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Application of latent class analysis 
in diagnosis of graft-versus-host 
disease by serum markers after 
allogeneic haematopoietic stem 
cell transplantation
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Abbas Hajifathali3,4 & Farzaneh Tavakoli3

Graft-versus-host disease (GVHD) is one of the major causes of morbidity and mortality in 25–70% 
of patients. The gold standard (GS) test to confirm the diagnosis of GVHD has some limitations. The 
current study was conducted to evaluate the accuracy of three serum markers in diagnosing GVHD 
without a GS. 94 patients who were hospitalized for allogeneic transplantation were studied. Mean 
levels from day of haematopoietic stem cell transplantation (HSCT) to discharge of serum uric acid 
(UA), lactate dehydrogenase (LDH), and creatinine (Cr) were measured for all participants. We adapted 
a Bayesian latent class analysis to modelling the results of each marker and combination of markers. 
The Sensitivity, Specificity, and area under receiver operating characteristic curve (AUC) for LDH were 
as 51%, 81%, and 0.70, respectively. For UA, the Sensitivity, Specificity, and AUC were 54%, 75%, 
and 0.71, respectively. The estimated Sensitivity, Specificity, and AUC of Cr were 72%, 94%, and 0.86, 
respectively. Adjusting for covariates, the combined Sensitivity, Specificity, and AUC of the optimal 
marker combination were 76%, 83%, and 0.94, respectively. To conclude, our findings suggested that Cr 
had the strongest diagnosis power for GVHD. Moreover, the classification accuracy of the three-marker 
combination outperforms the other combinations.

Hematopoietic stem cell transplantation (HSCT), either autologous or allogeneic, is an intensive therapy for 
patients who suffer from refractory or relapsing neoplastic disease and non-neoplastic genetic disorders1,2. 
Global, the rate of allogeneic HSCT continues to increase such that about 50,000–60,000 transplantation was 
performed annually. HSCT is a very complex medical procedure that associated with different types of comorbid-
ities threatening the patient life3. During the last few decades, substantial progress has been made with regard to 
HSCT management due to the improved diagnostic procedures and novel therapies. In HSCT success is limited 
by two main factors: transplant-related morbidity or mortality (TRM) and disease relapse4. Graft-versus-host 
disease (GVHD) is the major cause of TRM which classified as either acute GVHD (aGVHD) or chronic GVHD 
(cGVHD)2. Clearly, GVHD is a common serious complication of HSCT in which immune cells from the donor 
attack recipient non-hematopoietic tissues, containing the gastrointestinal tract, liver, skin, and lungs5. Moreover, 
GVHD occurs in 30 to 50% of HLA-matched sibling transplants and up to 60 to 90% of mismatched transplants6. 
Accordingly, it is important to monitor the condition with timely diagnosis to avoid irreversible damage.

Biopsy as a gold standard (GS) test, is known for confirming the diagnosis of GVHD and should be used when 
there are competing differential diagnoses7. Nevertheless, challenges for biopsy includes the risk of hematoma 
and bleeding, difficulty to perform in some ulcerated areas, and its invasive nature8,9. Nowadays, the diagnosis 
of GVHD is usually based on clinical symptoms and signs while avoiding invasive tissue biopsies. Nonetheless, 
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signs and symptoms of GVHD vary among individuals over time which makes the diagnosis of GVHD extremely 
challenging10. In recent years, candidate biomarkers were investigated through hypothesis-driven approaches 
that have important role in clinical diagnosis and may aid with prediction, prognostication, and monitoring 
therapeutic responses of GVHD11. Of note, if a biomarker was specific for diagnosis, delays in obtaining biopsies 
interpretation could be avoided. Lactate dehydrogenase (LDH), uric acid (UA), and creatinine (Cr) have been 
evaluated as chemical factors in prior studies in the field of transplantation, although no specific agreement has 
been reached on their roles12,13. The present article found that the analysis of these serum markers is simple and 
inexpensive method so, they might be employed to accelerate GVHD diagnosis. Further, these markers might 
have a postulated role in the pathophysiology of GVHD14.

To evaluate the performance of a diagnostic test or a biomarker, getting valid estimates of its accuracy is nec-
essary. The accuracy means test’s ability to discriminate between patients who have the target condition and those 
who do not15. To analyze the accuracy of a single or set of diagnostic tests, the results of the tests in relation to the 
outcome of the GS (or reference standard) is examined. However, for many diseases a GS test does not exist or 
not applicable. In such circumstances, misclassification of the disease status and accordingly biased estimates of 
test performance and disease prevalence might be occur. To overcome the absence of a GS test, latent class models 
(LCMs) as a member of structural equation modeling (SEM) have been proposed to evaluate the accuracy of 
diagnostic tests. This modeling approach, involves treating the GS as an unobserved latent class and obtaining a 
model-based estimate of diagnostic accuracy, often with the intention of hierarchical modeling16. Of note, LCM 
can be utilized to combine the results of different tests into a diagnostic composite test to compare the accuracy 
of those tests when there is a lack of a GS17. Various authors claimed that LCMs can provide valid estimates of 
accuracy even without a GS test.

In our literature review, we found a few studies about the relationships between LDH, Cr, and UA levels and 
GVHD. Although valuable, these studies provide no information about assessing the diagnostic accuracy of the 
serum markers especially when a GS reference test information is not available. Thus, the outline of the rest of the 
present paper is twofold: (1) the Bayesian estimations of classification accuracy measures including Sensitivity, 
Specificity, and area under receiver operating characteristic curve (AUC) were obtained for each the diagnostic 
test; (2) We consider different combinations of the continuous tests outcomes to identify the optimal composite 
test for diagnosing of GVHD using Bayesian latent class models.

Results
Patient characteristics.  A total of 94 subjects, 49 (52.1%) females and 45 (47.9%) males were examined. 
The mean (SD) age of participants was 35.06 ±10.31 years old (range 14–57). Also, the individuals had a mean 
(SD) body mass index (BMI), a mean (SD) LDH, a mean (SD) UA, and a mean (SD) Cr of 25.28 ± 4.41 kg/m2, 
2.64 ± 0.14 U/L, 3.81 ± 0.87 mg/dL, and 0.90 ± 0.15 mg/dL, respectively. Likewise, the mean (SD) donor age of 
males and females was 34.23 ± 11.66 and 31.91 ± 9.23 years old, respectively.

Evaluating diagnostic accuracy for each serum marker.  Table 1 presents the estimates of diagnostic 
accuracy parameters for each marker based on optimal cut-off points. As seen in Table 1, the mean of Sensitivity, 
Specificity, and AUC were 51% (95% CrI [0.45–0.58]), 81% (95% CrI [0.77–0.89]), and 0.70 (95% CrI [0.65–
0.78]), respectively for LDH. Also, the Sensitivity, Specificity, and AUC for UA were estimates as 54% (95% CrI 
[0.50–0.58]), 75% (95% CrI [0.70–0.83]), and 0.71 (95% CrI [0.68–0.77]), respectively. Additionally, the estimated 
Sensitivity, Specificity, and AUC of Cr were 72% (95% CrI [0.68–0.80]), 94% (95% CrI [0.87–0.99]), and 0.86 
(95% CrI [0.81–0.90]), respectively. Further, the estimated Δs for LDH, UA, and Cr were 0.11, 0.16, and 0.23, 
respectively. Figure 1 shows the ROC curves for LDH, UA, and Cr to diagnosis of GVHD in the absence of a GS.

Evaluating diagnostic accuracy for combination of markers’ results.  Table 2 lists the Bayesian esti-
mates of diagnostic accuracy parameters for various combination of markers based on the optimal cut-off points. 

Biomarker cut-off
Accuracy 
parameters Mean SD Median 95% CrI

LDH 81.0

Sensitivity 0.51 0.12 0.51 (0.45–0.58)

Specificity 0.81 0.11 0.82 (0.77–0.89)

AUC 0.70 0.11 0.71 (0.65–0.78)

UA 74.0

Sensitivity 0.54 0.10 0.54 (0.50–0.58)

Specificity 0.75 0.12 0.76 (0.70–0.83)

AUC 0.71 0.10 0.72 (0.68–0.77)

Cr 49.0

Sensitivity 0.72 0.11 0.73 (0.68–0.80)

Specificity 0.94 0.11 0.93 (0.87–0.99)

AUC 0.86 0.10 0.85 (0.81–0.90)

Table 1.  Bayesian diagnostic accuracy parameter estimates for each biomarker. Notes: SD: standard deviation; 
CrI: credible interval; LDH: lactate dehydrogenase; UA: uric acid; Cr: creatinine; AUC: area under receiver 
operating characteristic curve.
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According to Table 2, in combination of LDH and Cr results, the estimates of combined Sensitivity (cSen), com-
bined Specificity (cSp), and cAUC were 57% (95% CrI [0.53–0.64]), 43% (95% CrI [0.39–0.52]), 0.55 (95% CrI 
[0.50–0.65]), respectively. Moreover, the cSen, cSp, and cAUC were estimated as 56% (95% CrI [0.51–0.60]), 41% 
(95% CrI [0.37–0.52]), and 0.54 (95% CrI [0.48–0.62]), respectively, for combination of LDH and UA values. In 
addition, the cSen, cSp, and cAUC for combination of UA and Cr, were estimated as 54% (95% CrI [0.50–0.65]), 
46% (95% CrI [0.41–0.53]), and 0.56 (95% CrI [0.51–0.65]), respectively. Meanwhile, in combination of LDH, 
Cr, and UA results, the estimates of cSen, cSp, and cAUC were 58% (95% CrI [0.53–0.65]), 49% (95% CrI [0.43–
0.52]), and 0.61 (95% CrI [0.57–0.68]), respectively. Table 3 reports the Bayesian estimates of diagnostic accuracy 
indices for each combination of the markers’ results adjusting for age, DP-gender, GVHD prophylaxis, and con-
ditioning regimen according to the optimal cut-off points. Based on Table 3, the cSen, cSp, and cAUC were esti-
mated as 61% (95% CrI [0.57–0.71]), 63% (95% CrI [0.59–0.72]), and 0.75 (95% CrI [0.68–0.79]), respectively, for 
combining LDH and Cr results. Likewise, the cSen, cSp, and cAUC for combination of LDH and UA values were 
62% (95% CrI [0.58–0.71]), 67% (95% CrI [0.62–0.71]), and 0.72 (95% CrI [0.67–0.78]), respectively. Further, in 

Figure 1.  ROC curves for each serum marker without a gold standard test.

Composite test cut-off
Accuracy 
Parameters Mean SD Median 95% CrI

LDH and Cr 31

cSensitivity 0.57 0.11 0.58 (0.53–0.64)

cSpecificity 0.43 0.12 0.46 (0.39–0.52)

cAUC 0.55 0.14 0.56 (0.50–0.65)

LDH and UA 11

cSensitivity 0.56 0.10 0.55 (0.51–0.60)

cSpecificity 0.41 0.14 0.43 (0.37–0.52)

cAUC 0.54 0.13 0.55 (0.48–0.62)

UA and Cr 10

cSensitivity 0.54 0.14 0.58 (0.50–0.65)

cSpecificity 0.46 0.11 0.47 (0.41–0.53)

cAUC 0.56 0.13 0.55 (0.51–0.65)

UA and Cr and 
LDH 32

cSensitivity 0.58 0.12 0.57 (0.53–0.65)

cSpecificity 0.49 0.10 0.48 (0.43–0.52)

cAUC 0.61 0.11 0.62 (0.57–0.68)

Table 2.  Bayesian diagnostic accuracy parameter estimates for various combinations of the biomarkers without 
covariate adjustment. The calculation of cut-off points for the markers’ combinations is as the same as one 
marker. In fact, by combining the markers’ results, only one composite test is obtained. Notes: SD: standard 
deviation; CrI: credible interval; LDH: lactate dehydrogenase; UA: uric acid; Cr: creatinine; cSensitivity: 
combined Sensitivity; cSpecificity: combined Specificity; cAUC: combined area under receiver operating 
characteristic curve.
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combination of Cr and UA results, the cSen, cSp, and cAUC were estimated as 60% (95% CrI [0.54–0.68]), 65% 
(95% CrI [0.60–0.74]), and 0.76 (95% CrI [0.71–0.84]), respectively. Finally, the estimated cSen, cSp, and cAUC of 
combination of all the three markers were 76% (95% CrI [0.71–0.80]), 83% (95% CrI [0.78–0.89]), and 0.94 (95% 
CrI [0.90–0.99]), respectively. Figure 2 displays the ROC curves for different combinations of the markers with 
and without covariate adjustment. According to optimal marker combination (i.e., combining LDH, Cr and UA 
values adjusting for the covariates), of 94 participants, about 43 (45.7%) subjects were assigned to GVHD group. 
Moreover, about 51 (54.3%) subjects of 94 participants were GVHD-free. Table 4 summarises the demographic 
characteristics of the study population across GVHD groups. As seen in Table 4, the GVHD group had signifi-
cantly higher levels of LDH and Cr than in those with no GVHD (2.68 ± 0.11 vs. 2.62 ± 0.14, p = 0.02; 0.95 ± 
0.16 vs. 0.87 ± 0.13, p = 0.02, respectively). In contrast, we found no significant differences in means UA, age, 

Composite test cut-off
Accuracy 
Parameters Mean SD Median 95% CrI

LDH and Cr 36

cSensitivity 0.61 0.14 0.63 (0.57–0.71)

cSpecificity 0.63 0.13 0.64 (0.59–0.72)

cAUC 0.75 0.11 0.73 (0.68–0.79)

LDH and UA 30

cSensitivity 0.62 0.12 0.64 (0.58–0.71)

cSpecificity 0.67 0.10 0.66 (0.62–0.71)

cAUC 0.72 0.11 0.73 (0.67–0.78)

UA and Cr 27

cSensitivity 0.60 0.14 0.62 (0.54–0.68)

cSpecificity 0.65 0.12 0.66 (0.60–0.74)

cAUC 0.76 0.12 0.77 (0.71–0.84)

UA and Cr and 
LDH 47

cSensitivity 0.76 0.10 0.75 (0.71–0.80)

cSpecificity 0.83 0.11 0.84 (0.78–0.89)

cAUC 0.94 0.10 0.94 (0.90–0.99)

Table 3.  Bayesian diagnostic accuracy parameter estimates for various combinations of the biomarkers with 
covariate adjustment. The calculation of cut-off points for the markers’ combinations is as the same as one 
marker. In fact, by combining the markers’ results, only one composite test is obtained. Notes: SD: standard 
deviation; CrI: credible interval; LDH: lactate dehydrogenase; UA: uric acid; Cr: creatinine; cSensitivity: 
combined Sensitivity; cSpecificity: combined Specificity; cAUC: combined area under receiver operating 
characteristic curve.

Figure 2.  cROC curves for various combinations of the serum markers with and without covariate adjustment 
in the absence of a gold standard test.

https://doi.org/10.1038/s41598-020-60524-2


5Scientific Reports |         (2020) 10:3633  | https://doi.org/10.1038/s41598-020-60524-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

and BMI between with and without GVHD groups (p = 0.40, p = 0.86, p = 0.92, respectively). In addition, no 
statistically significant relationship was found between categorical variables and GVHD (p > 0.05).

Discussion
According to the results of latent class models for each marker, Cr performed better than the other markers 
for classification, which achieved an AUC of 0.86 (Sensitivity = 72%, Specificity = 94%). More clearly, 72% of 
patients with GVHD could be correctly diagnosed by measuring serum Cr. Ruutu et al. reported that one of the 
laboratory signs of post-transplant-microangiopathy is high creatinine18. Some previous studies have provided 
evidence on the association between GVHD and angiopathy. Evaluation of two markers of angiopathy from the 
angiopoietin family has shown that their levels in patients with GVHD are different from those without GVHD19. 
Since evaluation of angiopathic markers, including vascular endothelial growth factor, requires specific kits, cre-
atinine may be used as an alternative factor.

Sometimes the clinicians are faced with the question of combining information from multiple diagnostic tests 
in an efficient manner. We investigated whether combining the values of UA, LDH, and Cr likely will provide a 
more accurate diagnosis of GVHD and discrimination of cases and controls. In the case of combination of the 
serum markers without covariate adjustment, none of the double combinations have a good classification perfor-
mance. In fact, the estimated cSensitivity, cSpecificity, and cAUC values were low and less than 0.60. Nevertheless, 
although cAUC of combining the three serum markers was sufficient, only 58% of patients with GVHD could 
be correctly detected. It means that addition of a third marker conferred no added benefit. Hence, we exam-
ined the effect of selected covariates including age, DP-gender, GVHD prophylaxis, and conditioning regimen 
on diagnostic power of linear marker combinations. Our findings indicated that the use of LDH, UA, and Cr 
combination was superior to 2-marker combinations in detection of GVHD. Indeed, this combination discrimi-
nates best between patient groups (GVHD and no-GVHD) due to the highest AUC value. On the other hand, the 

Characteristics GVHD (n = 43) Non- GVHD (n = 51) P value

LDH (U/L), mean (SD) 2.68 (0.11) 2.62 (0.14) 0.028*

UA (mg/dl), mean (SD) 3.91 (0.87) 3.76 (0.87) 0.401*

Cr (mg/dL), mean (SD) 0.95 (0.16) 0.88 (0.13) 0.020*

Age (years), mean (SD) 35.20 (9.86) 34.82 (11.19) 0.866*

Donor age (years), mean (SD) 35.32 (12.53) 31.77 (9.04) 0.177*

BMI (kg/m2), mean (SD) 25.22 (4.0) 25.31 (4.65) 0.927*

Gender, n (%) 0.459**

Male 18 (52.9) 27 (45.0)

Female 16 (47.1) 33 (55.0)

Smoking, n (%) 0.377**

Never 29 (85.3) 52 (88.1)

Past 5 (14.7) 5 (8.5)

Current 0 (0) 2 (3.4)

GVHD Prophylaxis, n (%) 0.214**

CSA+MTX 27 (79.4) 54 (90.0)

CSA+MTX+ATG 7 (20.6) 6 (10.0)

Conditioning regimen, n (%) 0.515**

Bu-Cy 19 (55.9) 34 (56.7)

Bu-Fu 9 (26.5) 20 (33.3)

Bu-Fu-ATG 6 (17.6) 6 (10.0)

Blood Group, n (%) 0.280**

A 11 (32.4) 15 (25.9)

B 11 (32.4) 11 (19.0)

AB 5 (8.7) 10 (17.2)

O 9 (26.5) 22 (37.9)

DP-Gender, n (%) 0.256**

M-M 5 (14.7) 14 (23.3)

M-F 13 (38.2) 19 (31.7)

F-F 3 (8.8) 12 (20.0)

F-M 13 (38.2) 15 (25.0)

Table 4.  Demographic and clinical characteristics of patients across the GVHD groups. The groups of GVHD 
(with and without) were based on the optimal composite test (i.e., combination of Cr, LDH, and UA adjusting 
for age, DP-gender, GVHD prophylaxis, and conditioning regimen). GVHD: graft-versus-host disease; SD: 
standard deviation; LDH: lactate dehydrogenase; UA: uric acid; Cr: creatinine; BMI: body mass index; CSA: 
cyclosporine A; MTX: Methotrexate; ATG: anti-thymocyte globulin; Bu: busulfan; Cy: cyclophosphamide; Fu: 
fludarabine; M: male; F: female; * T-test; **χ2.
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combining of the three markers’ results had the highest cSensitivity value such that 76% of patients with GVHD 
can be correctly detected. Furthermore, this combination with the highest cSpecificity can be correctly detected 
83% of subjects without GVHD. It is thus important to point out that the combination of the three markers as an 
optimal composite test can diagnose GVHD more accurately. In essence, this combination may provide important 
insights for GVHD diagnosis and treatment efficacy assessment after HSCT. UA is released after conditioning and 
radiochemotherapy and can exacerbate inflammation which is considered one of the initiators of GVHD20,21. On 
the other hand, because UA is a danger signal, it can induce inflammation by activating the innate and adaptive 
immunity22. Further, serum LDH level could be a general indicator of tissue damage. Though a few studies have 
reported on the association between serum levels of LDH and UA values with GVHD, they failed to report the 
diagnostic accuracy parameters estimates individually. For example, Song et al. studied the influence of LDH 
level on the incidence of aGVHD after allogeneic stem cell transplantation. They found that the LDH levels was 
associated with the incidence of aGVHD using cox regression analysis23. Furthermore, Yeh et al. identified that the 
serum level of uric acid is associated with the development of aGVHD24. Likewise, Ostendorf et al. have indicated 
that UA was a significant predictor of aGVHD by multivariate analysis12. In addition, Joo et al. suggested that 
HSCT may significantly associated with changes in the serum UA levels in patients with hematologic disorders25. 
Notably, no study has identified the diagnostic efficacy of combination of the serum markers for GVHD diagnose.

In the current article, in order to overcome the problem of estimating diagnostic accuracy parameters when 
the true disease status is unknown, we applied a Bayesian latent class model. Besides, because there is no sub-
stantial overlap between the diseased and non-diseased groups for each chemical factor regarding Δs, we can 
conclude that the model works well.

In this study, we investigated whether the addition of the selected covariates to marker combinations and dis-
ease status could impact the magnitude or diagnostic accuracy. Based on our results, we concluded that this can 
improve discriminatory ability between two groups of individuals, cases and controls. Previously, some literature 
addressed the effect of covariate adjustment on classification performance of marker combinations. Similar find-
ings were noted by them, where they found that combining the marker and covariate information can improve 
sensitivity, specificity, and AUC as well as improve the diagnostic performance26,27. More importantly, several fac-
tors have been introduced as GVHD risk factors of which the patients age is considered to have an influencing role 
in GVHD28. Further, according to the literature review, a number of studies have been demonstrated that gender 
disparity influence the GVHD incidence. For instance, Gahrton suggested that males receiving transplant from a 
female donor, are at greater risk of developing chronic GVHD and transplant related mortality than others29. Also, 
it is worth to note that the intensity of the conditioning regimen is highly effective in the incidence of GVHD30. 
Effect of conditioning regimen component on GVHD have been evaluated in numerous studies and it has been 
shown that adding some agents such as anti-thymocyte-globulin could reduce the risk of GVHD efficiently31.

Generally, recent studies have been focused on choosing a panel as GVHD markers and some have shown 
promising results32–34. However, some of these panels contain serum markers that require expensive commercial 
kits that are not routinely available in many countries. Therefore, we tried to suggest a panel that could be rou-
tinely measured. Since the incidence of GVHD depends on several factors, considering other conditions such 
as age and chemotherapy regimen can lead to more realistic results compared with evaluating only one marker 
regardless the underlying factors.

On the whole, the main methodological strength of this study is the use of latent class modelling technique. This 
helps to provide estimates of accuracy parameters for diagnostic tests incorporated in the model. Moreover, LCM is 
a flexible method which can incorporate different types of test outcomes. Importantly, using the Bayesian method 
for estimating the model parameters considering the small sample size was another advantage of the current paper. 
Nonetheless, further larger-scale studies are required in order to validate the candidate serum marker and optimal 
combination for routine application. It must be acknowledged that some limitations needed to address in the study. 
First, the primary limitation of this study was its cross-sectional design. This matter may cause that the causal infer-
ences cannot be made. Second, the generalization of the results may be affected by the relatively small sample size. 
Third, the estimation of out-of-sample performance for the diagnostic accuracy parameters was not possible in this 
study. Forth, although the serum markers investigated in our study have the advantage of easy measurement, they 
may not have the ideal specificity because different factors may change their levels. For instance, LDH level may 
alter in hemolysis or viral situation. In addition, UA level could be influenced by diet, kidney function and some 
medications. Finally, Cr level depends on glomerular filtration rate and body mass. The final limitation is that the 
optimal cut-off points for each marker and combination of them were based on the model parameters’ estimates 
and had no clinical meaning. Thus we recommend that the clinicians investigate this topic in future research.

To the best of our knowledge, this is the first study to apply the Bayesian LCM approach to evaluate the accu-
racy of LDH, Cr, and UA for detecting GVHD without a perfect reference standard test. Indeed, the current paper 
attempted to classify GVHD based on the serum markers’ values. We concluded that Cr had the strongest diagno-
sis power for identifying GVHD in recipients of HSCT compared with use of another individual tests. Likewise, 
adjusting for age, DP-gender, GVHD prophylaxis, and conditioning regimen, our results suggest that the combi-
nation of serum LDH, UA, and Cr values provided a certain extent accuracy for discrimination of GVHD which 
performance was better than that of any other single marker or combination markers in the absence of a GS 
reference test. In short, either Cr individually or Cr combined with LDH and UA may serve as the indicator of 
diagnosing GVHD with high level of accuracy after HSCT.

Materials and Methods
Data source and study population.  In present research, we used the allogeneic stem cell transplantation 
data which have been collected between August 2009 and March 2018. The medical information of 108 patients 
who underwent their first allogeneic stem cell transplantation during the post-transplant period was recorded at 
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hematopoietic stem cell research centre related to Taleghani hospital affiliated to Shahid Beheshti University of 
Medical Sciences in Tehran, Iran. Covariates data including age, donor age, body mass index (BMI), blood group, 
the status of donor/patient (DP)-gender, conditioning regimen, and GVHD prophylaxis were extracted from 
medical records. Written informed consent was obtained from all patients. In addition, since one of the patients’ 
age was under 18 years, informed consent was provided from parents for study participation. This study was 
approved by Shahid Beheshti University of Medical Sciences ethics committee. All methods of the current study 
were performed in accordance with the relevant guidelines and regulations.

Conditioning regimens.  Myeloablative conditioning regimen (MAC) consisted of busulfan (0.8 mg/
kg every 6 hours for 4 days, intravenously) followed by either cyclophosphamide (60 mg/kg/day for 2 days) or 
fludarabine (30 mg/m2 of body surface area once a day for 5 days). Regimen divided into three groups, including 
busulfan and cyclophosphamide, busulfan and fludarabine, anti-thymocyte globulin (ATG). For Hodgkin’s dis-
ease (HD) and non-Hodgkin’s lymphoma (NHL), reduced intensity conditioning (RIC) regimen comprised of 
fludarabine (30 mg/m2 of body surface area for 5 days, IV), Lomustine or CCNU (100 mg/m2 for 2 days, P.O) and 
melphalan (40 mg/m2 for 1 day, IV) was used35.

GVHD prophylaxis.  All patients received cyclosporine A (CSA) and methotrexate (MTX) for GVHD proph-
ylaxis. A daily dose of 3 mg/kg/day CSA was administrated IV from day −2 until +5 and 12.5 mg/kg/day P.O. 
until day +180. Methotrexate (MTX) was administrated from day +1 with dose of 10 mg/kg IV and in days +3, 
+6 and +11 with the dose of 6 mg/kg, IV in combination with CSA. Some patients also received 2.5 mg/kg of 
ATG for 2 days (−1 and −2).

Transplantation procedure.  The stem cell source for all patients was mobilized peripheral blood. 
Granulocyte-colony stimulating factor (G-CSF) was administered subcutaneously at dosage of 5–10 μg/kg/
day, for 4–5 consecutive days. The enumeration of donor peripheral blood CD34+ cell was performed by flow 
cytometry (Attune NxT, Invitrogen Life Technologies, Carlsbad, CA) on day 5 post G-CSF administration using 
PE-conjugated human anti-CD34 (PE-conjugated, EXBIO, Czech Republic) to determine the optimal day for 
apheresis. Plasma reduction for ABO minor-mismatched and red blood cell (RBC) depletion for major and 
bidirectional mismatched grafts were performed on the apheresis product. RBC depletion was performed using 
hydroxyl ethyl starch (HES) 6% (GRIFOLS, Spain). The number of CD34+ cells and CD3+ (FITC-conjugated, 
Beckman Coulter, Miami, FL) cells in apheresis product were counted and viability tests on all apheresis yields 
were performed using Trypan Blue viability dye (Biowest, France) before transplantation36,37.

Laboratory tests.  Peripheral blood samples were collected and UA levels in serum samples were evaluated 
using an ADVIA 1800 clinical chemistry analyser (Toshiba, Tochigi, Japan). Serum LDH and Cr level was meas-
ured on a Hitachi911 automatic analyser (Roche Diagnostics, Meylan, France). For all the three serum markers, 
mean levels from day 0 to discharge day was calculated. In fact, elevated the markers can be detected at mean 
levels during the time period after HSCT38.

Statistical analysis.  Before data analysis, we observed several extreme observations (outliers) for some var-
iables (e.g., LDH) which can affect the results and create great difficulty in analysis. Hence, to prevent distortion 
of results, they should be discarded. After discarding them, the sample size was reduced to 94. Also, we note that 
since the measured values of LDH were very large, its logarithm was employed in the analysis. The descriptive 
statistics of 94 subjects for the different variables, such as percentages, means, and standard deviations (SD) to 
describe the sample were utilized.

In the first step of data modelling, we performed latent class model on latent disease status and LDH, UA, 
and Cr measures to correctly classify subjects into meaningful subgroups. The Bayesian approach was applied to 
estimate the model parameters and subsequently Sensitivity, Specificity, and AUC. To obtain the Bayesian esti-
mated parameters, the Markov chain Monte Carlo (MCMC) techniques according to the posterior distribution 
was employed. Likewise, uninformative priors for all the parameters were utilized. Posterior inference was done 
by calculating mean, median, SD, and 95% credible interval (CrI) of all the parameters. For analysis, first, the 
presented model for each the chemical continuous factor by Choi et al.39 was considered.

Latent class model for each serum marker. Assume that there are n participants in the sample. Let Yi denotes 
the diagnostic results of the three tests (LDH, UA, and Cr) for ith patient. Let the binary variable Di denote the 
true condition for ith transplant patient, which is not observed (Di = 1 for disease present and Di = 0 for disease 
absent). Let πi denote the probability that the ith patient is diseased. The model can be written in the following 
hierarchical form:

π

μ σ μ σ

∼

| ∼ ⋅ | ⋅ | −
+ + − −

D Bernoulli

Y D p p
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where μD+ and μ −D  are the means, and σ +D
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2  are the variances for diseased (D+) and non-diseased (D−) pop-
ulations, respectively. Also, p1(·) is the N( , )D D

2μ σ+ +  probability density function (pdf) and p2(·) is the N( , )D D
2μ σ− −  

pdf. After obtaining the estimation of μ +D , σ μ+ −,D D
2 , and D

2σ −, the sensitivity, specificity, and AUC were calculated. 
The sensitivity and specificity of each diagnostic test in detecting GVHD for cut-off points values 
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It is of interest to note that, the cut-points c1 and c2 were calculated according to the formula presented by Choi et al. 
For choosing the optimal cut-off point c, the Youden index, which is the most popular one in practice, was utilized. 
This index is formulated as J = sensitivity + specificity − 1 that is equivalent to the maximum sum of sensitivity and 
specificity across all possible cut-off point values. Based on optimal cut-off point, the Sensitivity and Specificity were 
determined. Lastly, the AUC which is the probability that the value of the diagnostic test in a randomly chosen posi-
tive subject will be higher than the value of the marker in a randomly chosen negative subject can be calculated as: 

AUC D D

D D
2 2

= Φ





−







μ μ

σ σ

−

+

− +

+ −

 such that Φ is the cumulative distribution function of a standard normal for the test’s 

results. The receiver operating characteristic (ROC) curve based on single diagnostic test can be constructed by plot-
ting (1-specificity, sensitivity). Notably, to determining how close the distribution of YD

+ to the distribution of YD
−, 

the measure Δ was utilized. Clearly, if the overlap between the distribution of diseased and non-diseased groups 
become large, assigning the true disease status in the overlapping region will be difficult39. For each of the three mod-
els, one chain was run for 20,000 iterations with lag 25. The first 8,000 iterations were discarded. Convergence of the 
MCMC chains was evaluated using Geweke statistic and autocorrelation plots.

Latent class analysis for combining serum markers. Various combinations (pairwise and three) of multiple 
biomarker results into a single test were considered. First, the discriminant ability of the combinations without 
covariate adjustment was examined. Second, we evaluated the diagnostic accuracy of the combinations with 
controlling for some covariates. Initially, binary logistic and regression models was applied to explore significant 
covariates. Evidently, covariates which are associated with GVHD and considered biomarkers at significance level 
of 20% were incorporated in latent class models. Indeed, the significance level of 20%, rather than 5% was utilized 
in selecting covariates. Results (not shown) exhibited that age, DP-gender, GVHD prophylaxis, and conditioning 
regimen are significant covariates in either logistic or regression models. Consequently, the latent class model 
according to proposed model by Yu et al.40 is specified as:

~

~

π
μ

|
| Σ
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Y D D

x ( )
x , MVN( (x , ), ) (2)

i i i

i i i i i Di

where Yi = (Yi1, Yi2, …, Yik)′ denote the vector of k correlated diagnostic tests. The covariate vector is denoted by 
x. ∑D denote the covariance matrix of the test results. The μ x D( , )i i  for kth test value is defined as: 
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( ) ( ) ( ) ( )  is the row vector of regres-

sion coefficients. Of note, to model the covariate effects on the disease status, a logistic model was used as: 
α α α= + + +=

− =
log x xP D

P D i j ij
( 1)

1 ( 1) 0 1 1
i

i
, such that α0 is the baseline and α1, …, αj are unknown regression 

coefficients. After estimation of the parameters, the diagnostic accuracy measures based on linear combination of 
the tests (Ycombined = αY) for a given cut-off point value c for plotting combined ROC (cROC) can be estimated 
as :  = Φ
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μΔ = − μ(x) (x, 1) (x, 0) and = Σ + Σ Δ−a ( ) (x)0 1
1 . It is important to note that the calculation of cut-off points 

=∗ ∗c c c( 1, )2  for a composite test is as the same as a diagnostic test. For choosing optimal cut-off point, the 
Youden index which mentioned before, was used for the combinations. Afterward, the cSensitivity and cSpecific-
ity were selected. For the models, the convergence of the MCMC chains for all the LCMs (with and without 
covariate adjustment) was assessed using autocorrelation plots. Furthermore, the convergence was obtained by 
running one chain with 35,000 iterations with lag 45. The first 17,000 iterations were discarded.

The Bayesian latent class models were fitted by using OpenBUGS 3.2.141. The R package R2OpenBUGS42 
also applied as an interface between R 3.6.243 and OpenBUGS. After determining the GVHD groups based on 
optimal composite test, in order to evaluate the association between each of continuous variables and GVHD, an 
independent sample t-test was performed and chi-square test was applied for each categorical variable. All com-
parisons were two-tailed and p-value of less than 0.05 was taken as statistically significant. Descriptive analyses 
were performed using R version 3.6.2.

Data availability
The datasets analysed during the current study are not publicly available due to the reasonable risk that study 
participants may be identified. The datasets presented in this study may be available from the corresponding 
author on reasonable request.
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