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Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to
mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation,
which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma
(HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been
shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes
place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The
interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor
mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting
event, will be depicted in this review in relation to HCC development and progression.

1. Oxidative Stress

Reactive oxygen species (ROS) are the by-products of a num-
ber of oxygen-centred biochemical reactions and include free
radicals, such as superoxide (O2

·−) and hydroxyl radical
(OH·), as well as nonradical species, such as hydrogen perox-
ide (H2O2). Because these species are formed by sequential
reduction of oxygen, they can be interconverted either spon-
taneously or under enzymatic catalysis [1]. Starting from the
70s, when ROS were typically considered dangerous mole-
cules due to the fact that only damaging and irreversible
effects on macromolecules were detected as proof of their
ability [2], more recently, we moved to a more composite
concept of the ROS role. Indeed, these molecules had a
Janus-faced behaviour in cell metabolism, strictly related to
their concentration. High ROS flux leads to irreversible alter-
ation of target macromolecules contributing to biological
damage inside the cells that has been associated with a
number of both physiological conditions, such as aging and
senescence, as well as pathological states, such as cancer, neu-
rodegeneration, and cell death. On the contrary, low ROS

flux is fundamental for cell signaling leading to cell cycle
modulation and cell proliferation. Therefore, a balanced
redox state is necessary for avoiding cell damage and for
fine-tuning protein functions and molecular pathways [1].
The discovery of reversible redox post-translational modifi-
cations on protein cysteine residue opened the avenue for
specificity of the signaling pathway, because only a small
fraction of proteins becomes oxidized when cells are sub-
jected to mild oxidative stress, due to the peculiar character-
istic of surrounding amino acids of the target cysteine [3].
Nowadays, we can assert that the ROS-mediated redox sig-
naling is central in the commitment of cell proliferation,
stress response, and survival in mild/controlled ROS burst,
while a persistent disequilibrium in redox homeostasis cul-
minates in cell death.

Oxidative stress originates from the overproduction of
ROS by endogenous (e.g., mitochondria, peroxisomes, and
oxygen-handling enzymes) and exogenous sources (e.g., UV,
heavymetals, andmicronutrients) or by inefficient/exhausted
antioxidants [4]. In particular, the endogenous ROS genera-
tion can be an inevitable consequence of the oxidative
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metabolism, by means of the electron transport chain activity
inside the mitochondria, or they can represent a weapon
through which specialized cells counteract infections; this is
the case of transmembrane enzymes belonging to the NOX
family of NADPH oxidases actively producing ROS as pri-
mary function (Table 1). Cellular antioxidant equipment
spans from low molecular weight nonenzymatic scavengers
derived from intracellular synthesis or diet to a variety of
committed enzymes. Major enzymatic antioxidants include
superoxide dismutase (SOD) having the ability to dismutate
the superoxide radical, and catalase and glutathione peroxi-
dases (GPxs) able to efficiently eliminate peroxide deriva-
tives. To these, the thioredoxin reductase enzyme should be
added for its role in buffering and restoring redox modifica-
tions on proteins. The spatial distribution of antioxidant
molecules permits to locally counterbalance the effects of
ROS. For instance, different isoforms of SOD exist: the Mn-
SOD (or SOD2) is localized in the mitochondrial matrix
whereas the CuZn-SOD (or SOD1) is sited in the cytosol
and in the mitochondrial intermembrane space [1]. The non-
enzymatic antioxidant pattern comprises the tripeptide glu-
tathione (GSH), the major soluble antioxidant abundantly
present in all cell compartments, and several vitamins such
as the lipid-soluble α-tocopherol, particularly present in the
hydrophobic side of the cell membrane (Table 1). The GSH
redox cycle is probably the most important cellular defense
system that exists in the cell; GSH not only acts as a ROS
scavenger but also functions in the regulation of the intracel-
lular redox state. The system consists of GSH, GPx, and glu-
tathione reductase, and the ability of the cell to regenerate
GSH from its oxidized form GSSG is fundamental in buffer-
ing oxidative stress [5].

2. Regulation of Tumor Biology by
Protein Oxidation

ROS levels are typically augmented in many types of cancers.
In fact, diverse proliferative signals promote ROS generation
as observed for those elicited by growth factor receptors
coupled with NADPH oxidases [6, 7]. DNA mutations
derived from oxidative DNA damage represent the typical
ROS protumorigenic action. Together with 8-oxoguanine
(8-oxoG), one of the most common DNA lesions caused
by ROS, oxidative damages comprise DNA single-strand or
double-strand breaks as well as rearrangement of DNA
sequence [8]. However, ROS contribute to cell proliferation
even through H2O2-mediated oxidation of cysteine residues
present on a surface-exposed region of oncogenes/tumor
suppressors. Several kinases involved in the mitogen-
activated protein kinase (MAPK) pathway, which is one of
the well-established cell transduction cascade contributing
to cell proliferation/survival, have been demonstrated to be
regulated in this way. In particular, the modulation of such
pathway by oxidation can occur (i) indirectly, as demon-
strated for the inhibition of the MAP kinase phosphatase 3
(MKP3) that is a Jun N-terminal kinase (JNK) antagonizing
enzyme [9], or (ii) directly, as observed for the inhibition of
the mitogen-activated protein kinase kinase 6 (MKK6) that
specifically activates the p38 MAPK [10] (Figure 1).

Along with the regulation of cell proliferation-linked
pathways that contribute to tumor initiation, ROS are also
involved in tumor progression/dissemination facilitating cell
motility and metastasis. In this context, a complex succession
of redox reactions affects the activity of kinases—e.g., protoon-
cogene c-Src [11] and C-terminal Src kinase (CSK) [12]—and
phosphatases—e.g., phosphatase and tensin homolog (PTEN)
[13] and Src homology 2 domain-containing phosphatase 2
(SHP-2) [14]—that coordinate the anchorage-independent
cell growth downstream of integrin signaling triggered by
extracellular matrix binding [15] (Figure 1).

Another process extensively connected with redox signal-
ing in cancer cells is autophagy, which accounts for tumor
development/progression in harsh conditions. In the present
review, we will circumstantiate the interplay between ROS
and autophagy in hepatocellular carcinoma (HCC) focusing
on the carcinogenic effects of the wide range of environmen-
tal risk factors involved in and on the therapeutic sensitivi-
ty/refractoriness of this solid tumor. Before entering the
main issue of this review, a brief description of the autopha-
gic process and the ROS-mediated regulation of key players
will be provided hereafter.

3. (Macro)autophagy

Autophagy typically allows cells to maintain the correct turn-
over of their component through the degradation of old
organelles and proteins recovering energy and macromolec-
ular precursors. Because of its intrinsic role of the recycling
pathway, autophagy can regulate physiological functions in
which cellular components have to be degraded, building
blocks have to be formed, and the cell has to response to
stress. The main biological effects inside the cell include
differentiation, response to starvation, quality control mech-
anism through elimination of damaged proteins and organ-
elles, and antimicrobial activity through elimination of
bacteria or viruses. Consistently, a lot of different stimuli
can activate the autophagic mechanism, demonstrating the
complicated nature of this pathway [16].

When we talk about autophagy in this review, we con-
sider the so-called “macroautophagy” which culminates with
the fusion of mature autophagosome (the vesicle that con-
tains the components that will be degraded) with lysosome
to degrade its content by acidic hydrolases. Other mecha-
nisms include “microautophagy,” in which lysosome directly
wraps around its cargo to eliminate it, and “chaperone-
mediated autophagy,” in which the binding between a chap-
erone protein and a target protein forms a complex that is
recognized by LAMP2A (lysosomal-associated membrane
protein 2) allowing the translocation of target protein into
the lysosome [17].

The first step of (macro)autophagy is the formation of
phagophore, a membrane structure that wraps parts of the
cytoplasm, thanks to the interventions of a complex contain-
ing autophagy-related proteins (ATGs). During nutrient
deprivation, the canonical autophagic stimulus, the target of
rapamycin kinase complex I (TORC1) has a crucial role;
according to the current hypothesis, TORC1 is able to sense
directly the flux of extracellular amino acids from outside
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to inside the cell [18]. In starvation condition, the inhibition
of the mammalian target of rapamycin (mTOR) allows the
activation of uncoordinated-51-like kinases 1 and 2 (ULK1
and ULK2), which together with ATG proteins form the
complex that localizes on the phagophore to induce the
autophagosome nucleation [19, 20]. Alternatively, the forma-
tion of double-membrane structure is induced via Beclin 1
forming distinct phosphatidylinositol 3-kinase complexes
[20, 21]. The elongation of phagophore, principally driven
by ATG9, determines the formation of a double-membrane
vesicle creating the autophagosome, which then fuses with
lysosome [20]. The introduction of target protein inside the
autophagosome is generally mediated by binding with the
light chain 3-II (LC3-II) which localizes at autophagosome
surface through phosphatidylethanolamine (PE) post-

translational modification [16, 22]. The process of autophagy
is selective in principle as many adaptor proteins allow LC3-
II to recognize specific targets; among those, p62/sequestro-
some 1 (SQSTRM1) has been characterized as the selective
mediator of ubiquitinated protein degradation via autophagy
[16, 23].

4. ROS-Mediated Regulation of Autophagic Flux

Aberrant increase of the endogenous or exogenous source of
ROS can induce macromolecule damage associated with
oxidative stress that needs to be efficiently managed. In the
perspective of cellular homeostasis, autophagy is a crucial
response to oxidative stress, and there are many ways
through which ROS can activate autophagy. A direct

Table 1: Main ROS sources/antioxidants and their localization.

Endogenous ROS sources Main localization Antioxidants Main localization

NADPH oxidase Plasma membrane Glutathione Ubiquitous

Respiratory complexes I and III Mitochondrion α-Tocopherol Plasma membrane

CYP450 Endoplasmic reticulum Superoxide dismutase Mitochondrion/cytosol

Xanthine oxidase Cytosol/peroxisome Catalase Peroxisome

Peroxisomal oxidases Peroxisome Thioredoxin Nucleus/mitochondrion

Lipoxygenase/cyclooxygenase Cytosol Glutathione peroxidase Cytosol/mitochondrion/plasma membrane

PMA-derived ROS

PDFG/EGF-
derived ROS

TNF�훼-derived
ROS

Starvation-
derived ROS
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Figure 1: Scheme representing the sources of oxidative stress (underlined) that through direct oxidation affect the function (parenthesis) of
key proteins (ellipse) involved in cell death/proliferation, autophagy, and migration/invasiveness, which are pathways commonly altered in
cancer. PDGF: platelet-derived growth factor; EGF: epidermal growth factor; PMA: phorbol myristate acetate; TNFα: tumor necrosis
factor α; PIP3: phosphatidylinositol 3,4,5 trisphosphate; ECM: extracellular matrix.
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regulation of autophagic machinery is exemplified by H2O2-
mediated oxidation of (i) ATG4 that becomes inhibited and
cannot delipidate LC3 promoting its association with the
autophagosomes [24] and (ii) p62 that undergoes oligomeri-
zation boosting autophagosome biogenesis and autophagic
flux [25] (Figure 1).

In addition, ROS are able to influence the signaling
pathways involved in autophagy regulation at different
levels. For instance, AMP-activated protein kinase (AMPK)
is sensitive to oxidative stress both directly or indirectly with
repercussion on autophagy induction [26–28]. Indeed, the
activation of AMPK leads to the inhibition of TORC1 pro-
moting autophagy. In this regard, the activation of AMPK-
dependent autophagy triggered by starvation is mediated
by mitochondrial ROS burst [29]. On the other side, ROS-
dependent activation of the MAPK14/p38 during starvation
is necessary for restraining autophagy activation in cancer
cells preserving cell viability in stress conditions [30].

Along with nutrient deprivation, another stressful condi-
tion that involves autophagy as an adaptive survival mecha-
nism in hostile environment is hypoxia. Strikingly, although
in low oxygen tension conditions, increase of ROS has been
extensively documented upon hypoxia [31] and conse-
quences on autophagy induction have been shown.
Hypoxia-inducible factors (HIFs), the master regulators of
hypoxia response, are indeed able to promote transcription
of autophagy key proteins, including BCL2 interacting pro-
tein 3 (BNIP3) and NIP-like protein X (NIX) expression
[32], which positively regulate autophagy through Beclin 1
activation in oxygen-deprived condition or after mitochon-
drial ROS generation.

5. HCC Risk Factors and ROS

HCC accounts for about 90% of all primary liver cancers
worldwide, and due to a high rate of recurrence after resec-
tion and a poor response to conservative therapy, it has a very
poor prognosis. Apart from genetic predisposition, a large
number of environmental and lifestyle risk factors have been
documented for HCC, primarily cirrhosis and hepatitis B
virus (HBV)/hepatitis C virus (HCV) infections. Among
others, nonalcoholic steatohepatitis (NASH), alcohol abuse,
metabolic syndrome, and aflatoxin B exposure have to be
mentioned [33].

For most of these risk factors, augmentation of oxidative
stress has been reported as an accepted mechanism contrib-
uting to hepatocarcinogenesis. The X protein (HBx) codified
by HBV genome has been associated with increased ROS
production in mitochondria where it is associated with the
outer membrane affecting human voltage-dependent anion-
selective channel isoform 3 (hVDAC3) with consequent
mitochondrial depolarization [34–36]. In line with this, the
C-terminal region of HBx was shown to be crucial for the for-
mation of oxidative DNA damage at mitochondrial level in
terms of 8-oxoG with no evidence of nuclear DNA damage
[37]. Increased levels of 8-oxoG were analogously observed
in human hepatoma cells infected with HCV in vitro [38],
as well as in vivo in livers of transgenic mice expressing
HCV core protein [39]. HCV-mediated ROS production also

occurs via alteration of mitochondrial functionality including
inhibition of the electron transport chain [40, 41], altered
transmembrane potential [39], and endoplasmic reticulum-
(ER-) mitochondrial calcium mobilization [42, 43]. Alterna-
tive mechanisms leading to augmented ROS production by
HCV infection involve the upregulation of NADPH oxidases
1 and 4 subunits via the transforming growth factor β1
(TGF-β1) signaling or induction of cytochrome P450 2E1
(CYP2E1), which is a cell detoxification system producing
different ROS species [44]. Imbalance in oxidative stress
was also demonstrated during alcohol abuse which promotes
ROS by xanthine oxidase, establishing hypoxic areas in the
liver of rodents and humans [45], or by augmented activity
of CYP2E1 entailed for ethanol catabolism [46, 47]. It is very
interesting to note that no evidence of exacerbated ROS gen-
eration is ascribable to augmented activity of fatty acid oxida-
tion and thus electron transport chain flux in lipid-rich
condition typical of obesity- and NASH-driven HCC. In fact,
analyses of the liver from patients with NASH have only
revealed mutations or decreased levels of electron transport
chain complexes [48, 49] and ROS generation has been hypo-
thetically associated with CYP2E1 activity, iron accumula-
tion, and ER stress [50]. This may imply that when ROS
derive from physiological sources (e.g., lipid beta-oxidation),
cells with a high level of metabolic competence like hepato-
cytes induce homeostatic pathways for managing ROS burst.
In support of this, fatty acids liberated by the rate-limiting
enzyme of triacylglycerols are able to activate the signaling
of nuclear receptors, such as peroxisome proliferator-
activated receptors (PPAR), affecting antioxidant response
and metabolic adaptations with implications also in HCC
development [51, 52].

Apart from genetic aberrations due to direct formation
of 8-oxoG on DNA or to lipid peroxidation that induces
the promutagenic DNA adduct cyclic γ-hydroxy-1, N2-
propanodeoxyguanosine [53], oxidative stress also contrib-
utes to hepatocarcinogenesis via epigenetic mechanisms.
Locus-specific epigenetic changes occurring in HCC cells
include the hypermethylation of the E-cadherin promoter
by H2O2 treatment [54] and the hypermethylation of the
suppressor of cytokine signaling 3 (SOCS3) due to HBV-
induced mitochondrial ROS accumulation [55]. In both
these examples, the oncogene Snail is actively involved
recruiting the repressive epigenetic enzymes DNA methyl-
transferase 1 (DNMT1) and histone deacetylase 1 (HDAC1).

6. Autophagic Response to Oxidative
Stress during HCC Onset

The pivotal tumor suppressor mechanism exploited by
autophagy for buffering dangerous ROS production is the
removal of damaged mitochondria by mitophagy. This selec-
tive engulfment of mitochondrial cargo engages a number of
adaptor proteins, such as BNIP3 and NIX, in combination
with E3 ubiquitin ligases that operate when localized at mito-
chondria, such as Parkin and Mitochondrial E3 Ubiquitin
Protein Ligase 1 (Mul1). In particular, Parkin dampens
HCC development as demonstrated by the proliferative phe-
notype of hepatocytes and the development of macroscopic
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hepatic tumors in Parkin knockout mice [56]. The activation
of Parkin-dependent mitophagy was also documented in
regard of ROS-mediated hepatocarcinogenic effect of etha-
nol. Accordingly, alcohol induced extensive mitochondrial
damage and oxidative stress in Parkin knockout mouse livers,
which exhibited decreased mitophagy and mitochondrial
respiration [57, 58]. Moreover, relocalization of Parkin at
dysfunctional mitochondria largely coincides with accumu-
lated 8-oxoG in the liver from ethanol-treated rats [59]. A
cytoprotective role of autophagy and mitochondrial disposal
was also described in response to CYP2E1-dependent oxida-
tive stress during chronic ethanol-induced liver injury [60].
The same outcome was inferred after treatment with agents
able to stimulate CYP2E1-dependent toxicity, such as poly-
unsaturated fatty acid, arachidonic acid, and buthionine sul-
foximine, in combination with autophagy modulators [61].

On the other hand, ROS-mediated autophagy has been
linked with survival mechanisms of HCC to stressful condi-
tions. Autophagic flux and ROS are both increased during
ischemia/reperfusion injury, one of the major complications
of liver resection, favoring proliferation and survival of
HCC cells [62]. In addition, elevated ROS production was
associated with the activation of AKT, which induces a
survival-promoting autophagy sustaining p53 degradation
and NF-κB expression in HCC [63].

Based on this complexity, a univocal functional outcome
of the interplay between ROS and autophagy in HCC tumor-
igenesis cannot be predicted. Moreover, autophagy intersects

many of the signaling pathways that are genetically altered
(i.e., PI3K/Akt/mTOR, Ras/Raf/MAP kinase, and Wnt-β-
catenin pathways), most of which are triggered by ROS. It
is also to be noted that autophagy is directly involved in the
modulation of oxidative stress response via stabilization of
Nrf2, the master regulator of antioxidant pathways, by p62-
mediated autophagic degradation of the Nrf2 inhibitor
Keap1. However, a persistent p62-mediated stabilization of
Nrf2 under stressful conditions may overcome the gatekeeper
function of autophagy in the liver activating Nrf2-mediated
reprogramming of metabolism, stress response, and cell cycle
associated with hepatocarcinogenesis [64, 65]. Along with
this, a detrimental connection between autophagy and Nrf2
has been also demonstrated in ATG5 liver-specific knockout
mice, which spontaneously develop inflammation, fibrosis,
and tumorigenesis, but this phenomenon is abolished in the
absence of Nrf2 [66]. These examples further highlight how
the complicated liaison between ROS signaling and autoph-
agy can contribute to cancer development/progression when
it is affected by genetic and chronic environmental insults.

7. Autophagic Response to Oxidative
Stress during HCC Therapeutic Intervention

Due to molecular heterogeneity of HCC and resistance to
common chemotherapy, themost radical curative approaches
are therapeutic surgery and liver transplantation, when
applicable. Systemic therapy is generally exploited when

Table 2: Molecules tested in HCC cell lines and impinging on ROS/autophagy crosstalk.

Drug Effect Role of ROS Source of oxidative stress Ref.

Sorafenib
Apoptosis and

prosurvival autophagy

Dose-dependent cytostatic and
cytotoxic effects; apoptotic cell

death
Mitochondrial ROS and GSH depletion [70, 71]

Oxaliplatin
Apoptosis and

prosurvival autophagy
Enhanced apoptotic cell death
upon autophagy inhibition

Inhibition of thioredoxin reductase [76, 92]

Salinomycin
Apoptosis and

inhibition of autophagy
Contribution to apoptosis

activation

Accumulation of dysfunctional
mitochondria due to impaired

autophagic flux
[79]

Capsaicin
Apoptosis and induction

of cytoprotective
STAT3-dependent autophagy

Phosphorylation of STAT3 and
activation of autophagy

Inhibition of mitochondrial complexes
I and III; reduction of antioxidants

(results obtained in pancreatic cancer cells)
[80, 93]

Licochalcone A
Induction of apoptosis and
prosurvival ULK1/ATG13-

mediated autophagy
Activation of autophagic flux

Suppression of the GSH generation and
formation of superoxide

[78]

Bevacizumab
Antiangiogenic effect and
induction of prosurvival

autophagy

Enhancement of metabolic
stress-induced oxidative
damage and cytotoxicity

Indirectly obtained by metabolic stress such
as starvation and hypoxia

[77]

OSU-03012 Autophagic cell death (ACD) Activation of autophagic flux
Unknown. Mitochondrial superoxide
production was demonstrated for the

analogue Celecoxib
[83, 94]

DHEA ACD
No involvement in autophagic

commitment
Decrease of GSH/GSSG ratio and impaired

pentose phosphate pathway
[86]

Tetrandrine
Apoptosis

(high concentrations) and
ACD (low concentrations)

Activation of ERK-mediated
autophagic flux

Mitochondrial dysfunction [87]

Adpa-Mn Apoptosis and ACD
Induction of both apoptosis

and autophagy
Mitochondrial dysfunction [88]
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terminal HCC occurs, and sorafenib is the only standard
treatment available [33]. Sorafenib is a multikinase inhibitor
impinging on MAPK/ERK-mediated cell proliferation and
VEGF-driven angiogenesis thus targeting both tumor cells
and endothelial cells [67]. Apoptosis has been classically
considered as the major cytotoxic effect of sorafenib
in vitro and in animal models [68], but typical signs of apo-
ptotic cell death were not frequently observed in HCC
patients treated with sorafenib, till to be considered as a
weak proapoptotic molecule as a single agent [69]. This is
in line with the survival of only two-three months observed
for advanced HCC patients cured with sorafenib and the
need of developing new effective interventions. In this
regard, the research of a combinatorial therapeutic approach
for enhancing sorafenib efficacy in HCC has been currently
intensified based on the fact that sorafenib elicits a plethora
of secondary mechanisms, including both oxidative stress
and autophagy. Mitochondria-dependent ROS production
accounts for cytostatic and cytotoxic effects of sorafenib in
a dose-dependent manner [70, 71]. On the other hand,
autophagy induction by sorafenib is largely exploited for
adaptive survival response and is triggered by several cues,
such as ER stress [72], mTORC1 inhibition [73], or Beclin
1 release from inhibitory factors [74]. However, autophagy
seems also to improve the lethality of sorafenib against
HCC cells promoting apoptosis, suggesting that individual
HCC cells may activate distinct autophagy signaling path-
ways that allow them to respond differently to chemothera-
peutic treatments [75]. Even though oxidative stress and
autophagy are concomitant events linked to sorafenib, no
mutual relationship has been highlighted so far. Such con-
nection has been instead largely described for alternative
chemotherapeutic agents that have been characterized in
preclinical models of HCC. Oxaliplatin treatment induces
proapoptotic effects via ROS generation, and hindering
autophagy exacerbates that phenotype [76]. Autophagy

inhibitors also foster apoptotic cell death triggered by beva-
cizumab in the presence of ROS derived from starvation or
hypoxia [77]. The occurrence of apoptotic cell death after
salinomycin, capsaicin, propyl gallate, or licochalcone A
treatment was instead dependent on a direct impact of these
molecules on the autophagic response to oxidative stress
[78–81] (Table 2).

Notably, a number of papers have also clarified that the
induction of ROS-mediated autophagic flux can culminate
in HCC cytotoxicity via autophagic cell death (ACD). This
mechanism was proposed during hyperthermia-dependent
radiotherapy sensitization [82] and demonstrated after
treatment with chemotherapeutic compounds. The adminis-
tration of OSU-03012, a synthetic compound acting as a
3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor,
elicits ACD in HCC cells differently from other tumor types
where it triggers apoptosis. Moreover, in HCC, this outcome
is independent of PDK1 but connected with ROS-mediated
autophagy induction [83]. Analogously, the adrenal steroid
hormone dehydroepiandrosterone (DHEA) induces ACD
only in some cellular contexts [84, 85], including HCC,
where it acts independently of the typical inhibition of the
glucose-6-phosphate dehydrogenase (G6PDH) triggering
ROS burst and oxidative stress [86]. The dosage of the alka-
loid tetrandrine in HCC cells was instead demonstrated to
tip the balance in favor of apoptosis or ACD at high and
low concentrations, respectively. In this context, ACD was
triggered by ROS-mediated activation of the ERK signaling
pathway and overexpression of ATG7 [87]. In many other
cases, such as after treatment with the alkaloid tetramethyl-
pyrazine or with the novel manganese (II) compound
Adpa-Mn, induction of ROS-dependent autophagy and
apoptosis is a concomitant event necessary for therapeutic
success [88, 89] (Table 2).

The complex scenario described here can be justified by
the fact that several stimuli and pathways, including ROS,
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Figure 2: Interplay between ROS and autophagy in HCC as consequence of risk factors, environmental stress conditions, and therapeutic
treatments.
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are shared by autophagy and apoptosis, and a number of
mutually regulatory mechanisms exist. In this context, Beclin
1 plays a central role at the molecular level. For instance,
during sustained exposure to apoptotic insults, Beclin 1
is a target of caspase proteolytic activity that generates
fragments able to inhibit autophagy but to stimulate apo-
ptosis. Moreover, Beclin 1 is inhibited by the interaction
with the antiapoptotic protein Bcl-2 whereas Beclin 1-
mediated autophagy prevents apoptosis by degrading the
active caspase-8 [90].

8. Conclusion

Oxidative stress is a critical event linked to hepatocarcino-
genesis and virtually associated with all the wide range of
environmental risk factors contributing to HCC onset
(Figure 2). In general, increased levels of ROS are responsible
for genetic/epigenetic mutations and proliferative signals, but
a failure in the counterbalance of ROS by antioxidants pre-
disposes to cell death. Autophagy is also a double-edged
sword in the context of HCC onset/progression. Autophagy
acts as a tumor suppressor mechanism in the liver avoiding
proteotoxicity [91] and aberrant mitochondrial ROS produc-
tion via mitophagy [56] (Figure 2), but it also accounts for
tumor adaptation to stressful conditions, such as starvation
and hypoxia, mostly in the inner core of the tumor [62, 63].
The interplay between ROS and autophagy has a strong
impact on therapeutic outcomes. Several prooxidant mole-
cules tested in HCC were shown to induce simultaneously
apoptotic cell death and autophagy. However, the latter
can act as a prosurvival response typically associated with
drug resistance or as an alternative/combined cytotoxic
mechanism in terms of autophagic cell death (Figure 2).
This definitively indicates that targeting autophagy in
HCC is a complex approach that needs to be carefully eval-
uated for the success of a therapeutic strategy based on
ROS-generating drugs.
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