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ABSTRACT Colorectal cancer (CRC) is the second leading cause of cancer mortality
worldwide. The dysbiotic gut microbiota and its metabolite secretions play a significant
role in CRC development and progression. In this study, we identified microbial and
metabolic biomarkers applicable to CRC using a meta-analysis of metagenomic datasets
from diverse geographical regions. We used LEfSe, random forest (RF), and co-occur-
rence network methods to identify microbial biomarkers. Geographic dataset-specific
markers were identified and evaluated using area under the ROC curve (AUC) scores
and random effect size. Co-occurrence networks analysis showed a reduction in the
overall microbial associations and the presence of oral pathogenic microbial clusters in
CRC networks. Analysis of predicted metabolites from CRC datasets showed the enrich-
ment of amino acids, cadaverine, and creatine in CRC, which were positively correlated
with CRC-associated microbes (Peptostreptococcus stomatis, Gemella morbillorum, Bacteroides
fragilis, Parvimonas spp., Fusobacterium nucleatum, Solobacterium moorei, and Clostridium
symbiosum), and negatively correlated with control-associated microbes. Conversely, butyr-
ate, nicotinamide, choline, tryptophan, and 2-hydroxybutanoic acid showed positive correla-
tions with control-associated microbes (P , 0.05). Overall, our study identified a set of
global CRC biomarkers that are reproducible across geographic regions. We also reported
significant differential metabolites and microbe-metabolite interactions associated with
CRC. This study provided significant insights for further investigations leading to the devel-
opment of noninvasive CRC diagnostic tools and therapeutic interventions.

IMPORTANCE Several studies showed associations between gut dysbiosis and CRC. Yet, the
results are not conclusive due to cohort-specific associations that are influenced by
genomic, dietary, and environmental stimuli and associated reproducibility issues with vari-
ous analysis approaches. Emerging evidence suggests the role of microbial metabolites in
modulating host inflammation and DNA damage in CRC. However, the experimental valida-
tions have been hindered by cost, resources, and cumbersome technical expertise required
for metabolomic investigations. In this study, we performed a meta-analysis of CRC micro-
biota data from diverse geographical regions using multiple methods to achieve reproduci-
ble results. We used a computational approach to predict the metabolomic profiles using
existing CRC metagenomic datasets. We identified a reliable set of CRC-specific biomarkers
from this analysis, including microbial and metabolite markers. In addition, we revealed sig-
nificant microbe-metabolite associations through correlation analysis and microbial gene
families associated with dysregulated metabolic pathways in CRC, which are essential in
understanding the vastly sporadic nature of CRC development and progression.

KEYWORDS biomarkers, colorectal cancer, gut dysbiosis, meta-analysis, microbial
metabolites, microbiome

CRC is the third most diagnosed and the second leading cause of cancer-related
deaths for men and women combined, globally (1). Genetic and environmental fac-

tors influence CRC incidences. Most CRCs are sporadic (70%), while about 25% are

Editor Jan Claesen, Lerner Research Institute

Copyright © 2022 Avuthu and Guda. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Chittibabu Guda,
babu.guda@unmc.edu.

The authors declare no conflict of interest.

Received 10 January 2022
Accepted 6 June 2022
Published 29 June 2022

July/August 2022 Volume 10 Issue 4 10.1128/spectrum.00013-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0002-5393-9316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.00013-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.00013-22&domain=pdf&date_stamp=2022-6-29


familial, and about 5% are hereditary (2). Environmental factors consistently associated
with sporadic CRC incidences include a low-fiber diet, tobacco, alcohol, lack of physical
activity, obesity, age, and diabetes mellitus (3–8) which could modify gut microbial
composition and function (9–11). Gut microbiota is a complex and dynamic microbial
community with diverse functions that significantly contribute to human health and
metabolic and immune functions. Dysbiosis of gut microbiota is associated with
numerous gastrointestinal and extraintestinal disorders, including cancers (12–14). It
could contribute to the etiology of CRC by altering the inflammatory, genomic, and
metabolic processes in the host. To date, only a few pathogenic species such as F.
nucleatum, B. fragilis, and Escherichia coli were experimentally shown to be involved in
CRC carcinogenesis through inflammatory and genotoxic activities (15–17). The dysbi-
otic gut microbiota also promotes inflammation and alters the host metabolism
through its metabolite secretions (18). For instance, the red meat diet enriches the sul-
fate-reducing gut bacteria that are involved in the production of hydrogen sulfide, a
genotoxic agent (19, 20). Long-term dependence on sulfur microbial diet is associated
with increased CRC risk (21).

Several studies have explored the gut microbial composition to identify CRC bio-
markers and linked pathogenic bacteria such as B. fragilis, F. nucleatum, Streptococcus
bovis, E. coli, Enterococcus faecalis, and Porphyromonas spp. to CRC (7, 22–24). However,
consistent CRC biomarkers are lacking as most of the studies are associated with spe-
cific cohorts that are highly influenced by dietary factors. For example, increased CRC
risk in African Americans was shown to be associated with secondary bile acids produc-
tion by enriched Bacteroides under a high-fat and low-fiber diet (25). Conversely,
decreased CRC risk in native Africans was associated with increased short-chain fatty
acid (SCFAs) production by enriched Prevotella members under high-fiber diet condi-
tions (25). The altered gut microbial metabolite profiles, such as a decrease in SCFAs
(acetate, propionate, and butyrate) and an increase in secondary bile acids are shown
to promote carcinogenesis through a proinflammatory mechanism (26), and diet-
derived microbial metabolites, such as N-nitroso compounds, azo compounds, and
nitrates lead to genotoxic and carcinogenic effects in the host (27). Despite the vital
role played by the microbe-derived metabolites in CRC, global biomarkers are not
available due to cumbersome experimental limitations that involve testing in animal
models.

We identified a set of global biomarkers for CRC in this study through a comprehen-
sive meta-analysis of existing CRC datasets from diverse geographical regions and
identified a novel CRC biomarker, A. onderdonkii. Using a computational approach, we
predicted the metabolomic profiles of CRC datasets and identified metabolite bio-
markers, which are consistent with previous metabolomic studies, such as the enrich-
ment of butanoic acid in controls but different amino acids in the CRC cohort. And in
this study, we also showed the significant microbial and metabolite correlations in CRC
pathogenesis. Next, we identified potential functional capabilities in CRC pathogens
and their differences across the geographical regions based on gene family analysis.
This study enhances our understanding of the role of CRC-associated microbes and
their metabolites in CRC development and progression.

RESULTS
Composition and diversity of gut microbial communities associated with CRC.

The taxonomic composition of CRC gut communities was analyzed using publicly available
shotgun metagenomic sequencing data from three different geographical regions, the
USA, China, and France (Table S1). High-quality sequencing reads were selected after pre-
processing and quality control and then quantified for taxonomic composition using
MetaPhlAn software (Data Set S1). We identified archaea, bacteria, eukaryotes, and viruses
in most of the samples. However, bacterial taxa dominated with more than 97% of all spe-
cies identified in each sample. We selected a total of 418, 410, and 469 microbial species
with average relative abundance .0.1% from the samples of the USA, China, and France
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datasets, respectively. Mean relative abundances of the top 20 species covered .50% of
total microbial abundance (Fig. 1, Data Set S2). And most of these species, including
Bacteroides spp., and Eubacterium spp., belong to phyla Bacteroidetes and Firmicutes,
respectively. High proportions of Faecalibacterium prausnitzii, Eubacterium rectale, and
Eubacterium eligens were observed in the control group compared to the CRC group,
whereas high proportions of Prevotella copri, Ruminococcus torques, and Bacteroides vulga-
tus were observed in CRC group compared to control group across the three geographic
regions. At the species level, the alpha diversity of metagenomes was not significantly dif-
ferent between CRC and control groups across geographic regions (Fig. S1A). The species
diversity in CRC and control groups was independent of potential confounding factors like
age, BMI, and sex, as shown in Fig. S1B. The non-metric multidimensional scaling (NMDS)
along with PERMANOVA evaluation based on Bray-Curtis dissimilarity measures showed
significant differences between CRC and control metagenomes in France and China data-
sets and no differences between CRC and control metagenomes in the USA dataset (P ,

0.05) (Fig. S2A to D). Similar comparisons based on the Bray-Curtis dissimilarity measures
showed significant differences in CRC and control metagenomes across the geographical
regions (P, 0.05) (Fig. S3A and B).

Altered microbial associations in CRC across geographic regions.Microbial asso-
ciations in CRC were analyzed at the species level using co-occurrence networks, LEfSe
algorithm, and RF methods. Differential microbial species were selected based on the
geographic region using each method and evaluated using RF models.

In the co-occurrence network analysis, we calculated the correlation coefficients
between microbes in CRC cases and controls separately and constructed networks by
selecting the significant positive correlations (r . 0.4, q , 0.05) for each geographic
region. A cluster analysis of networks showed various microbial interactions in CRC
and control networks. We identified a cluster formed from oral microbes such as G.
morbillorum, Porphyromonas asaccharolytica, Parivimonas spp., P. stomatis, Prevotella
intermedia, Parvimonas micra, and F. nucleatum in all CRC networks (Fig. S4). The
matched cluster was observed in the Chinese control network, however, it showed a
high abundance of these microbes in CRC cases compared to healthy controls (Fig. S5),
and the results were consistent with previous studies (28, 29).

FIG 1 Stacked bar plot shows the mean relative proportions of the top 20 species-level taxa of gut microbial
communities in CRC and healthy controls.
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Further, we synchronized the CRC and control networks of each geographic region
using DyNet software and identified 156, 65, and 81 rewired nodes between CRC and con-
trol networks of USA, French, and Chinese datasets, respectively. The rewired node score
(Dn-score) between the two networks indicates the changed interactions among the
microbes (e.g., DyNet visualization of synchronized networks for China dataset shown in
Fig. 2A, and corresponding unsynchronized networks shown in Fig. S6A and B). Similar net-
works for the USA and France datasets were shown in Fig. S7 and S8. The rewired nodes
were identified based on the Dn-score (Data Set S3) and compared among the datasets. A
set of 40 microbes with changed node perturbations were found in all datasets, and most
of these include commensals such as F. pratsnitzii, Roseburia hominis, Eubacteriun halli, and
Blautia producta and pathogens, such as S. moorei, Ruminococcus gnavus, and Clostridium sp.
A high number of unique rewired nodes (87 differential species) were identified from the
synchronized network of the USA dataset (Fig. 2B). We selected different sets of rewired
nodes for assessing the performance of DyNet markers, and those include differential taxa
identified in each geographic region by DyNet (DyNet dataset-specific markers) and a set of
78 rewired nodes that were common in 3 or 2 geographic regions (common DyNet-specific
markers).

LEfSe analysis revealed the significant differences in microbial species between CRC and
control groups (LDA score . 2.0, P , 0.05) (Fig. 3A and Fig. S9A and B). A total of 110
unique microbial species differed between CRC and control groups among geographic
regions. Among those, 8 pathogenic microbes, B. fragilis, C. symbiosum, F. nucleatum, G. mor-
billorum, Parvimonas spp., P. stomatis, P. asaccharolytica, and Prevotella intermedia, were
identified as CRC enriched microbes in all three geographic regions. Other species were
identified as unique to a geographic region or as common in at least two geographic
regions (Fig. 3B, Data Set S3). For performance evaluation, we selected different sets of
markers, those included LEfSe identified markers for each geographic region separately
(LEfSe dataset-specific markers), and a set of 24 common LEfSe dataset-specific markers
present in 3 or 2 geographic regions (common LEfSe-specific markers).

We built RF models by training on the individual dataset from each geographic
region with 10-fold cross-validations and identified 40 top-ranked species from each
geographic region (more than one species could get the same rank) as a differential
set of markers. Together, these markers included 119 unique species, and among
those, 15 were found in all three geographic regions. Others were randomly distrib-
uted among the geographic regions (Fig. 4B, Data Set S3). Some of the RF-identified
microbial markers with ranks below 20 in at least one geographic region are shown in
Fig. 4A. For performance evaluation, we selected different sets of RF-identified differen-
tial taxa for each geographic region (RF dataset-specific markers) and a set of 58 RF
dataset-specific differential markers common in 3 or 2 geographic regions (common
RF-specific markers).

Overall, differential analysis using these three methods showed that both dysbiotic and
healthy gut microbiota differ based on geographic location, and the three methods used
in this analysis confirmed that the results are also sensitive to analysis methods.

Identification of global biomarkers for CRC. RF classifiers were built based on
the dataset-specific (markers identified from each dataset using three different
methods described above) and common method-specific markers (combined data-
set markers commonly found in at least two out of three datasets identified by the
same method). To test the hypothesis that the set of CRC-associated taxa commonly
present across different geographical regions could improve the prediction per-
formance, we compared the performance score (AUC values) from the above classi-
fiers, i.e., dataset-specific (Fig. 5A) and common method-specific (Fig. 5B). Results
showed common DyNet-specific and common RF-specific markers performed better
than the respective dataset-specific markers. The classifiers based on DyNet-identi-
fied markers in individual datasets (USA-, France- and China-specific markers)
showed average performance scores ranging from 0.57 to 0.60 whereas classifiers
based on common DyNet-specific markers' average performance scores ranged
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from 0.54 to 0.70 across the datasets. The dataset-specific markers identified by RF
showed average performance ranging from 0.58 to 0.66, whereas common RF-spe-
cific markers average performance ranged from 0.59 to 0.72 across the datasets.
Among the dataset-specific markers, LEfSe dataset-specific markers have average
performance scores (0.58 to 069) across the geographic regions with a maximum
value for the French population (0.82) and the average performance scores were

FIG 2 Co-occurrence networks and DyNet dataset-specific markers. (A) DyNet visualization of synchronized CRC
and healthy control co-occurrence networks of microbial species from the China dataset. Red nodes and red
edges are present only in the CRC network, green nodes and green edges are present only in the control
network, and white nodes are present in both. (B) An Upset plot visualization of DyNet dataset-specific markers
intersections across France, USA, and China datasets. Each bar represents the number of dataset markers in
that category and orange dots below the bar indicates their conservation across the datasets. For instance, the
1st bar shows 40 Dynet dataset-specific markers that are common in all three datasets.
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FIG 3 LEfSe analysis. (A) Histograms of differential species in Chinese dataset. CRC enriched species
are indicated with a negative LDA score (red), and species enriched in healthy controls are indicated

(Continued on next page)
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nearly equal to average performance scores of common LEfSe-specific markers (0.57 to
0.70). Overall, the common method-specific markers performed better than dataset-spe-
cific markers. Among the common method-specific biomarkers classifiers, RF-specific clas-
sifiers showed the highest AUC scores in cross-validation and cross-cohort validation
(range of AUC score 0.56 to 0.78), whereas LEfSe-specific markers showed AUC scores
ranging from 0.53 and 0.74 and DyNet-specific markers showed performance values rang-
ing from 0.50 to 0.73 on cross-validation of datasets. Hence, we considered common RF-
specific markers for further validation on Austrian and Japanese datasets, which were not
part of the training datasets.

The routine clinical procedures require a minimum set of diagnostic markers that
are cost-effective and advantageous. For this purpose, we took 58 RF-specific markers
and another 20 species having RF ranking below 30 in at least one dataset. Then calcu-
lated the random effect size of each marker based on standardized mean differences
and selected the 21 biomarkers with the largest effect size, and are associated with
CRC in all three datasets or associated with controls in all three datasets (Fig. 6A) and
validated on the Japanese dataset (258 CRC cases and 246 healthy controls) and the
Austrian dataset (46 CRC cases and 57 healthy controls). The small set of RF-specific
markers (21 species) has similar performance compared with the larger set of RF-spe-
cific markers (58 species) on the USA, Chinese, and French datasets (cross-validation
AUC score range from 0.62 to 0.78 AUC) (Fig. 6B) and cross-validation AUC scores on
Austrian and Japanese datasets were 0.66 and 0.61. Among the 21 microbial markers,
14 species have the largest effect size in CRC samples, whereas 7 species have the larg-
est effect size in control samples across the USA, China, and France regions (Random-
effect model fit, P , 0.0001). The species associated with CRC include C. symbiosum, F.
nucleatum, R. torque, G. morbillorum, S. moorei, P. micra, Clostridium citroniae, and others.
In contrast, most of the nonpathogenic microbial species associated with controls
include E. eligens, Eubacterium ventriosum, E. hallii, Bifidobacterium catenlatum, and others
(Fig. 6A). Most of the CRC biomarkers reported in this study are consistent with previous
studies, where F. nucleatum reported as an oral pathogen was shown enriched in CRC
patients (28, 30–32), P. stomatis and S. moorei were reported as enriched in saliva and
stool of CRC patients (33), P. micra, an obligate anaerobe was associated with CRC and E.
ventriosum was shown to be associated with healthy controls (7), and B. fragilis was iden-
tified as a CRC biomarker in the previous studies (29, 34).

Gene families of individual strains of selected microbial species. Strain-level
gene families of microbial species were investigated to better understand the genomic
differences of CRC pathogens across geographic regions using PanPhlAn software. For
this analysis, we considered CRC-associated microbes, F. nucleatum, and B. fragilis and
analyzed the strain-specific genes present in 346 (180 CRC cases and 166 controls)
metagenomes from the USA, French and Chinese populations. F. nucleatum was found
in 74 CRC and 11 control metagenomes, and its strain-level profiles were identified
based on its 15,239 pangenome gene families, whereas B. fragilis was found in 149
CRC and 110 control metagenomes, and its strain-level gene-families were identified
based on its 29, 335 pangenome gene-families. Individual strains of F. nucleatum were
detected in 11 metagenomes (10 CRC and 1 control) (Data Set S4). Statistical analysis
of gene families showed significant differences in 80 gene families across F. nucleatum
strains of USA, Chinese, and French populations (P , 0.05) (Fig. 7). The F. nucleatum
strains of the USA were separated from those of the French and Chinese populations,
whereas few strains from the French population were similar to strains from the
Chinese population. Further mapping with the UniProt database showed that LPS core

FIG 3 Legend (Continued)
with a positive LDA score (green). Only species with an LDA score .2 at P , 0.05 are shown. (B) An
Upset plot visualization of LEfSe dataset-specific markers intersections across the three datasets
(France, USA, and China). Each bar represents the number of differential species in that category and
orange dots below the bar indicate their conservation across the datasets. For instance, the 1st bar
shows eight LEfSe identified differential species that are common in all three datasets.
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FIG 4 RF identified microbial markers of CRC in USA, French, and Chinese datasets. (A) In the RF cross-
validations, the prediction performance of each species was scored based on internal RF rankings. Rankings

(Continued on next page)

Altered Gut Microbes Reveals Colorectal Cancer Biomarkers Microbiology Spectrum

July/August 2022 Volume 10 Issue 4 10.1128/spectrum.00013-22 8

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00013-22


biosynthesis, adenosylcobalamin biosynthesis, NAD (1) biosynthesis, isoprenoid bio-
synthesis, phospholipid metabolism, and tRNA modification pathways were signifi-
cantly different across the strains of three geographical regions. PanPhlAn analysis of
B. fragilis identified strains in 32 metagenomic samples (23 CRC and 9 controls) (Data
Set S4), and 605 gene families were significantly different in the strains from the USA,
French, and Chinese populations (P , 0.05) (Fig. S10). Mapping with the UniProt data-
base showed the functional differences in gene families related to choloylglycine hy-
drolase, TonB-dependent receptors, OmpA/MotB domain proteins, histidine kinase,
BfmA, and ArsR family transcriptional regulator proteins.

Predicted metabolome changes associated with CRC. The metabolite profiles of
the gut microbial communities from the USA, French, and Chinese populations were
predicted using MelonnPan software. This analysis predicted 135 metabolites from
each dataset. The predicted metabolite profiles were filtered to remove ,0.01% rela-

FIG 4 Legend (Continued)
of the RF-identified species markers with a rank below 20 in at least one dataset are shown in the figure. (B)
An Upset plot visualization of RF dataset-specific markers intersections across the three datasets. Each bar
represents the number of dataset-specific markers in that category and the orange dots below the bar
indicate their conservation across the datasets. For instance, 1st bar shows the 15 RF dataset-specific
markers that are common in all three datasets.

FIG 5 Prediction performance of the RF classifiers. Row indicates the RF classifier trained on the dataset-
specific or common method-specific CRC markers; column indicates the classifier applying to the dataset of the
corresponding column. In each three by three matrix of AUC values, diagonal values represent the AUC values
of cross-validation obtained by using the trained row RF classifier on the column dataset, and off-diagonal
values represent the AUC values of cross-cohort validation obtained by applying the trained row RF classifier
on corresponding column dataset, (A) RF classifier was built from each dataset-specific markers (row). (B) RF
classifier was built from the common markers present in at least two datasets from the USA, France, and China
(common method-specific markers). ‘Average AUC score’ row represents the column average of the
corresponding three-by-three AUC score matrix. Notation: e.g., DY_USA_sp_USA means classifier trained on the
USA data based on the USA-specific markers identified by DyNet method, common_DY_USA means classifier
trained on the USA data based on the common markers identified by DyNet method those are present in at
least in two datasets DY, DyNet; LF, LEfSe; RF, random forest; and sp, specific.
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FIG 6 (A) Meta-analysis of selected RF CRC biomarkers markers using MetaPhlAn2 profiles from USA,
China, and France geographic regions. The colored lines represent the 95% confidence interval for
each dataset and random effect model estimate. (B) Cross-validations of a minimum set of RF CRC
biomarkers on USA, France, and China datasets. The AUC values on each cell of the heatmap were
obtained by the RF classifier (built from selected RF features) trained on the dataset row and
applying the classifier on the dataset column.
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tive abundance in $10% of the samples as suggested by the developers of the
MelonnPan software (35). After filtering we were left with 70 metabolites in each
dataset. The filtered metabolite profiles of all datasets were merged and normalized
and analyzed using edgeR and limma software. Differential analysis showed signifi-
cant changes in the metabolite profiles between CRC and control samples (limma,
P , 0.05; Fig. S11 and Data Set S4). Amino acids, including phenylalanine, valine, leu-
cine, alanine, isoleucine, and tyrosine, and other metabolites, including cadaverine,
succinate, and creatine, were highly enriched in CRC, whereas butanoic acid, L-gluta-
mate, and L-aspartate were abundant in the controls (Fig. 8A). Similarly, pathway
enrichment analysis of differential metabolites showed pathways related to amino
acid metabolism enriched in CRC (Fig. 8C), whereas arginine biosynthesis, nicotinate,
and nicotinamide metabolism, D-glutamine, and D-glutamate metabolism, and buta-
noate metabolism were enriched in controls (P , 0.05, Fig. 8B). The metabolite pro-
files and pathway associations in CRC indicate altered energy sources required for
the high metabolic growth rates of CRC cells. In addition to glucose, the cancer cells
use amino acids like glutamine, valine, leucine, and isoleucine as alternate energy
sources to meet the high energy demand for growth and as biosynthetic molecules
required for tumor growth (36).

We also estimated the correlations between gut microorganisms and metabolites
in CRC samples from three geographic regions USA, France, and China using
Spearman correlation and examined the correlations between differential CRC mi-
crobial biomarkers and metabolites identified in our study. The heatmap (Fig. 9)
showed the separation of CRC microbial markers into clusters (vertical axis). The top
clusters are mostly control-associated organisms like F. prausnitzii, E. eligens, E. ven-
triosum, and E. halli and the bottom clusters are CRC-associated such as F. nuclea-
tum, S. moorei, and C. symbiosum in one cluster and R. torques, B. fragilis, Parvimonas

FIG 7 Heat maps of the strain-level genomic diversity of F. nucleatum across three geographic regions: USA,
China, and France. The significant differential gene families (P , 0.05) were identified using Fisher's exact test
on presence and absence gene family profiles.
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spp, G. morbillorum, and P. stomatis into another cluster. Even though Alistipes
onderdonkii, a CRC-associated microorganism, was clustered with F. prausnitzii and
E. eligens (control-associated), they differed in correlations with butanoic acid, gluta-
mate, aspartate, and tyrosine. However, the CRC-associated microorganisms, C.

FIG 8 Analysis of MelonnPan predicted metabolites from the USA, China, and France datasets. (A) The relative abundance of significantly different
(P , 0.05) metabolites between CRC and healthy control groups. Blue indicates the control samples and red indicates the CRC samples from all three
datasets. Enrichment of pathways based on predicted metabolites in (B) healthy controls and (C) CRC samples.
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citroniae, and P. asaccharolytica grouped with control-associated microorganisms
like Coprococcus sp. ART55_1 and Burkholderiales bacterium 1_1_47 differed in corre-
lations with aspartate.

Metabolites such as cadaverine, succinate, and phenylalanine were enriched in
CRC samples and showed significant positive correlations with most CRC-associated
microbes like P. stomatis, G. morbillorum, B. fragilis, Parvimonas spp., F. nucleatum, S.
moorei, and C. symbiosum, while showing significant negative correlations with con-
trol associated microbes, F. prausnitzii, and E. eligens (P , 0.05). Branched-chain
amino acids, including valine, leucine, and isoleucine, were positively correlated with
the presence of R. torques. Butyrate, a short-chain fatty acid metabolite, was positively
associated with F. prausnitzii and E. ventriosum, and negatively associated with C. sym-
biosum (P , 0.05). Alanine was enriched in CRC samples and showed a significant
positive correlation with C. symbiosum, while taurine was positively correlated with
both CRC- and control-associated gut microorganisms. Ornithine showed significant
positive correlations with most of the control-associated microbes and negative asso-
ciations with CRC pathogens (P , 0.05) (Fig. 9, Data Set S4). Ornithine is an important
metabolite in the arginine metabolism produced by lactobacilli, which helps in gut
mucosal barrier function (37). A major cluster of metabolites such as nicotinamide,
choline, tryptophan, 2-hydroxybutanoic acid, and others showed positive correlations
with control-associated microbes, F. prausnitzii and E. eligenes (top cluster) whereas

FIG 9 Correlation analysis between 21 CRC microbial markers and 28 metabolites that were significantly different between CRC and healthy gut
communities, 14 were enriched in CRC cases and 14 were enriched in healthy controls. Red indicates the positive correlation and blue indicates the
negative correlation. *, P # 0.05; **, P # 0.01; ***, P # 0.001.
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negatively correlated with F. nucleatum, S. moorei, and C. symbiosum (bottom cluster).
CRC-associated bacteria, A. onderdonkii showed positive correlations with most of
these metabolites except butanoic acid and aspartate (P , 0.05).

DISCUSSION

Various studies were focused on the dysbiotic gut microbiota to identify specific mi-
crobial associations as etiological agents of CRC (22, 23, 38, 39), but the results were
inconsistent across the studies. Because the composition of the gut microbiome varies
with different environmental stimuli, dietary habits, and genetic traits, the independ-
ent geographic region/cohort-specific dataset analysis would result in biased associa-
tions related to dominant factors that cannot be generalized. In this study, we carried
out a meta-analysis of multiple datasets from diverse geographic regions and identi-
fied a set of global CRC biomarkers associated with all datasets. By selecting common
CRC-microbial associations across geographic regions, we can avoid nonspecific associ-
ations introduced by the heterogeneity factors. Our results showed that the RF method
performed better than the other methods, followed by LEfSe and co-occurrence net-
work methods. RF-specific markers showed a consistent increase in performance from
dataset-specific markers to common method-specific markers, whereas the LEfSe
method performed better with independent dataset-specific biomarkers than using
common LEfSe-specific biomarkers. Co-occurrence networks are often used to examine
microbial associations among key taxa in ecological communities. A recent micro-
biome study used this approach to identify the key taxa associated with acute pulmo-
nary exacerbations (40). In our study, we implemented a co-occurrence network for
the first time to identify and compare CRC biomarkers from the rewired nodes
between CRC and control networks. Rewired nodes across the networks indicate
altered interactions among the community members. In our analysis, co-occurrence
network-specific features showed a lower performance score compared to the other
two methods. However, it helped to identify significant interactions between oral
pathogens in CRC and a healthy gut, and these results are consistent with the previous
study (28). RF was one of the most widely used methods for the identification of bio-
markers in microbiome studies. In our study, RF models showed a consistent increase
in performance from RF dataset-specific markers to common RF-specific markers. Due
to this reason, we selected the global CRC markers identified by the RF method.

Most of the CRC biomarkers that we identified in this study are consistent with the previ-
ous investigations (39, 41). We identified a new CRC biomarker, A. onderdonkii. The genus
Alistipes is generally considered a commensal organism. However, it may contribute to inflam-
matory effects in the host under dysbiotic conditions due to the presence of putrefaction
pathways such as histidine degradation and production of tetrahydrofolate, indole, and phe-
nol (42). Similarly, we also identified C. citroniae as a biomarker, it belongs to the newly
defined Lachnoclostridium genus. It has been reported in early stage to later stage CRC sam-
ples with incremental abundances (43). On the other hand, the control-associated biomarkers
are gut commensal organisms, which include F. prausnitzii, E. ventriosum, and E. hallii. They are
known to produce SCFAs and regulate gut mucosal health (44).

PanPhlAn analysis of CRC-associated microbe, F. nucleatum, showed a significant differ-
ence in gene families related to isoprenoid biosynthesis and phospholipid metabolism.
These pathways are involved in lipid metabolism, and dysregulation of lipid metabolism
was identified as a characteristic feature and correlated with shorter survival rates in CRC
(45, 46). Similarly, other studies showed increased phospholipids were observed in colonic
neoplasms (47) and upregulation of the mevalonate-isoprenoid (MIB) pathway was identi-
fied in CRC stem cells (48). Enterotoxigenic B. fragilis has been shown to contribute to colon
carcinogenesis, and its pathogenicity is mainly due to its capsule, outer membrane pro-
teins, and a metalloprotease protein toxin (B. fragilis toxin) (49). In this study, we identified
that the B. fragilis strains present in the USA, Chinese, and French populations mainly dif-
fered in the gene families related to TonB-dependent receptor, OmpA/MotB domain pro-
tein, BfmA, choloylglycine hydrolase, MobA, multidrug efflux MFS transporter, type IV
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secretion system needle protein Hcp and other putative proteins. Most of these proteins
play important roles in bacterial pathogenicity like toxin transport, colonization, biofilm for-
mation, nutrient uptake, and multidrug resistance and are produced from bacterial patho-
genicity islands (50). The type IV secretion system is involved in the transfer of virulence
factors to the host and TonB-dependent receptors and OmpA are involved in the uptake
of nutrients and other small molecules into the cell (51). Choloylglycine hydrolase is a con-
jugated bile salt hydrolase known to be produced by gut microbes (strains from
Bacteroidetes) that has the potential to alter the host fatty acid metabolism by mediating
bile salt hydrolysis (52). In strain-level metagenomic analysis, both F. nucleatum and B. fragi-
lis strains showed differences in gene families that can affect the host fatty acid metabo-
lism. This indicates the crosstalk between the gut microbes and host metabolism through
microbial metabolites in CRC.

The metabolite analysis showed enrichment of SCFAs such as butanoic acid in con-
trol samples than CRC samples and positively correlated with control-associated
microbes. It is one of the by-products of the fermentation of fiber by gut microbiota,
that is linked to gut homeostasis and the prevention of tumor growth (26, 53).
Succinate, one of the intermediates in the tricarboxylic acid (TCA) cycle was enriched
in CRC samples and positively correlated with CRC-associated microbes. It is also
known to be produced by gut microbes such as B. fragilis, F. prausnitzii, Alistipes spp.,
Prevotellaceae, and others. Gut microbial dysbiosis can lead to the accumulation of suc-
cinate and intestinal inflammation (54). Both CRC- and control-associated gut microor-
ganisms showed a positive correlation with taurine. Meat-rich diets promote taurine
conjugation, which leads to increased taurocholic acid formation in the small intestine.
Later the deconjugation of taurocholic acid by diverse gut bacteria (in the large intes-
tine) generates cholic acids and taurine, which in turn are converted to carcinogenic
secondary bile acid, deoxycholic acid, and a cytotoxic compound, hydrogen sulfide,
respectively (55).

Interestingly amino acids valine, leucine, isoleucine, and phenylalanine showed enrich-
ment in CRC than controls, which has been previously observed in CRC (56, 57). Glutamate
was enriched in control samples compared to CRC samples, which contrasts with previous
studies (57) that showed various interactions with both CRC- and control-associated
microbes. Polyamine-cadaverine was enriched in CRC and positively associated with CRC-
associated microbes, consistent with a previous study (56). Polyamines are essential for nor-
mal cell growth, they are produced by the host, gut bacteria, and dietary origin, however,
dysregulation of polyamine metabolism is linked to colon cancer (58). Choline was
enriched in CRC which is consistent with a previous study by Thomas et al. (41) where they
showed an abundance of choline degradation genes (cutC and cutD) in the CRC gut micro-
biome. However, in our study, choline is positively correlated with control-associated
microbes. Overall, our study provided a reliable set of global microbial biomarkers for CRC
identification that can be used across different populations. Moreover, we reported the dif-
ferentiating metabolites and important gut microbe-metabolite interactions in CRC, which
may have the potential to influence host metabolism. This study would pave the way for
further investigations that could lead to the development of noninvasive diagnostic tools
and therapeutic interventions for CRC management.

MATERIALS ANDMETHODS
Fecal shotgun metagenomics sequencing datasets of CRC patients and healthy controls belonging

to three different geographical regions USA (24), China (7), and France (23) were downloaded from the
public database, the European Nucleotide Archive (ENA). The other two fecal shotgun datasets of CRC
and control samples from Austria (22) and Japan (38) were downloaded from ENA and DDBJ Sequence
Read Archive (DRA), respectively, for validation purposes. Details of the samples with accession numbers
of the datasets used in this study are provided in Table S1, Metadata for USA, China, France, and Austria
datasets were obtained as JSON-formatted files from EBI BioSamples and parsed using Perl/Python
scripts into tables with different meta fields that include sample ID, study ID, secondary ID, sequencing
type, country, age, BMI, and diagnosis. For the Japanese dataset, metadata was obtained from the origi-
nal publication (38). For metabolomic profiling of gut communities, the metabolomic profiles of the
Japan dataset were obtained from the original work by Yachda and group (38), and the list of 250 sam-
ples of the Japan dataset used in this analysis is in Data Set S4.
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Taxonomic profiling of metagenomic datasets. Metagenomic sequencing datasets obtained from
all five geographical regions were quality filtered using FastQC software and aligned against Coliphage
phi-X174 (PhiX) and GRCh38 human reference genomes to remove PhiX and human read contamina-
tions using BBduk and BBmap tools (59). After preprocessing, samples from all datasets were quantified
for taxonomic composition using MetaPhlAn2 (60) software. MetaPhlAn2 relies on unique clade-specific
markers identified from about 17,000 reference genomes from bacterial, archaeal, viral, and eukaryotic
microorganisms for microbial profiling and quantification. In this study, we used species-level taxonomic
profiles in all analysis methods. The taxonomic profiles of each dataset (each dataset represents a geo-
graphic region considered in this study) were filtered to remove species present at a relative abundance
value of , 0.1% across the samples to reduce potential false-positives (61). For the downstream analy-
ses, the species abundance of each dataset was mapped with related metadata using the Phyloseq pack-
age in R. Alpha and beta diversity indices of the gut microbiome for each dataset were estimated based
on the relative abundance profiles of species using the Vegan package in R and plotted using the
ggplot2 package in R.

Identification of microbes specific to CRC or healthy gut communities. Statistical, machine learn-
ing, and network-based methods were used in this study to identify CRC biomarkers. To describe briefly,
linear discriminant analysis (LDA) effect size (LEfSe) is a statistical method to identify key taxa that are
significantly different between CRC cases and controls. Species-level relative abundance data along with
sample details were analyzed separately for each dataset using LEfSe software (62). It uses nonparamet-
ric tests to identify significant features, performs subclass comparisons, and then LDA to estimate the
effect size of identified features. The differential taxa for each dataset were considered based on the
Effect size LDA score . 2 and FDR-adjusted P# 0.05, (ii) RF algorithm is the most used machine learning
method on microbiome data to identify differential microbial features (41). The random forest and caret
packages in R were used for the RF model building. Standardized relative abundance data (Z-score) of
microbial species in all samples and group information were used as input for RF analysis. RF classifiers
were built by training on each dataset separately with 10-fold cross-validation. RF features with a higher
mean decrease in the Gini index (top-ranked microbial species) from each dataset were considered dif-
ferential markers. The performance of each classifier was evaluated using 10-fold cross-validation and
AUC metrics, (iii) Co-occurrence networks for CRC cases and controls were inferred separately for each
dataset based on the correlation coefficients calculated using SparCC v 0.1 software (63) from the spe-
cies-level relative abundance data (normalized to 1 million counts) of corresponding datasets. SparCC
estimates the Pearson correlation between species from the log-ratio transformation values while
accounting for the compositionality of metagenomics data (64). The correlation coefficients were esti-
mated by the permutation-based approach in SparCC, and the Pseudo P values were calculated for the
bootstrapped correlation coefficients. Network plots were constructed considering significant co-occur-
rence correlations (FDR , 0.05) in Cytoscape 3.7.1 (65). Then, the highly connected dense regions in the
network were detected using the MCODE plugin. The CRC and control networks of each dataset were
synchronized using the DyNet plugin (66) and then identified the most rewired nodes across the two
network states. The highly rewired nodes between CRC and control networks (rewiring metric or Dn-
score $2.0 and an edge count$4) from each dataset were considered differential taxa for CRC.

Assessment of predicted biomarkers. Differential taxa from each method were tested among the
datasets using RF models with 10-fold cross-validations. The performance of each classifier was meas-
ured in terms of the AUC metric and selected biomarkers with high AUC scores. The random effect size
of each selected biomarker was calculated based on standardized mean differences using the Metafor
package (67) in R. Biomarkers with the highest random effect size associated with either CRC or control
groups were selected as CRC global biomarkers and further analyzed for metabolite interactions in CRC
gut communities.

Strain-level metagenomic profiling of CRC pathogens. The gene composition of individual strains
of CRC-associated microbe in CRC and healthy gut metagenomes from the USA, China, and France were
identified using PanPhlAn v 3.0 software (68). PanPhAn identifies the gene presence and absence within dif-
ferent strains of species in metagenomes based on the entire set of the species’ pangenomes. Differential
analysis of gene families was performed across the geographical regions using Fisher’s exact test (fisher.test()
in R). Then significant differential gene families were mapped to UniProt Knowledgebase (69) to understand
their functional roles in CRC.

Metabolomic profiling of gut communities. Metabolomic profiles of CRC and healthy gut metage-
nomes were predicted using MelonnPan v1.0.0 software (35). In brief, MelonnPan builds a model based
on paired metabolomic and metagenomics features of a community and uses that model to predict the
metabolite relative abundances for a given metagenomic community based on its set of features
derived from sequencing data. Paired microbial and metabolite relative abundance data of the Japanese
CRC dataset (250 samples listed in Data Set S4) were used to build a predictable model and predicted
the metabolite profiles of the USA, China, and France datasets based on species relative abundances.
Predicted metabolomic profiles were combined and analyzed using the edgeR and limma package in R
(70, 71), and the significant differential metabolites were analyzed for pathways using MetaboAnalyst
v5.0 (72). Correlations between differential metabolites and CRC microbial biomarkers were estimated
using the Spearman correlation method and results were plotted using ggplot2 and gplot packages in R.

Statistical analyses. Nonparametric Fisher’s exact test was used for the differential analysis of gene fam-
ilies. Microbe-microbe or microbes-metabolites correlations were estimated using Spearman’s correlation
coefficients. For statistical significance P , 0.05 and Benjamini-Hochberg corrected FDR values were consid-
ered appropriate. Standardized (Z score) data was used for metabolite analyses. The covariate effect on
species diversity was tested using a multivariate linear regression method. The batch effect on metabolite
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profiles was tested using edgeR and limma in R. All data analyses and visualizations were conducted in R v
4.0.0. and above (73).

Data availability. The original contributions presented in the study are included in the article/
Supplemental Material. Further inquiries can be directed to the corresponding author.
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