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Abstract

Type 2 diabetes is typified by insulin-resistance in adipose tissue, skeletal muscle, and liver,

leading to chronic hyperglycemia. Additionally, obesity and type 2 diabetes are character-

ized by chronic low-grade inflammation. Membrane-associated RING-CH-1 (MARCH1) is

an E3 ubiquitin ligase best known for suppression of antigen presentation by dendritic and B

cells. MARCH1 was recently found to negatively regulate the cell surface levels of the insulin

receptor via ubiquitination. This, in turn, impaired insulin sensitivity in mouse models. Here,

we report that MARCH1-deficient (knockout; KO) female mice exhibit excessive weight gain

and excessive visceral adiposity when reared on standard chow diet, without increased

inflammatory cell infiltration of adipose tissue. By contrast, male MARCH1 KO mice had sim-

ilar weight gain and visceral adiposity to wildtype (WT) male mice. MARCH1 KO mice of

both sexes were more glucose tolerant than WT mice. The levels of insulin receptor were

generally higher in insulin-responsive tissues (especially the liver) from female MARCH1

KO mice compared to males, with the potential to account in part for the differences between

male and female MARCH1 KO mice. We also explored a potential role for MARCH1 in

human type 2 diabetes risk through genetic association testing in publicly-available data-

sets, and found evidence suggestive of association. Collectively, our data indicate an addi-

tional link between immune function and diabetes, specifically implicating MARCH1 as a

regulator of lipid metabolism and glucose tolerance, whose function is modified by sex-spe-

cific factors.

PLOS ONE | https://doi.org/10.1371/journal.pone.0204898 October 24, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bhagwandin C, Ashbeck EL, Whalen M,

Bandola-Simon J, Roche PA, Szajman A, et al.

(2018) The E3 ubiquitin ligase MARCH1 regulates

glucose-tolerance and lipid storage in a sex-

specific manner. PLoS ONE 13(10): e0204898.

https://doi.org/10.1371/journal.pone.0204898

Editor: Makoto Kanzaki, Tohoku University, JAPAN

Received: November 8, 2017

Accepted: September 17, 2018

Published: October 24, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data to

the mouse studies are within the manuscript, its

Supporting Information files, or deposited within

DRYAD (datadryad.org) with the accession

number: doi:10.5061/dryad.r34k1. The genetic

association study utilized data made available to

approved users through The Database of

Genotypes and Phenotypes (dbGaP) hosted by the

The National Center for Biotechnology Information

(https://www.ncbi.nlm.nih.gov/gap). Approval may

be requested from the following site: https://dbgap.

ncbi.nlm.nih.gov/aa/wga.cgi?page=login, and

requires that requesters satisfy the policies of

http://orcid.org/0000-0001-5703-3792
https://doi.org/10.1371/journal.pone.0204898
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204898&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204898&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204898&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204898&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204898&domain=pdf&date_stamp=2018-10-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204898&domain=pdf&date_stamp=2018-10-24
https://doi.org/10.1371/journal.pone.0204898
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://datadryad.org
https://doi.org/10.5061/dryad.r34k1
https://www.ncbi.nlm.nih.gov/gap
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login


Introduction

Metabolic syndrome represents one of the most pressing public health concerns worldwide. A

general feature of metabolic syndrome is insulin resistance, hyperinsulinemia, and hyperglyce-

mia [1, 2]. Insulin normally enhances glucose uptake by white adipose tissue and muscle [3],

while suppressing hepatic gluconeogenesis [4] and encouraging whole body glucose disposal

[5, 6]. Insulin-resistance, in turn, leads to a dysregulation of glucose metabolism and chroni-

cally results in overt type 2 diabetes mellitus [1].

Obesity increases the incidence of insulin resistance and type 2 diabetes [7]. Systemic and

local (visceral adipose) inflammation has emerged as a key feature of obesity and the progres-

sion of type 2 diabetes [8, 9]. Adipocytes produce immune-active molecules, collectively

termed adipokines, and adipose tissue contains a remarkable array of resident and infiltrating

immune cells that can impact metabolism [10, 11]. Cellular stresses, such as ectopic lipid accu-

mulation and elevated glucose exposure, instigate metabolic pathogenesis [12]. Notably,

inflammation exacerbates both hyperglycemia and ectopic lipid accumulation [8, 13, 14]. Obe-

sity increases macrophage and adaptive immune cell (B cell, CD8 T cell, and CD4 TH1 cell)

infiltration into visceral adipose tissue, enhancing pro-inflammatory function and a pro-

inflammatory cytokine expression profile [15–19]. This inflammatory state depresses insulin

sensitivity, whereas anti-inflammatory T regulatory cells (Tregs) support insulin sensitivity

[20].

The E3 ubiquitin ligase MARCH1 (Membrane-Associated RING-CH1; [21]) intersects

with inflammation and insulin responsiveness. Its expression is strongest in lymphoid tissues

and it functions in antigen-presenting cells (APCs) to negatively regulate, via ubiquitin-depen-

dent effects on trafficking, the cell surface levels of Major Histocompatibility Complex class II

(MHC-II) molecules and CD86 (a co-stimulatory protein) [21–23]. MARCH1 expression is

decreased by APC activation/maturation signals [24, 25] and increased by anti-inflammatory

stimuli, such as interleukin-10 [26]. Nagarajan, et al. recently showed that MARCH1 can target

the insulin receptor for ubiquitin-dependent downregulation, negatively regulating insulin

receptor signaling [27]. Accordingly, in vivo loss of MARCH1 in liver and adipose tissue corre-

lated with improved glucose clearance, and MARCH1 over-expression impaired clearance

[27].

Consistent with this new role for MARCH1, genome-wide association studies (GWAS)

have provided modest evidence for an association between MARCH1 and type 2 diabetes. In a

GWAS for type 2 diabetes in different Asian populations, MARCH1 was associated with type 2

diabetes in one ethnic group, but not two others [28]. Another GWAS in a Korean cohort

detected an association between MARCH1 and body-mass index (BMI) [29].

During our experiments to characterize immunity in MARCH1 KO mice, we noted

changes in adiposity that prompted us to investigate metabolic parameters. Herein, we report

studies conducted to further assess the metabolic phenotype in male and female MARCH1 KO

and wildtype mice. We also tested for a genetic association of variants in MARCH1 with type 2

diabetes in human case-control studies.

Materials and methods

Mice

Assessment of body weight, adiposity, glucose tolerance, and immune cell infiltration

of adipose tissue. Sibling WT and MARCH1 KO experimental mice on the C57BL/6 back-

ground were derived through het-het breeding. Mice were reared ad libitum on NIH-31 chow

(Harlan Laboratories; 7013). Body and food weights were taken weekly to assess body weight
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gain and food consumption. All mice were housed in the animal facility at the University of

Arizona, and experiments were conducted under the approval and supervision of the Institu-

tional Animal Care and Use Committee (IACUC). Mouse experiments were performed in a

blinded fashion with respect to genotype.

Every effort was made to minimize animal suffering, in accordance with the University of

Arizona IACUC guidelines. Mice were monitored regularly for any signs of disease and, if

noted, veterinary staff were altered and mice promptly euthanized if they displayed signs of

disease. Euthanasia was performed in accordance with the methods approved by the American

Veterinary Medical Association panel on euthanasia, in which mice were exposed to CO2 from

a compressed gas cylinder in a closed chamber in the University of Arizona animal facility. All

participating personnel received training in the proper use of the CO2 chamber. Topical

administration of ice-cold ethanol was used for anesthesia prior to blood collection from the

tail vein, per IACUC guidelines.

Assessment of insulin receptor levels in liver, muscle, and adipose tissue. Littermate

male and female C57BL/6 mice or littermate male and female MARCH1 KO mice (approxi-

mately 18 weeks old) were used in all tissue isolation experiments. Mice were bred and main-

tained in-house at the NCI-Frederick animal facility. All mice were cared for in accordance

with National Institutes of Health guidelines with the approval of the National Cancer Institute

Animal Care and Use Committee. Mice were euthanized by exposure to CO2 from a com-

pressed gas cylinder in a closed chamber. All participating personnel received training in the

proper use of the CO2 chamber.

Glucose measurements and glucose tolerance tests

Fasting blood glucose and intraperitoneal glucose tolerance tests (IPGTT; 1.5 mg/g body

weight) were performed following an 8-hour fast, that was initiated at lights-on. Glucose was

measured in blood collected from the tail vein using the FreeStyle Lite glucose monitoring

system.

Collection of stromal-vascular fraction (SVF) of adipose and flow

cytometry

Visceral adipose tissue (VAT) was dissociated with collagenase I in KRHB buffer for ~30–45

minutes at 37˚C as described [30]. Digested tissue was filtered through a 100 μm cell strainer.

Filtrate was centrifuged at 500 x g for 5 min, the pellet resuspended in KRHB, and the process

repeated 4 times. The final pellet was collected as the SVF. Cell labeling for flow cytometry was

performed as described [31]. Cells were analyzed on a FACSCalibur cytometer or an LSRII

cytometer (BD Biosciences), and data were analyzed using FlowJo (Treestar). The gating

schemes are given in S1 Fig and represent the gates used for quantitation of population per-

centages and cell numbers (obtained using CountBright Absolute Counting Beads according

the manufacturer’s instructions; Life Technologies). The following antibodies were used:

CD45.2 (clone 104), CD3 (17A2), CD11b (clone M1/70), MHC-II (clone M5/114.15.2), F4/80

(clone BM8), CD4 (clone L3T4), and CD8 (clone 53–6.7), all from eBioscience, and anti-

mouse CD25 (clone PC61) from BioLegend.

Tissue isolation and immunoblotting

Mouse adipose tissue, skeletal muscle, and liver were isolated and immediately homogenized

using a Precellys homogenizer (Bertin Corp.). Cells were solubilized in Triton X-100-contain-

ing lysis buffer (10 mM Tris-HCl,pH 7.4, 150 mM NaCl, 1% Triton X-100, 50 mM phenyl-

methylsulfonyl fluoride, 0.1 mM Nα-tosyl-L-lysine chloromethyl ketone hydrochloride, and
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25 mM N-ethylmaleimide) for 1 h at 4˚C. The protein content of each sample was determined

using a Pierce BCA Protein Assay kit (Thermo Fisher Scientific). Proteins were separated by

SDS-PAGE and transferred to PVDF membranes (Bio-Rad) as described previously [32].

Non-specific antibody binding sites on immunoblots were blocked by incubation overnight

using 5% nonfat dry milk in PBS containing 0.1% Tween-20 (blotting buffer), washed, and

incubated overnight with primary antibodies against insulin receptor β-subunit (Cell Signaling

Technology) and appropriate secondary antibodies in blotting buffer. Immunoblots were re-

probed using HRP-conjugated anti-GAPDH monoclonal antibody (Cell Signaling Technol-

ogy) as a loading control. Immunoblots were quantitated and analyzed using a GS-900 cali-

brated densitometer and the software Image Lab (Bio-Rad) following the manufacturer’s

instructions. Quantitation of blot intensities was carried out by analysis of data obtained in the

linear range of exposure. In each sample the ratio of insulin receptor β-subunit band intensity

was expressed relative to the amount of GAPDH present.

MARCH1 single-nucleotide polymorphism (SNP) analyses

We performed a candidate gene investigation of MARCH1 SNPs in the following type 2 diabe-

tes case-control datasets: the Northwestern NUgene (Vanderbilt University Medical Center,

n = 3,357; Northwestern University, n = 5,812) and the Gene Environment Association Studies

(GENEVA) in type 2 diabetes, which comprised participants from the Nurses’ Health Study

(NHS, n = 3,314) and the Health Professional Follow-up Study (HPFS, n = 2,497). White par-

ticipants in the NUgene study were genotyped on the Illumina 660W-Quadv1_A BeadChip

platform, and African-American participants were genotyped on the Illumina 1M-Duo Bead-

chip platform [33]. All participants in the GENEVA study were genotyped on the Affymetrix

6.0 platform. The datasets for the analyses described in this manuscript were obtained through

dbGaP (accession numbers phs000091.v2.p1 and phs000237.v1.p1). Details regarding the

workflow and quality control decisions are described on the respective dbGaP webpages for

each study.

Our objective was to identify SNPs associated with type 2 diabetes in two or more indepen-

dent samples across platforms, as independent replication provides the strongest protection

against false discovery. The four samples were first stratified by race/ethnicity to avoid con-

founding by population stratification, and 6 homogenous samples with a minimum sample

size of 100 were identified for analysis (see Results and S1 Table). SNPs within the MARCH1
region of chromosome 4 (from position 165,300,000 to 164,445,000 of the GRCh37.p13 gene

assembly) were considered. The number of SNPs in common across the groups was enumer-

ated, given differing platforms, differing QC decisions across studies, and exclusion of SNPs

with extreme allele frequency, to account for the potential for replication across studies/

platforms.

Statistical analyses

All mouse data were analyzed in SAS Enterprise Guide 7.1 (SAS Institute, Cary, NC). Body

weight and IPGTT were analyzed using a repeated-measures mixed-model ANOVA including

genotype, time, and their interaction. Visceral adiposity as a proportion of body weight was

analyzed separately for each sex using a one-way ANOVA with genotype as the main effect

and age as a covariate. The results of the flow cytometric studies of the adipose SVF were ana-

lyzed by mixed ANOVA model including genotype, age, and genotype�age interactions. When

appropriate, Tukey’s test was used to adjust for multiple comparisons.

The association between SNPs and type 2 diabetes was assessed using a log-additive logistic

regression model, within each group. Figures were generated using the R package snp.plotter.
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Additional details are provided in the Results section. Overall, 497 SNPs were considered

across the MARCH1 locus; only those SNPs shared between at least two platforms were

considered.

The data used to produce the graphs in Figs 1–4 are housed in a public repository. The data

are deposited within DRYAD (datadryad.org) with the accession number: doi:10.5061/dryad.

r34k1.

Results

MARCH1 deficiency results in sex-specific changes in body weight and

adiposity

Body weight was similar throughout time in male KO versus WT mice (Fig 1A; P > 0.05).

However, MARCH1 deficiency increased body weight in female mice from 20–25 weeks of

age compared to WT female mice (Fig 1B; P < 0.05). This increase in body weight may be

associated with increased adiposity, as the ratio of visceral adipose tissue to body weight was

higher in female MARCH1 KO mice than in MARCH1 WT mice (Fig 1C; P = 0.001). In line

with the lack of body weight change, MARCH1 deficiency did not affect visceral adiposity in

male mice (P = 0.79).

Fig 1. Body weight and visceral adiposity. (A) Increased body weight in female mice MARCH1-deficient mice (KO) compared to wildtype mice (WT) on a

chow diet after 20 weeks of age (WT n = 10–33; KO n = 12–41). (B) MARCH1-deficiency did not affect the age-related increase in body weight in male mice

(WT n = 8–19; KO n = 7–28). (C) Increased visceral adiposity in female, but not male mice KO mice. Number (n) is indicated within bars). �indicates significant

difference P< 0.05. Data are plotted at the mean +/- SEM.

https://doi.org/10.1371/journal.pone.0204898.g001

Fig 2. Glucose tolerance. (A) MARCH1 deletion (KO) decreased glucose clearance in female (WT n = 10, KO n = 12) and (B) male (WT n = 8, KO n = 7)

mice. (C) Area under the glucose tolerance curve by sex and genotype (n is indicated within bars). �Indicates significant difference at that time point (P< 0.05).

Data are plotted at the mean +/- SEM.

https://doi.org/10.1371/journal.pone.0204898.g002
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MARCH1 deficiency increases glucose clearance

MARCH1 deficiency did not alter basal blood glucose (P > 0.5). However, MARCH1 defi-

ciency improved glucose clearance assessed by IPGTT in both female (Fig 2A; P< 0.0001) and

male (Fig 2B; P = 0.0077) mice. In fact, MARCH1 deficiency decreased the area under the

curve (AUC) during the IPGTT by 26.7% (Fig 2C; P< 0.0001) in female mice and 20.5%

(P = 0.06) in male mice.

Leukocyte numbers in VAT are unaffected by MARCH1

The increased visceral adipose tissue accumulation in MARCH1 KO females prompted us to

study adipose tissue inflammation. We performed flow cytometric analysis of the stromal-vas-

cular fraction (SVF) purified from VAT of MARCH1 KO and WT female mice to determine

the extent of leukocyte infiltration. S1 Fig depicts a typical gating scheme for analysis of

hematopoietic lineage cells in SVF. Total SVF leukocytes, CD4+ cells, CD8+ cells, and macro-

phages did not differ between KO and WT mice, irrespective of age (Fig 3). As expected, the

MARCH1 KO macrophages expressed higher levels of MHC-II (S1 Fig). Data are plotted at

the mean +/- SEM.

Fig 3. Immune cell infiltration of visceral adipose tissue. (A) CD4+ cells (n = 3), (B) CD8+ cells (n = 3), (C) CDd45+ cells (n = 3–6), and (D)

Macrophages/gram of visceral adipose tissue (n = 3–6). a, b, c = bars that share a common superscript do not differ significantly (P> 0.05). The numbers

are based on flow cytometric analyses using the gating and scheme shown in S1 Fig. Data are plotted at the mean +/- SEM.

https://doi.org/10.1371/journal.pone.0204898.g003
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MARCH1 deficiency produces greater rescue of insulin receptor levels in

females

To test whether the differences observed in female versus male mice could be explained, at

least in part, by differential impact of MARCH1 deficiency on insulin receptor levels, immuno-

blots were performed with protein lysates from adipose, skeletal muscle, and liver (Fig 4).

Receptor levels in tissues from female and male littermates were compared for wildtype or

MARCH1 KO mice. In wildtype mice, the receptor levels were comparable in both sexes. In

the absence of MARCH1, however, female mice had higher levels of the insulin receptor than

males in the liver and to a lesser extent, in muscle; no difference was observed in adipose

tissue.

Fig 4. Comparison of insulin receptor levels in female versus male mice. Proteins from adipose tissue, skeletal muscle, and liver

from either WT or MARCH1 KO mice were isolated, separated by SDS-PAGE, and immunoblotted using antibodies recognizing

insulin receptor β-chain and GAPDH (as a loading control). Each group consisted of two male and two female littermates. (A)

Immunoblots showing the expression levels of insulin receptor β-chain (Ins R β) and GAPDH present in each sample. (B)

Immunoblots were scanned by laser densitometry and band intensity was quantified. The expression level of insulin receptor β-chain

was plotted relative to the amount of GAPDH present in each sample.

https://doi.org/10.1371/journal.pone.0204898.g004
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MARCH1 and type 2 diabetes in human populations

Our findings in mice, along with published genetic associations studies [28, 29], implicating

MARCH1 in metabolic disease, prompted us to test for an association between MARCH1 and

type 2 diabetes in humans using GWAS datasets. Within the NUgene set, there were 139 non-

Hispanic whites and 1,354 non-Hispanic blacks available for analysis. The NWU sample

included 1,134 non-Hispanic whites and 242 non-Hispanic blacks. The HPFS included 2,397

non-Hispanic whites, and the NHS included 3,222 non-Hispanic whites (S1 Table). Other

racial/ethnic groups were not sufficiently represented in these studies to allow for meaningful

analyses. These six groups were then described in terms of case-control composition, sex, and

family history of type 2 diabetes (S2 Table).

Logistic regression results are displayed graphically by sub-study (S2–S4 Figs). Complete

results are also shown in tabular format, including minor allele frequency, odds-ratio for type

2 diabetes case status, raw p-value, Benjamini and Hochberg corrected p-value, and Bonferroni

corrected p-value (S1 File). A total of 497 SNPs were available in at least two samples. Briefly,

the number of SNPs with association (p<0.05, uncorrected for multiple comparisons) in each

sample was as follows: HPFS, 15; NHS, 9; VU 660W platform, 5; NWU 660W platform, 6; VU

1M platform, 13; and NWU 1M platform, 26, though none were significant after correction

for multiple comparisons (S1 File). Seven SNPs had significant associations (uncorrected) with

type 2 diabetes in more than one sample, though not all of these associations were consistent

across samples with respect to the direction of the association (Table 1). Two SNPs were found

to be associated (p<0.05) with increased odds of type 2 diabetes in two analysis groups;

rs12500778 in NHS and NWU, and rs17578337 in VU Whites and VU Blacks (Table 1). Both

SNPs are intronic and lie at distance of�172 kb from each other.

Given the sex differences we observed in our mice with respect to VAT accumulation, we

stratified our data based on sex and BMI for the top 7 hits. Using a log-additive logistic regres-

sion model, none of the SNPs were significantly associated with sex or BMI, nor did age mod-

ify the association in these studies (P > 0.05). Further, genotype did not modify the association

between BMI and type 2 diabetes (P> 0.05).

Discussion

Until recently, our knowledge of MARCH1 function came from the study of its role in antigen

presentation to T cells [23, 34]. However, at least in overexpression studies, MARCH1 could

Table 1. MARCH1 SNPs that are significantly associated with type 2 diabetes in more than one study.

Study and Platforma

HPFS_Affy NHS_Affy VU_660W NWU_660W VU_1M NWU_1M

SNP Locationb MAF OR Raw p MAF OR Raw p MAF OR Raw p MAF OR Raw p MAF OR Raw p MAF OR Raw p

rs13105536 164790122 28 0.98 0.8113 27.1 0.98 0.68329 31.3 0.93 0.78779 27.6 1.21 0.04539 6 0.64 0.00787 4.8 0.44 0.056

rs17044105 164887559 2.3 1.49 0.03967 2.1 0.7 0.04321 . . . . . . . . . . . .

rs12500778 164939833 3.7 0.95 0.71279 4.2 1.32 0.02804 . . . . . . 35.3 1.03 0.73125 35.1 1.98 0.0014

rs10517789 164946712 2.6 1.57 0.01338 2.6 0.62 0.00408 . . . . . . . . . . . .

rs1494284 165016836 . . . . . 45.3 1.86 0.02901 46.1 1.17 0.06607 22.6 1.05 0.57169 23.1 0.64 0.0482

rs6821574 165021304 . . . . . . 44.9 1.94 0.0193 46.5 1.16 0.07498 37.2 0.95 0.51311 38.4 0.66 0.0287

rs17578337 165111724 28.5 0.91 0.13834 30.1 1.05 0.39701 30.2 1.94 0.03907 29.6 1.16 0.09526 7.7 1.35 0.03963 8.7 0.76 0.3962

OR greater than 1 (p<0.05) in orange; OR less than 1 (p<0.05) in blue; Raw p<0.05 in green

HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; VU, Vanderbilt University; NWU, Northwestern University; SNP, Single-nucleotide

polymorphism; MAF, minor allele frequence; OR, odds ratio
aDesciption of the studies and platforms is provided in the Materials and Methods
bSNP location on chromosome 4

https://doi.org/10.1371/journal.pone.0204898.t001
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regulate other molecules, as well [21]. Nagarajan, et al. recently found that MARCH1 causes

degradation of the insulin receptor. MARCH1 loss improved insulin sensitivity in male and

female mice on a normal chow diet, and MARCH1 did not alter weight gain or adiposity in

male mice on chow diet [27]. We made similar findings in male mice, but noted that female

chow-fed MARCH1 KO mice gained more weight and had more VAT than WT controls. The

enhanced glucose uptake and resulting lipogenesis may explain the increased adiposity in

female mice, but this same mechanism would be expected to induce similar effects in male

mice. The increased adipose tissue lipid storage in females would reduce ectopic fat deposits

and improve insulin action [35].

Sex differences in adipose tissue accumulation and function are multifactorial and many

potential mechanisms may explain how MARCH1 exerts its sex-specific effect(s) [36, 37]. Both

sexes of MARCH1 KO mice show improved glucose handling with loss of MARCH1, indicat-

ing that MARCH1 targets the insulin receptor in either case. However, it is possible that the

magnitude of the MARCH1 effect on insulin receptor levels is more pronounced in females

and could vary in different tissues. Indeed, when we compared insulin receptor levels between

sexes in the absence of MARCH1, there were markedly higher levels of insulin receptor expres-

sion in the liver of female MARCH1 KO mice. This trend was less pronounced in skeletal mus-

cle and not apparent in adipose tissue. Furthermore, it is known that visceral (perigonadal)

adipocytes from female mice are more sensitive to insulin, in terms of activation of signaling

cascades downstream for the insulin receptor and induction of lipogenesis [38]. Notably, this

increased sensitivity in female adipocytes is not correlated with changes in insulin receptor

expression levels [38]. Therefore, MARCH1-mediated downregulation of the insulin receptor

may be greater in some tissues in female mice (and therefore MARCH1 loss leads to a greater

restoration of insulin receptor levels), and/or an equivalent degree of insulin receptor upregu-

lation with MARCH1 loss between sexes may have greater metabolic consequences in females;

these possibilities remain to be fully tested, as does the manner in which sex differences impact

the effect of MARCH1 on the insulin receptor. Regardless, the MARCH1 knockout mouse

may be useful to identify sex-specific metabolic regulation or test for mechanisms regulating

metabolic homeostasis in the absence of dietary stress.

In addition to the discovery that MARCH1 regulates the insulin receptor, it is possible that

MARCH1 also impacts metabolism through its regulation of antigen presentation. Macro-

phages express relatively high levels of MARCH1 [22] and have come to occupy, along with

adipocytes, a central position in immune homeostasis in adipose tissue [16, 39]. However, we

did not detect obvious changes in leukocyte accumulation in adipose +/- MARCH1. Nonethe-

less, our findings warrant further analysis of the role for MARCH1 in metabolic substrate use

and demands of different tissues.

The importance of MARCH1 in adipose tissue and liver was likely obscured by its relatively

low expression in non-lymphoid tissues [21]. MARCH1 expression in APCs is regulated by

multiple mechanisms; its levels generally decrease in pro-inflammatory settings and increase

under anti-inflammatory conditions [24–26, 31, 40, 41]. Further, MARCH1 is an inherently

unstable protein that is difficult to detect even in APCs [24, 31]. Though MARCH1 expression

is relatively low in typical insulin-responsive tissues, this low level is clearly important to regu-

late the insulin receptor [27]. It is notable that MARCH1 mRNA in the liver is decreased by

insulin treatment and that its levels increase in obese adipose tissue [27]. Thus, MARCH1 is

broadly expressed, regulated by key metabolic hormones, and is a central regulator of insulin

receptor homeostasis.

Two previous studies reported an association of MARCH1 with metabolic phenotypes in

humans (type 2 diabetes and BMI; [28, 29]). Our human candidate gene investigation was not

strongly supportive after correction for multiple testing, though two SNPs were nominally
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associated (p<0.05) with increased odds of type 2 diabetes in independent samples/platforms

(Table 1). Whether these findings are indicative of causal variants or false discovery is

unknown, since the associations were not statistically significant according to our significance

threshold adjusted for multiple testing. We have made our results available so that other

research groups may investigate further. The fact that the genetic associations reported thus

far have all been in Asian populations, which were not part of our study, may indicate that

MARCH1’s impact on metabolism varies by race/ethnicity.

The discovery that MARCH1 regulates glucose handling provides a new avenue to explore

metabolic regulation and disease. The fact that, in mice, MARCH1 has sex-specific effects on

lipid storage further indicates that the study of MARCH1 will yield insights into the differences

between males and females with respect to metabolic diseases. Lastly, it will be important to

leverage the MARCH1 KO mouse system to explore MARCH1’s dual roles in metabolism and

immune regulation, and determine potential links between these processes.
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