
RESEARCH ARTICLE

Identification of Gene-Expression Signatures
and Protein Markers for Breast Cancer
Grading and Staging
Fang Yao1,2,4, Chi Zhang2, Wei Du1,2*, Chao Liu2,3, Ying Xu1,2*

1 Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education,
College of Computer Science and Technology, Jilin University, Changchun, China, 2 Computational
Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of
Bioinformatics, University of Georgia, Athens, United States of America, 3 Department of Oral and
Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China, 4 Jilin
Teachers’ Institute of Engineering and Technology, Changchun, China

*weidu@jlu.edu.cn (WD); xyn@bmb.uga.edu (YX)

Abstract
The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a can-

cer refers to the size and the extent that the cancer has spread. Here we present a computa-

tional method for prediction of gene signatures and blood/urine protein markers for breast

cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA

breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous

tissues with pathologists-assigned stages and grades. By applying a differential expression

and an SVM-based classification approach, we found that 324 and 227 genes in cancer

have their expression levels consistently up-regulated vs. their matching controls in a

grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-

gene panel as a gene signature for distinguishing poorly differentiated from moderately and

well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminat-

ing between the moderately and well differentiated breast cancers. Similarly, a 30-gene

panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced

stage (stages III-IV) from early stage (stages I-II) cancer samples and for distinguishing

stage II from stage I samples, respectively. We expect these gene panels can be used as

gene-expression signatures for cancer grade and stage classification. In addition, of the

324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-

secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123

and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively.

We anticipate that some combinations of these blood and urine proteins could serve as

markers for monitoring breast cancer at specific grades and stages through blood and urine

tests.
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Introduction
Breast cancer is a major threat to women's health, accounting for 22.9% of cancer cases in
women [1]. According to the World Cancer Report [1], 458,503 cases of breast cancer–associ-
ated deaths worldwide were reported in 2008, which represents 13.7% of cancer-related deaths
in women. It has been generally understood that breast cancer, probably other cancer types as
well, of different stages and different grades require different treatment plans. For example,
breast-conserving surgery plus radiation therapy is effective for most patients with early stage
breast cancers [2] while systemic therapy are generally needed for advanced stage patients,
such as hormone or chemo therapy, in addition to cancer-removal surgery and radiation. In
addition, cancer grades are strongly associated with prognosis [3]. Specifically, more differenti-
ated cancer grades tend to have more favorable prognosis. Clearly, correct classification of the
grade and stage of a cancer has significant implications in determination of the treatment plan
for a patient.

Cancer stages are used to reflect the size of a cancer tumor and its extent of invasion. It has
been traditionally determined by cancer pathologists based on tumor size, nodal spread and
metastasis [4]. In the recent past, molecular level information has been incorporated into the
decision process of cancer staging, using markers such as alpha-fetoprotein and lactate dehy-
drogenase for determination of germ cell tumors [5]. A widely used system for cancer staging
is that the cancer tissues are classed into four stages, namely I, II, III and IV, with a higher stage
representing a more advanced cancer.

Cancer grading is a measure of the malignancy and aggressiveness independent of stage.
Unlike staging, cancer grading has been predominantly done through visual inspection of the
cell morphology and tissue structure [3], generally lacking in using molecular level informa-
tion. Compared to stage determination, it is a less developed area in cancer classification. Cur-
rently there is no universal grading system for all cancer types, instead research communities
of a few cancer types each have developed their own grading systems such as the one for breast
cancer developed by Bloom and Richardson [6], the Gleason system for prostate cancer [7] and
the Fuhrman method for kidney cancer [8]. While there are some differences in the detailed
classification criteria, these grading systems generally classify cancer tissues to four grades: well
differentiated (WD), moderately differentiated (MD), poorly differentiated (PD) and undiffer-
entiated (UD).

A number of computational studies have been published on cancer staging and grading pre-
diction based on transcriptomic data. For example, Cui et al have reported a 198-gene and a
10-gene panel for grading and staging prediction of gastric cancers, respectively [9]. For breast
cancer, a grade index based on the expressions of 97 genes in cancer tissues was previously
developed to classify patients with grade 2 tumors into two subgroups with high versus low
risks of recurrence [10]. However, markers so developed have had only limited applications
since tissue-based gene-expression data are generally not available for most patients [11, 12].
Hence, it is essential to extend tissue-based gene markers to markers that can be measured
using blood or urine samples of patients [13, 14], the challenge of which is to predict reliably
which of the overly expressed proteins in cancer tissues can be secreted into blood and further
into urine.

In this study, we conducted a computational analysis tissue-based gene-expression data to
identify possible gene signatures and blood/urine proteins markers for breast cancer grading
and staging prediction. The following represents the unique contributions by this study, to the
best of our knowledge: (1) RNA-seq-based gene-expression signatures for breast cancer grad-
ing and staging prediction; and (2) predicted potential marker proteins for cancer staging and
grading that can be measured by using blood and urine samples. Clearly, this work represents
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only a pilot study for prediction of blood and urine marker proteins for breast cancer grading
and staging. We expect that follow-up studies will demonstrate the feasibility of the predicted
signature genes and protein markers.

Results

A. Identification of gene signatures for breast cancer
(1) Identification of gene groups whose expressions distinguish breast cancer from

other cancers. Gene-expression data of 111 paired of breast cancer and adjacent control tis-
sue samples were retrieved from the TCGA database [15], where each gene-expression dataset
covers 20,501 human genes measured using RNA-seq. 5,562 differentially expressed genes
between cancer and matching control tissues were identified using the following procedure:
the expression levels of a gene in cancer show at least 2-fold change from the matching control
tissues with the q-value< 0.05 to control the False Discovery Rate (FDR) (see Material and
Methods). Among the 5,562 genes, 2,078 were up-regulated and 853 of them were found to be
up-regulated in less than three out of 12 other cancer types that were examined in our study as
references, hence making them as good candidates for breast cancer specific markers (see
Material and Methods).

To predict gene signatures specific to breast cancer, we have searched for gene combinations
among the 853 up-regulated genes in breast cancer, whose expression pattern can best distin-
guish breast cancer from other cancers and breast cancer from the control samples, using a
support vector machine based feature elimination approach, named SVM-RFE (see Material
and Methods). A 20-gene combination, {COPA, GATA3,HDGF, LUM, SPINT2, STAT1,
AEBP1, CALR, TRPS1, EPRS, ARL6IP1, EVL, RAD21, PKM2, CD9, NPNT, CLTC, CDH1,
NAT1, SH3BGRL}, has been identified, which can distinguish breast cancer from all other can-
cers, achieving a 94.3% average level of discrimination, and breast cancer from control samples
with 99.9% accuracy. For detailed information of comparisons, we refer the reader to S1 Table.

(2) Identification of gene signatures for breast cancer grades. Out of the 111 cancer
samples used in this study, 11, 40 and 28 are well, moderately and poorly differentiated, respec-
tively, with the remaining having no grade information provided. 3,881 genes are found to be
differentially expressed between the WD and the matching control tissues, with 1,817 genes
being up-regulated. 8,022 genes are differentially expressed between the MD tissues and match-
ing controls, with 3,585 up-regulated; and 8,066 genes are differentially expressed between the
PD tissues and the controls, with 3,469 up-regulated. We noted that there is a clear trend that
the number of differentially expressed genes increases as the grade going from more to less dif-
ferentiated, as shown in Fig 1. This observation is in agreement with our knowledge that less
differentiated cancers tend to be more malignant.

We have checked if some genes have their expression-level changes correlate with the cancer
grades. Significant correlation between the level of up-regulation and the three cancer grades
WD-MD-PD has been identified of 324 up-regulated genes, as detailed in S2 Table, where the
statistical correlation is assessed using the Spearman correlation coefficient and the Mann
Whitney test (see Material and Methods). Fig 2 shows four such genes, (DLGAP5, KIF2C,
ZMYND10, and VAV3), with their overexpression levels positively or negatively correlate with
the breast-cancer grades. It is noteworthy that DLGAP5 has been found that its silencing sup-
presses tumorigenicity and inhibits cellular proliferation in cancer cells [16]. KIF2C has been
reported that its overexpression involves in breast carcinogenesis [17]. ZMYND10 is a tumor
suppressor gene in neuroblastoma [18]. VAV3 has been reported to serve as an oncogene and
its overexpression is associated with poor prognosis of a breast cancer [19].
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A function enrichment analysis of the 324 genes has been conducted by using a hypergeo-
metric test against 2,801 pathways covering the GO terms, canonical pathways fromMsigdb
[20] and our manually collected gene sets [20, 21] (see Material and Methods). 103 pathways
are significantly enriched by these genes with a significance level< 0.001. The top ten most sig-
nificantly enriched gene sets/pathways, along with significance values, are shown in Table 1,
with the complete list of the enriched pathways provided in S3 Table. Note that around 85%
(88/103) of the enriched pathways are cell cycle, DNA replication and damage repair, and cell
proliferation regulation related, suggesting the most significant difference among the breast
cancers of different grades is the tumors’ cell proliferation rate.

Fig 1. Cancer grades versus the number of differentially expressed genes. The blue and red lines are for
the numbers of differentially expressed and up-regulated genes, respectively, across the three grades
considered.

doi:10.1371/journal.pone.0138213.g001

Fig 2. Correlation between gene-expression levels and three grades of breast cancer. (A) DLGAP5, (B)
KIF2C, (C) ZMYND10, and (D) VAV3.

doi:10.1371/journal.pone.0138213.g002
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We have then searched among the 324 genes to find combinations among them whose
expression patterns can distinguish among different cancer grades. A 9-gene combination,
(FGD3, CENPI, AURKB, DEPDC1B, FAM83D, NCAPH, TNFRSF18, FCGR1A, DEPDC1), has
been identified, whose expression pattern can distinguish the PD group from the MD andWD
groups with 96.3% classification accuracy (94.5% sensitivity and 97.3% specificity). Similarly, a
19-gene combination, (EPR1, CREB3L1, BGN, CXCL10, UBE2S, INHBA, CEP55, BUB1, KIFC1,
CDC45, SPATA17, CA12, CILP2, PTTG1, ADAMTS14, CLEC5A, FGD3, TNFRSF18, NEIL3),
has been identified that could distinguish the MD group from theWD group with 94.2% classi-
fication accuracy (95.0% sensitivity and 92.2% specificity).

(3) Identification of gene signatures for breast cancer stages. A similar approach is used
to identify stage-dependent gene combinations. Out of the 111 cancers samples, 12 are in stage
I (T1), 47 in stage II (T2), 19 in stage III (T3) and 1 in stage IV (T4) with the remaining not
having such stage information. Considering that stage IV has only one sample, we combined
samples in stages III and IV into one stage T3-4. We have observed: 5,358 genes are differen-
tially expressed in T1 samples versus controls, with 2,513 up-regulated; 7,850 are differentially
expressed in T2 samples versus controls, with 3,331 up-regulated; and 7,576 are differentially
expressed in T3-4 samples versus controls, with 3,507 up-regulated. All this information is
summarized in Fig 3, which shows an upward trend in the number of differentially expressed
genes from early to more advanced stages, similar to that for grade-dependent genes.

We have also checked if some genes may have their expression-level changes correlate with
cancer stages. Overall, 227 up-regulated genes are found to have their expression levels corre-
late with cancer progression from T1 through T3-4, as detailed in S4 Table. Fig 4 shows four
such examples, (BHLHE40,HSD17B6, CACNA1A,HDAC8), each with either positive or
negative correlation with the stage progression. Among them, BHLHE40 has been reported to
correlate with the increased malignancy potential and invasiveness in breast cancer [22].
HSD17B6 is known to be a key enzyme that can catalyze the conversion of 3α-diol to DHT in
prostate cancer [23]. CACNA1A is predicted to be a tumor suppressor gene in lung cancer [24].
HDAC8 has been reported to link to the dysregulated expression or interaction with transcrip-
tion factors critical to tumorigenesis [25].

Pathway enrichment analysis has also been carried out on the 227 stage-dependent genes.
59 pathways have been found to be significantly enriched by these genes, including carbohy-
drates metabolism, ion metabolism and homeostasis, mRNAmetabolism, apoptosis, ER stress,

Table 1. The top ten most significantly enriched pathways by the 324 genes.

Pathway name Gene count Size of gene set P value

REACTOME_CELL_CYCLE_MITOTIC 54 325 1.60E-27

REACTOME_CELL_CYCLE 60 421 4.41E-27

CELL_CYCLE_PROCESS 43 193 6.77E-27

REACTOME_DNA_REPLICATION 41 192 3.58E-25

CELL_CYCLE_PHASE 38 170 3.95E-24

MITOTIC_CELL_CYCLE 35 153 1.05E-22

M_PHASE 31 114 3.02E-22

CELL_CYCLE_GO_0007049 46 315 6.74E-22

REACTOME_MITOTIC_M_G1_PHASES 35 172 2.80E-21

M_PHASE_OF_MITOTIC_CELL_CYCLE 25 85 4.95E-19

Here, the gene count denotes the number of the 324 genes observed in each pathway; the size of a gene set is the total number of genes in the gene set

or pathway, and the p-value is the significance level of the enrichment calculated by the hypergeometric test.

doi:10.1371/journal.pone.0138213.t001
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ABC transporters, protein binding, response to acidosis plus a few signaling pathways. A few of
the enriched pathways are listed in Table 2 while the complete set of the enriched pathways are
given in S5 Table. Unlike grade-dependent genes, the stage-dependent genes enrich pathways
with more diverse functions, but predominantly metabolism or homeostasis related. Hence we
infer the key changes as a breast cancer advances are related to micro-environmental factors
and responses, which is consistent with our previous result that multiple cancer types (includ-
ing breast cancer) continuously alter their micro-environments, including the levels of hypoxia
and oxidative stress, as a cancer advances [21, 26].

We have searched among the 227 up-regulated genes to find combinations among them
whose expression patterns can distinguish among different cancer stages. Using an analysis

Fig 3. Cancer stages versus the number of differentially expressed genes. The blue and red lines are for
the numbers of differentially expressed and up-regulated genes, respectively, across the three stages.

doi:10.1371/journal.pone.0138213.g003

Fig 4. Correlation between gene-expression levels and three grades of breast cancer. (A) BHLHE40,
(B) HSD17B6, (C) CACNA1A, and (D) HDAC8.

doi:10.1371/journal.pone.0138213.g004
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similar to that for grade-dependent genes, we have identified a 30-gene combination whose
expression pattern can best distinguish advanced stage (T3-4) from early stage (T1+T2) breast
cancers, with an 99.9% classification accuracy (99.5% sensitivity and 100% specificity). The 30
genes are OR6K3, RMND5B, LPCAT3, FRRS1, LOC728554, RFX5, JAKMIP1, CLGN, NDST3,
GPR6, RIPK3, C2CD4A, PCDHA8, LENEP, CGA, GABRD, DLX1, GPR39, C1orf227, KLF1,
ANXA10, EIF3C, UQCRQ,MAPKAPK3, SH3BP5L, TCTEX1D2, TCL1A, IFT122, RAET1L and
ABCC13. Similarly we identified a 21-gene combination, (C1orf141, DNAJC15, FIG4,
LAPTM4B, HRASLS2, SEMA4A, SLC25A24, POTEH, SLC4A2, CLEC4C,MRPS21, AP3S1,
CLDN6, CST6,HHLA2, GPR6, ABCC13, AZIN1, OTX2,MPP2, CAPZB), whose expression pat-
tern can distinguish the T2 tissues from the T1 tissues, with 98.0% classification accuracy
(99.7% sensitivity and 91.3% specificity).

(4) Validation of the identified gene markers. Five breast cancer microarray datasets,
with either grade or stage information, in the GEO database are analyzed to validate the gene
markers predicted in the previous sections, to demonstrate that the predicted markers are sta-
ble on different datasets collected by different groups. The detailed information of the datasets
are given in S9 Table.

For the predicted gene markers, we have examined their expression patterns with respect to
stages and grades, respectively, in the test microarray datasets by using the MannWhitney test
with significance level 0.05 as the cutoff. Considering that there could be an intrinsic difference
between RNA-seq and microarray data, we have first tested the stability of the marker genes
predicted using the RNA-seq data on the matching microarray data over the same set of tissue
samples, which are made available in the TCGA database. 81.3% (234/288) of the grade-depen-
dent marker genes and 44.7% (83/183) stage-dependent marker genes passed the above statisti-
cal test, suggesting the level of the intrinsic difference between RNA-seq and microarray data
based predictions.

Table 2. Selected enriched pathways.

Pathway name Gene counts Size of the pathway P value

TRANSCRIPTION_COACTIVATOR_ACTIVITY 10 123 3.10E-05

BIOCARTA_CHEMICAL_PATHWAY 5 22 6.74E-05

INTRACELLULAR_ORGANELLE_PART 32 1192 6.94E-05

REACTOME_APOPTOSIS 10 148 7.88E-05

REACTOME_GLYCOSAMINOGLYCAN_METABOLISM 9 111 0.000136

REACTOME_INTRINSIC_PATHWAY_FOR_APOPTOSIS 5 30 0.000153

KEGG_LYSOSOME 9 121 0.000195

REACTOME_METABOLISM_OF_CARBOHYDRATES 11 247 0.000222

ION_TRANSPORT 10 185 0.000235

REACTOME_DEVELOPMENTAL_BIOLOGY 13 396 0.000248

STEROID_HORMONE_RECEPTOR_BINDING 3 10 0.000298

CELL_DEVELOPMENT 23 577 0.000337

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 5 41 0.000352

UNFOLDED_PROTEIN_BINDING 5 42 0.000375

KEGG_ABC_TRANSPORTERS 5 44 0.000424

CATION_TRANSPORT 9 147 0.000435

GLUCOSAMINE_METABOLIC_PROCESS 3 13 0.000468

In the table, the gene count denotes the number of stage-dependent genes observed in each pathway; the size of a gene set is the total number of genes

in each gene set or pathway; and the p-value is the significance level of the enrichment calculated using a hypergeometric test.

doi:10.1371/journal.pone.0138213.t002
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We then examined the predicted grade and stage-dependent marker genes against three
microarray data sets retrieved from the GEO database with grade and stage information
available, respectively. We noted that 92.8% (284/306) of the grade-dependent genes passed
the statistical test in at least one of the three data sets with grade information and the average
validation rate across the three datasets is 76.4%. Meanwhile, 42.7% (89/208) of the stage
dependent marker genes passed the test in at least one out of three datasets with stage informa-
tion and the average validation rate across the three data sets is 21.67%. Detailed statistics of
the validations are listed in S2 and S4 Tables. It is worth noting that the percentage of the vali-
dated marker genes is much higher than the expected discovery rate, i.e. 5%, suggesting the
overall reliability of the identified gene markers.

We have also assessed the discerning power of each predicted gene combination for breast
cancer staging and grading on the microarray datasets. On the TCGA microarray dataset
(matching the RNA-seq data), the 9-gene combination for distinguishing the PD group from
the MD andWD groups achieves 87.08% prediction accuracy with 79.83% sensitivity and
89.63% specificity; the 19-gene combination for MD versus WD classification achieves 83.13%
prediction accuracy with 91.83% sensitivity and 50.00% specificity. For cancer staging, the
21-gene combination for classification between the T1 and T2 groups and the T3-4 group
achieves 76.38% prediction accuracy with 48.00% sensitivity and 85.95% specificity; and the
18-gene combination for T1 versus T2 classification achieves 80.20% prediction accuracy with
89.33% sensitivity and 54.00% specificity. Detailed statistics are shown in Table 3.

On the other three microarray datasets, the gene combination for distinguishing the PD
group from the MD andWD groups achieves 77.04% prediction accuracy with 80.03% sensi-
tivity and 72.03% specificity, and the gene combination for discerning the MD group from the
WD group achieves 71.73% prediction accuracy with 77.72% sensitivity and 56.67% specificity.
Similarly, the gene combination for distinguishing stages T1 and T2 from T3-4 achieves
59.34% accuracy with 32.72% sensitivity and 63.13% specificity; and the gene combination for
T1 and T2 discrimination achieves 69.60% accuracy with 81.72% sensitivity and 23.80% speci-
ficity on average.

It is worth noting that a partial reason for the reduced performance level of our predicted
markers on the microarray data is that some selected genes based on the RNA-seq data are
missed in the microarray data and some genes expression levels may be not accurately reflected
in microarray data due to the intrinsic limitations of the technique [27].

We have also conducted SVM-RFE-based classifier training directly using microarray data
and the 324 grade and 227 stage-dependent genes identified based on RNA-seq data. Across
the board, gene combinations were identified to achieve better than 90% prediction accuracy
with at least 90% sensitivity and 90% specificity for each of the prediction tasks discussed
above. Detailed performance statistics by these predicted gene combinations are given in
S10 Table.

Table 3. The prediction accuracy of the identified gene combinations on TCGAmicroarray data.

Number of genes Accuracy Sensitivity Specificity

PD vs.MD,WD 9-gene 87.08% 79.83% 89.63%

MD vs. WD 16-gene 83.13% 91.83% 50.00%

T34 vs.T1,T2 21-gene 76.38% 48.00% 85.95%

T2 vs. T1 18-gene 80.20% 89.33% 54.00%

doi:10.1371/journal.pone.0138213.t003
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B. Prediction of protein biomarkers for breast cancer in blood and urine
(1) Prediction of protein biomarkers for breast cancer. Overall, 853 genes were found to

be up-regulated in breast cancer versus control tissues, which are up-regulated in at most three
other cancer types out of the 12 we have examined as controls (see Material and Methods),
hence making them as potential candidates for identification of unique gene combinations as
done above. We then analyzed which of their protein products can be secreted into circulation,
using a predictor developed previously by our lab [28]. 415 of these genes are predicted to
encode blood secretory proteins, hence making them as potential blood biomarkers for breast
cancer detection through blood test. Some of these proteins have been previously reported to
be breast cancer related biomarkers, such as C4a [29],HER2 [30], CA15-3 [31], alpha-1-antic-
hymotrypsin [32] and alpha-1B-glycoprotein [33]. Overall our extensive literature survey found
that 5 out of the 415 proteins have been reported to be found in blood circulation, giving rise to
a p-value 0.045 if the 415 proteins are selected by chance and hence providing an overall confi-
dence level of our prediction.

Similarly, we have applied our prediction tool for urine excretory proteins [34] for the 853
genes identified in Section A(1), and predicted that 176 can have their protein products
excreted into urine. As of now, no proteins have been reported to be urinary biomarkers for
breast cancer, to the best of our knowledge.

To further narrow down the candidate protein biomarkers in blood and urine for experi-
mental validation from the 415 and 176 genes, respectively, we have considered combinations
of some of these genes in a fashion similar to the analysis in the previous section, to suggest the
most informative combinations as potential blood and urine biomarkers for breast cancer
detection. At the end, we found one 36-gene combination from the 415 genes, whose protein
concentration level could be the most distinguishing between breast and other cancers:
MAPKAPK2, PARP1, CCT3, VAV3, AEBP1, KDM5B, NPNT, TMED3, NEBL, STAT1, POGK,
ATP2A3, FKBP4, ABHD2, EFNA1, PRSS8, CALR, LUM,MAZ, PDXDC1, SPINT1, REPS2,
CREB3L4, PGK1, KIAA1522, SIPA1L3, GBP5, TTLL12, ZNF217, ARNT2, FOXRED2,
ALDH18A1, RSAD2, TGFB3, PCK2 and SERPINA3, with detailed prediction data given in
S6 Table. We also predicted a 15-gene combination from the 176 genes, whose urinary proteins
may serve as a good urinary biomarker for breast cancer against other cancers: B4GALT3,
RAB31, EFNA1, NPNT, SEMA4A,H2AFZ, SMARCA4,H2AFY, NSF,HIST1H2AC, CDH1,
H3F3A, CLTC, EZR and HLA-DQA2, with detailed prediction information given in S6 Table.

(2) Prediction of protein biomarkers for breast cancer grades. In a very similar fashion,
we have predicted blood biomarkers for highly versus lowly differentiated breast cancers using
the 324 up-regulated grade dependent genes. 188 of the 324 proteins were predicted to be
blood secretory and 66 were urine excretory. These proteins could be used as potential blood
and urine biomarkers for breast cancer grades, respectively. Some of these proteins have been
reported to be breast cancer related markers, such as Ki-67 (MIB-1) [31] and CA15-3 [31]
being blood secretory protein markers for breast cancer, and C-telopeptide of collagen type I
[35], which contains two chains, being urine excretory protein markers. Overall at least 2 out
of the 66 proteins have been found in urine, giving rise to a p-value 0.0004 if the 66 proteins
are selected by chance and hence providing an overall confidence level of our prediction.

We have also examined if some combinations of the 188 genes’ protein products may have
high distinguishing power among breast cancers of different grades. A 19-gene combination is
identified that can best distinguish the PD group from the MD andWD groups with a 93.6%
classification accuracy based on gene-expression data. Similarly, a 17-gene combination is pre-
dicted to have strong discriminating power between the MD group and the WD group, with a
93.3% classification accuracy.
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Similarly, we have examined if some combinations of the 66 urine excretory genes’ proteins
have high distinguishing power among breast cancers of different grades. A 15-gene combina-
tion has been found to well distinguish the PD group from the MD andWD groups, with a
92.8% classification accuracy based on gene-expression data. And a 19-gene combination is
predicted to distinguish the MD group from the WD group, with a 83.8% classification accu-
racy. The detailed gene lists of these blood and urine gene combinations are given in S7 Table.

(3) Prediction of protein biomarkers for breast cancer stages. Using a similar prediction
procedure to that in the above section, a 23-gene combination is predicted to be the best distin-
guisher between the T3-4 and the T2-T1 group, with a 99.4% classification accuracy based on
gene-expression data. And a 23-gene combination is predicted to have the best discerning power
to distinguish between the T2 group and the T1 group, with a 98.1% classification accuracy.

Similarly for urine secretory gene panels, a 19-gene combination is predicted to best distin-
guish the T3-4 group from the T2-T1 groups, with a 87.6% classification accuracy. And a
25-gene combination is predicted to best distinguish the T2 from the T1 group, with a 97.2%
classification accuracy. The detailed gene lists of these stage biomarkers are given in S8 Table.

Discussion and Conclusion
Reliable prediction of a cancer’s grade and stage is very important as it can provide useful infor-
mation for cancer mechanism studies as well as for selection of the most appropriate treatment
plans. In this study, we used our in-house computational approaches to have predicted reliable
gene signatures and protein markers for breast cancer detection and their grades and stages by
using 111 pairs of breast cancer and matching control tissues. In order to identify the most reli-
able markers, we specifically applied the non-parametric MannWhitney test with relatively lower
sensitivity but higher specificity compared to other parametric tests for differential gene expres-
sions [36]. In addition, an SVM-RFE based approach is used to select a combination of genes that
can best discriminate between two specific groups of cancer tissues such as cancers in two differ-
ent grades or stages [37]. Such a method has been widely used in analyzing high-dimensional bio-
logical data for feature selection. Our experience has been that an SVMwith a linear kernel tend
to achieve the desired prediction accuracy without a major concern about over-fitting.

We noted that among the predicted marker genes, breast cancer specific markers, especially
the 20 identified by SVM-RFE, tend to be cancer associated genes such as oncogene CLTC and
tumor suppressor genes CDH1 and GATA3 while PKM2, STAT1, EPRS, HDGF, LUM,
SPINT2, TRPS1, EVL, RAD21, NPNT, NAT1, whose gene expression level changes have been
reported as breast cancer associated [20, 38–49]. Among the two classes of markers, most of
the grade markers are cell-proliferation related while the stage markers relate to more diverse
biological functions such as metabolisms, apoptosis and cancer micro-environmental stresses,
hence revealing useful information about molecular level differences among breast cancers of
different grades as well as of different stages.

By using our in-house software, we predicted the possible blood and urine protein markers
based on the predicted uniquely over-expressed genes in breast cancer. Such information could
provide useful targets for guided search for protein markers in blood and/or urine for breast
cancer detection and/or classification through blood or urine tests. We fully expect follow-up
studies will demonstrate the feasibility of the predicted signature genes and protein markers.

Material and Methods

1. RNA-seq data
RNA-seq data of breast cancer and 12 other cancer types, namely bladder carcinoma, colon ade-
nocarcinoma, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear
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cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adeno-
carcinoma, lung squamous cell carcinoma, prostate adenocarcinoma, rectum adenocarcinoma
and thyroid carcinoma were downloaded from the TCGA database [50], all of which were mea-
sured by Illumina HiSeq platform and normalized by the RSEMmethod [51]. Each of the
selected cancer types has at least 10 cancer and matching control samples. It is worth noting that
the RNA-seq data of these 13 cancer types are measured and normalized by the same procedure,
making comparisons among differential gene-expressions across different cancer types feasible.
Detailed cancer grade and stage information of each sample are also accessed from TCGA.

In addition to the RNA-seq data, the matching microarray data collected on the same breast
cancer and control samples are also retrieved from TCGA. In addition, five microarray data
sets collected on independent collections of tissue samples are retrieved from the GEO database
and analyzed to validate our RNA-seq data based marker predictions. The detailed information
of all these data is listed in S9 Table.

2. Identification of differentially expressed genes
Our previous study has revealed that the normalized microarray or RNAseq gene expression
profile through multiple cancer samples may follow mixed distributions with multiple peaks
due to possible intra-tumor heterogeneity or disease sub-types as shown in S1 Fig [52]. Hence
for the datasets with paired samples of cancer and adjacent control tissues, the non-parametric
Wilcoxon signed-rank test [53] was applied to identify genes that are differentially expressed in
cancer versus control samples. Specifically, our null hypothesis H0 is that a gene is not differen-
tially expressed in cancer versus the control samples; rejection of this hypothesis means that the
gene is differentially expressed in cancer versus the controls. Let Ci and Ni be a gene’s expres-
sion level in the i−th cancer and the matching control tissues, i = 1,. . .,N and N being the num-

ber of paired samples. We calculate |Ci − Ni| and sgn(Ci − Ni), with sgnðxÞ ¼
1 if x > 0;

0 if x ¼ 0;

�1 if x < 0:

8>><
>>:

.

We exclude all tissue pairs with |Ci − Ni| = 0 in our gene-expression data analyses. Let Nr be the
remaining sample size, and sort the Nr tissue pairs in the increasing order of the |Ni − Ci| val-
ues. We then give each pair a rank, numbered contiguously, consistent with the relative posi-
tions in the sorted list of paired tissues, i.e., with the first pair of tissues having rank 1 and
tissues with the same |Ni − Ci| value having the same rank, overall represented by Ri. We calcu-

late the test statisticW usingW ¼
XNr

i¼1

sgnðCi � NiÞ � Ri

� �
�����

�����. For Nr � 10, a z-score is calculated

as z ¼ W�0:5
sW

and sW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NrðNrþ1Þð2Nrþ1Þ

6

q
. If z> zcritical, the null hypothesis H0 is rejected. For

Nr < 10,W is compared to a critical value from a reference table. IfW � Wcritical;Nr
,H0 is

rejected, i.e. we consider the gene as differentially expressed.
For each cancer type, significantly differential expression is determined by the False Discov-

ery Rate (FDR)< 0.05 [54] and the fold-change in the expression levels in cancer versus the
matching control be larger than 2.0. For breast cancer grades and stages, significantly differen-
tial expression is determined by FDR< 0.05 and the fold-change> 1.5.

3. Identification of genes whose differential expressions correlate with
cancer grades and stages
Spearman correlation coefficient [55] was used to assess the level of correlation between the
average gene expression and the sample stage or grade for identifying genes whose expression
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change go up or down strictly monotonically with respect to stages or grades. The MannWhit-
ney test is then applied to identify the differentially expressed genes among the different stages
or grades with p< 0.05 as the cutoff for the significance level.

4. Pathway enrichment analysis
Pathway enrichment is assessed using a hypergeometric test against 2,801 gene sets covering
pathways in the KEGG [56], Biocarta [57], Reactome databases [58] and the GO terms [59]
collected fromMsigdb and our manually collected cancer micro-environmental stress associ-
ated gene sets [20, 21]. In order to control the false discovery rate, we used the statistical signifi-
cance p = 0.001 as the cutoff for a pathway enrichment test.

5. Prediction of gene signatures for cancers in a specific grade or stage
A support vector machine (SVM)-based recursive feature elimination approach was applied to
predict gene signatures for each breast cancer grade as well as stage. A linear SVM was used for
training our classifier [60, 61]. It constructs a hyper-plane to separate two different classes of
feature vectors to achieve a maximum margin. This hyper-plane is constructed by finding a
vector w and a variable b that minimize kwk2, which satisfies the conditions yi(w�xi + b)� 1,
where xi is a feature vector, yi is 1 or -1, representing the class to which the point xi belongs.
Gene signatures of each training set were selected by using the recursive feature elimination
procedure [62]. The overall accuracy of a trained classifier was evaluated using the 5-fold
cross-validation and leave one out method [63].

6. Prediction of genes that encode blood-secretory and urine-excretory
proteins
All up-regulated genes in breast cancer were analyzed for predicting if their protein products
are blood-secretory, using a program developed by our lab [28], and urine-excretory, using a
program developed also by our lab [34].

The basic idea of each algorithm is as follows. Human proteins known to be blood secretory
(urine excretory), according to the published data, are selected to form a positive training set
and proteins, known to be not blood secretory (urine excretory), are selected to form a negative
training set. A list of features related to protein sequence and structures were examined and
those found to have discerning power between the positive and the negative training data were
selected. A (SVM)-based classifier for blood secretory (urine excretory) proteins. Both pro-
grams have been systematically assessed against large datasets, having achieved high-level pre-
diction accuracy in both cases.

Supporting Information
S1 Table. List of gene signatures, whose expression pattern can best distinguish breast can-
cer from other cancers, and breast cancer from control samples.
(XLSX)

S2 Table. List of the 324 breast cancer grade associated genes. In the table, the column p
value and sign represent the p value of the differential expression and up (“+”) or down (“-”)
regulation between the two labeled classes, respectively. The TCGA RNAseq data analysis
results and microarray validation results are colored in green and yellow respectively while “IS”
represents insignificant. Blank elements in the validation columns suggest the genes are non-
differentially expressed in the RNAseq data.
(XLSX)
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S3 Table. The 103 identified pathways that are significantly enriched by the 324 up-regu-
lated grade-associated genes. Non-cell proliferation associated pathways are yellow
highlighted.
(XLSX)

S4 Table. List of the 227 breast cancer stage associated genes. In the table, the column p
value and sign represent the p value of the differential expression and up (“+”) or down (“-”)
regulation between the two labeled classes, respectively. The TCGA RNAseq data analysis
results and microarray validation results are colored in green and yellow respectively while “IS”
represents insignificant. Blank elements in the validation columns suggest the genes are non-
differentially expressed in the RNAseq data.
(XLSX)

S5 Table. The 59 identified pathways that are significantly enriched by the 227 up-regu-
lated stage-associated genes.
(XLSX)

S6 Table. Gene lists, which corresponding proteins may serve as potential blood and urine
biomarkers for breast cancer.
(XLSX)

S7 Table. Gene lists, whose corresponding proteins severs as potential blood and urine bio-
markers for breast cancer grades.
(XLSX)

S8 Table. Gene lists, whose corresponding proteins severs as potential blood and urine bio-
markers for breast cancer stages.
(XLSX)

S9 Table. Detailed information of the analyzed data.
(XLSX)

S10 Table. Statistics of the validation of SVM-RFE predicted grade and stage classifiers.
(XLSX)

S1 Fig. Histogram of four selected gene expression profiles in TCGA breast cancer data. In
each figure, the gene expression prolife (RSEM value) of TCGA breast cancer samples and nor-
mal breast samples are colored by blue and pink, respectively. The expression profile cancer
samples are fitted by mixed Gaussain distributions. The red, blue and green curves represent
the density function of the fitted mixed Gaussain distributions (weighted by sample size).
(PDF)
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