustrated in Figure 3. The agent implementation has
been described by Gay et al. (2012). It uses the early
implementation of the cognitive architecture developed by
Georgeon et al. (2013). The experiment was then re-implemented
in a 3D dynamic environment originally developed by Voisin
(2011) that allows interactions with the experimenter. The
reader can interact with this experiment online (Georgeon,
2021).

In simulations such as this one, the control loops that specify
primitive interactions can be reduced to a single round of
output data followed by input data. In this case, we refer to
output data with the term action. Although some authors in
the cognitive science literature (e.g., Engel et al., 2013) have
advocated reserving the term action to intentional acts, here
we use it to designate mere motor control to comply with the
vocabulary used in robotics literature. We refer to the signal
received by the cognitive architecture by the term outcome. We
prefer this term over the term feedback used in cybernetics
control theory because the term feedback is connoted with

2The screenshot is from RI Interactive demo. Available online at: http://

oliviergeorgeon.com/demo/.

the purpose of controlling a setpoint, which is not our goal.

The outcome may be directly read from the input register
or may be computed from input registers by a hard-coded

subprogram. Primitive control loops are thus defined by the tuple

(action, outcome). Finally, primitive interactions are made of
such (action, outcome) tuples associated with spatial information

and a scalar valence, as listed in Table 1.

In our experiment, shark agents can perform three actions

simulating fin flaps: impulse forward, impulse leftward, and

impulse rightward. They however ignore the effects of these

actions before experiencing them. The agents’ displacements
follow a fluid friction law which makes linear and angular

speed cumulate over impulses with a decay factor, resulting

in a smooth continuous movement. Agents are not tied

to the grid but an impulse forward would approximately
propel them one unit forward before the next impulse.

An impulse sideward would approximately turn them

of π/4.
Table 1 summarizes actions and outcomes shark agents can

enact. The outcome bump is triggered when the agent bumps

into a sold block. The outcome eat is triggered when the shark
enters a violet patch (representing food). The violet patch is then
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TABLE 1 | Actions and outcome.

Action Outcome Spatial

properties

Dimensionality Valence

Impulse

forward

Closer Direction in

[–π/2, π/2]

(color index, direction) Positive

Impulse

leftward

Eat x = 0,

y = 0

Boolean Positive

Impulse

rightward

Bump x = 1,

y = 0

Boolean Negative

Social x = 1,

y = 0

Boolean Positive

Tactile −1 < x <

1, −1 < y

< 1

3*3 matrix of boolean Null

Default None Null

removed. Note that eating is not an action but the outcome of the
action impulse forward when the agent reaches the food as if the
agent had a reflex to ingest food. The social outcome is triggered
when the agent touches another agent with its nose. The tactile
outcome is a 3× 3 array of Booleans (representing a somatotopic
map) that are set to true by the presence of a solid block in the
surrounding of the agent. The closer outcome is triggered when
a color (different from the background color) enlarges in the
visual field.

The valences of outcomes define inborne behavioral
preferences one can associate with intrinsic motivations.
The positive valence associated with the closer outcome
gives the agent an incentive to move toward salient objects
and thus explore its environment. When the agent reaches
an object, other outcomes are triggered, which the agent
can then associate together when they overlap in spatial
memory. The agent thus performs multimodal integration
by learning which interactions are afforded by which objects.
The agent learns that solid blocks can be felt through touch,
afford bumping, and have specific colors. Violet tiles afford
eating and touching but not bumping. Other agents are
gray, afford socialization but not eating nor bumping. Once
those associations are recorded (in phenomenal ontology in
Figure 2) the agent will tend to move toward objects that
afford interactions that have a positive valence (food, other
agents), and avoid objects that afford a negative valence
(sold blocks).

Gay et al. (2012) reported a detailed analysis of the agent’s
behavior and learning process. A video with audio explanations
can be consulted online (Georgeon, 2014). Note that by
defining the valences of interactions, the designer does not
specify goal states for the agent, but indirectly defines what
goals the agent will tend to reach. Goal-seeking behaviors
result from the fact that the interaction selector preferentially
selects interactions that have the highest positive valence. The
user does not directly specify extrinsic goal states. At most,
she can lure the agent to specific places by placing food in
these places.

CONCLUSION

In this paper, we have brought to the fore the pervasiveness
of what we call the isolated perception paradigm in computer
science, robotics, and AI. We studied the possibility, meaning,
and consequences of taking distance with this paradigm, drawing
on insights from philosophy (phenomenology and epistemology)
and recent approaches in cognitive sciences and AI. We
notably discussed relationships standing between the rejection
of the isolated perception paradigm and the implementation
of extrinsic or intrinsic motivations, arguing that this rejection
opens an interesting path for designing artificial agents animated
by intrinsic motivation. For example, behaviors could be
reinforced based on intrinsic-motivation criteria rather than on
their efficiency at maximizing an extrinsic reward. Such agents
may not be able to win adversarial games but they may fit
other purposes such as becoming interesting companions. The
community of reinforcement learning could contribute to this
endeavor through the rich formalism and techniques that they
have developed provided they freed themselves from the tyranny
of the extrinsic reward, and imagined other applications than
reaching predefined goals. We may learn interesting lessons
about cognition in the process.

We proposed a formalism devised from the Markov Decision
Process formalism used in reinforcement learning, and a
cognitive architecture escaping the scope of isolated perception
through the approach we named artificial interactionism.
Artificial interactionism goes beyond the idea of making
perception active and controlled by cognition. It draws
on the more fundamental assumption that perception and
cognition should not be separated in the first place. This
is a more fundamental position that implies revisiting the
very fundamental premises of artificial cognitive architectures.
Nevertheless, we do not claim that the artificial interactionism
paradigm is the only solution to avoid isolated perception. We
rather defend it constitutes a proof of concept showing that
the separation is not ineluctable. Artificial interactionism offers
a general blueprint for designing algorithms to control robots
displaying natural behaviors and open-ended learning through
interaction. In artificial interactionism, the agent knows its
current situation through the enaction of control loops; and has
no direct access to ready-made representations of the state of the
environment. The lack of access to the environment’s state forbids
the designer to encode extrinsic goal state recognition criteria.
Since the agent is in control of the input data, and not trying to
reach a goal state defined within a pre-modeled problem, it is not
facing information overload or problem-solving combinatorial
explosion. The absence of extrinsic goal states makes room for
studying how artificial agents could construct their own goals and
also satisfy the objectives of their designers.

Artificial interactionism raises many fascinating questions.
An important one bears upon the assessment of the success
of intrinsic motivation implementation (possibly by adapting
the Turing test and involving human subjective judgments
to evaluate the ability of artificial interactionist agents to
interact and play with users). More theoretically, one could
wonder: should the system be able to learn new primitives,
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or is it possible to generate well-adaptable intelligence
based on a finite predefined set of primitives? How could
the agent develop symbolic reasoning and problem solving
grounded on interactionist experience? Is it possible to avoid
presupposing space in the cognitive architecture (Gay et al.,
2017)? In the same vein, an important feature of the artificial
interactionism paradigm is that the cognitive coupling can
evolve as the agent learns to represent the world in terms of new
composite interactions. This opens the question of the possible
implementation of cognitive constitutive autonomy (Georgeon
and Riegler, 2019).
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