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Background: Recently, RNA-binding proteins (RBPs) were reported to interact with
target mRNA to regulate gene posttranscriptional expression, and RBP-mediated RNA
modification can regulate the expression and function of proto-oncogenes and tumor
suppressor genes. We systematically analyzed the expression of RBPs in pancreatic
adenocarcinoma (PAAD) and constructed an RBP-associated prognostic risk model.

Methods: Gene expression data of normal pancreatic samples as well as PAAD
samples were downloaded from TCGA-PAAD and GTEx databases. Wilcoxon test
and univariate Cox analysis were, respectively, applied to screen differential expression
RBPs (DE-RBPs) and prognostic-associated RBPs (pRBPs). Functional enrichment was
analyzed by GO, KEGG, and GSEA. Protein–protein interaction (PPI) network was
constructed by STRING online database. Modeling RBPs were selected by multivariate
Cox analysis. Kaplan–Meier survival and Cox analysis were applied to evaluate the
effects of risk score on the overall survival of PAAD patients. ROC curves and validation
cohort were applied to verify the accuracy of the model. Nomogram was applied for
predicting 1-, 3-, and 5-year overall survival (OS) of PAAD patients. At last, modeling
RBPs were further analyzed to explore their differential expression, prognostic value, as
well as enrichment pathways in PAAD.

Results: RBPs (453) were differentially expressed in normal and tumor samples,
besides, 28 of which were prognostic associated. DE-RBPs (453) are functionally
associated with ribosome, ribonuclease, spliceosome, etc. Eight RBPs (PABPC1,
PRPF6, OAS1, RBM5, LSM12, IPO7, FXR1, and RBM6) were identified to construct
a prognostic risk model. Higher risk score not only predicted poor prognosis but also
was an independent poor prognostic indicator, which was verified by ROC curves and
validation cohort. Eight modeling RBPs were confirmed to be significantly differentially
expressed between normal and tumor samples from RNA and protein level. Besides, all
of eight RBPs were related with overall survival of PAAD patients.

Conclusions: We successfully constructed an RBP-associated prognostic risk model
in PAAD, which has a potential clinical application prospect.
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INTRODUCTION

Pancreatic adenocarcinoma (PAAD) is one of the malignant
tumors with the worst prognosis in the digestive system. On
the background of great advances in diagnosis and therapy
of PAAD, there are only 2–9% of PAAD patients surviving
for more than 5 years, indicating that PAAD is a highly
fatal disease with an insidious onset (McGuigan et al., 2018).
Existing medical technologies such as imaging examination,
tumor molecular biomarkers, and pathological examination are
currently quite limited and in low efficiency, which may be a
momentous reason for low early detection rate and high mortality
in PAAD. Therefore, exploring the pathogenesis of PAAD,
formulating effective methods of early screening and diagnosis,
and looking for new prognostic biomarkers and treatment targets
of PAAD are helpful to improve the therapeutic effect and
survival rate of PAAD.

RNA-binding proteins (RBPs) are defined as proteins that
contain known domains to directly interact with various types of
RNA. Of course, some proteins without structurally characterized
conformations to interact with RNA but residing within well
characterized ribonucleoproteins (RNPs–protein or proteins
complexed with RNA as an obligate binding partner) are also
defined as RBPs. With the development of techniques for
the identification of RBPs, 1,542 RBPs have been in a final
census up to date (Gerstberger et al., 2014). RBPs play a
vital role in regulating post-transcription of gene expression
by recognizing specific sequences or secondary structures to
form ribonucleoprotein (RNP) complexes to regulate a series of
RNA processes, including splicing, polyadenylation, maturation,
modification, transport, stability, localization, and translation
(Castello et al., 2012; Mitchell and Parker, 2014). RBPs is

a key regulator in maintaining cell physiological balance,
especially in stress response (such as hypoxia, DNA damage,
nutrition deficiency, or chemotherapy) and cell development
(Masuda and Kuwano, 2019). More studies have proved that
abnormal RBP expression is the genesis of diseases and is
associated with cancer occurring and development (Pereira
et al., 2017; Chatterji and Rustgi, 2018; Legrand et al., 2019;
Li et al., 2020). The role of RBP-promoters or suppressors are
various according to cancer types. For example, RBM38 was
considered to take part in the formation of T-cell lymphoma by
regulating mutants p53 and PTEN, but in non-small cell lung
cancer (NSCLC), renal carcinoma (RCC), and hepatocellular
carcinoma (HCC), RBM38 suppressed the progression of
carcinoma (Ding et al., 2014; Huang et al., 2017; Yang et al.,
2018; Zhang et al., 2018). PCBP1 was found in a lower
expression level in cervical, colorectal, lung, liver, and breast
cancer compared with corresponding normal tissues, which was
identified as a tumor suppressor (Pillai et al., 2003; Thakur
et al., 2003; Wang et al., 2010; Zhang et al., 2010; Guo and
Jia, 2018). Not only does RBPs itself influence occurrence and
progression of cancers, RBPs can also influence the expression
of other oncogenes and tumor suppressor genes through post-
translational modification, expression, or localization, which
regulates the growth of cancers (Lujan et al., 2018). At present,
there is no systematic study to analyze the relationship of RBP
expression with PAAD.

In this study, we first identified differently expressed and
prognosis-related RBPs in PAAD through high-throughput
bioinformatics analysis based on TCGA and GTEx database,
and ultimately, we constructed and verified the prognostic risk
model, which may become potential diagnostic and prognostic
biomarkers. The complete workflow is summarized in Figure 1.

FIGURE 1 | The flowchart of analysis of RNA-binding proteins (RBPs) in pancreatic adenocarcinoma (PAAD).
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MATERIALS AND METHODS

Data Download and Processing
Gene expression data of normal pancreatic samples and PAAD
samples were downloaded from GTEx databases1 and TCGA-
PAAD2. Data type was HTseq-FPKM, and gene expression level
in both two databases was further processed by log2 (FPKM+1).
It should be noted that GTEx database collected more than 7,000
normal samples from 449 healthy humans, and gene expression
data were treated by the same sequencing platform with TCGA
database for minimizing potential batch effects. Previous studies
have proved that the gene expression data of TCGA and GTEx
can be analyzed and integrated successfully (Kosti et al., 2016;
Aran et al., 2017; Raphael et al., 2017; Zeng et al., 2019; Venkat
et al., 2020). Based on this, we integrated gene expression data
from TCGA-PAAD and GTEx including 178 tumor samples and
171 normal samples (4 from TCGA-PAAD and 167 from GTEx).
Clinical information was all downloaded from TCGA-PAAD, and
patients losing to follow-up or follow-up of less than 90 days were
removed. Ultimately, 173 PAAD samples, summarized in Table 1,
were brought into survival analysis. The list of 1,542 RBPs in
a final census up to date was downloaded from one previous
study of Gerstberger et al. (2014).

Variance Analysis
Differential expression-RBPs (DE-RBPs) in normal and PAAD
samples were selected by Wilcoxon test with the screening
requirement of false discovery rate (FDR) < 0.01 and | Log2FC|
> 1 (Zhang et al., 2016; Han et al., 2018; Ouyang et al., 2019). In
variance analysis, if one gene appears for more than one time, the
mean value was calculated and applied for further analysis, which
is by means of the “Limma” package (Li et al., 2020).

Functional Enrichment Analysis and
Protein–Protein Interaction Network
The GO and KEGG functional enrichment of DE-RBPs
were analyzed with the requirement of p-value < 0.05 and
q-value < 0.05 (Yang et al., 2019). Functional enrichment
analysis of these 453 DE-RBPs was further analyzed by gene set
enrichment analysis (GSEA). GSEA is a computational method,
which determines whether an a priori defined set of genes shows
significant differences between two groups (normal pancreatic
group and PAAD group) statistically. One thousand genome
permutations were performed per analysis (Subramanian et al.,
2005; Wu and Zhang, 2018). | Normalized enrichment score| (|
NES|) > 1 and norminal p-value (NOM p-value) < 0.05 were
considered significant. Functional protein–protein interaction
(PPI) network of DE-RBPs was analyzed by STRING online
database3 (Szklarczyk et al., 2019) and was visualized by cytoscape
3.7.1 (Zhang et al., 2016). The important precondition was set as
interaction score ≥ 0.4 and hiding disconnected nodes. Critical
sub-networks were separated out to construct sub-networks by

1https://xenabrowser.net/datapages/
2https://portal.gdc.cancer.gov/
3http://www.string-db.org/

TABLE 1 | Clinical characteristics of pancreatic adenocarcinoma (PAAD)
patients from TCGA.

Clinical characteristics Total (173) %

Age at diagnosis (y) <65 88 50.87

≥65 85 49.13

Gender Female 79 45.66

Male 94 54.34

Fustat Live 78 45.09

Death 95 54.91

Grade G1 29 16.76

G2 93 53.76

G3 46 26.59

G4 2 1.16

Gx 3 1.73

Clinical stage Stage I 19 10.98

Stage II 142 82.08

Stage III 4 2.31

Stage IV 5 2.89

Unknown 3 1.73

T stage T1 7 4.05

T2 21 12.14

T3 139 80.35

T4 4 2.31

Tx 2 1.16

Distant metastasis Negative 79 45.66

Positive 5 2.89

Mx 89 51.45

Lymph nodes Negative 48 27.75

Positive 120 69.36

Nx 5 2.89

MCODE (molecular complex detection) plug-in of the cytoscape
3.7.1 software (Bader and Hogue, 2003). Node count number and
MCODE score were both more than 15.

Construction of Prognostic Risk Model
in PAAD
Prognosis-related RBPs (pRBPs) were selected by univariate
Cox analysis with the screening criteria of p ≤ 0.001, which
was visualized with “forestplot” software package in R software
(Li et al., 2020). pRBP constructing prognostic risk model
in PAAD were further analyzed and selected by multivariate
Cox analysis. Risk score was calculated by the formulation
Risk Score =

∑n
1 coef× Expn, where coef is the coefficient value

of one pRBP constructed model, Exp is the expression level
of the corresponding gene, and n is the number of modeling
pRBPs. Here, patients from TCGA-PAAD were classified into two
cohorts randomly and equally. One cohort was the modeling,
and the other was the testing. Based on the median risk scores
of two cohorts, PAAD patients were split into two subgroups,
respectively: the high-risk score subgroups and the low-risk score
subgroups. Kaplan–Meier (KM) survival curves were used to
describe the overall survival difference between two subgroups
by the “survminer” package, and ROC (receiver operating
characteristic) curves were used to evaluate the accuracy of the
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model with AUC values (area under curve) by “survivalROC”
package (Heagerty et al., 2000). Cox regression analysis was
further applied to analyze the relationship of risk score prognosis
of PAAD patients. Finally, the “rms” package was used to draw a
nomogram for predicting 1-, 3-, and 5-year OS of PAAD patients
in modeling cohort (Kim et al., 2018; Liu et al., 2020).

Differential Expression, Prognostic
Analysis, and Gene Set Enrichment
Analysis of 8 Modeling RBPs
Wilcox regression was applied to analyze the expression of
modeling RBPs in normal samples and PAAD samples (Zhang
et al., 2016; Han et al., 2018; Ouyang et al., 2019). A P-value < 0.05
was considered significant. The differential expression of eight
modeling RBPs in normal and tumor cases was then verified by
the Human Protein Atlas (HPA) online database4 from protein
level in forms of immunohistochemical staining images (Thul
et al., 2017). Kaplan–Meier survival curves were applied to
analyze prognostic values of modeling RBPs. A P-value < 0.05
was considered significant. We further analyzed the function
and potential molecular mechanism of eight modeling RBPs
by GSEA. GSEA was conducted as abovementioned and in a
previous study (Zhang et al., 2020).

Statistical Analysis
All statistical analyses in this study were performed by the R
(V.4.0.2) software.

4https://www.proteinatlas.org/

RESULTS

Patient Characteristics
As summarized in Table 1, basic information of 173 PAAD
patients downloaded from TCGA database on June 11, 2020
were used for analysis. Patients older than 65 and younger
than 65 accounted for half approximately, respectively, and
male patients were approximately 8.68% more than female
patients. Until the date we downloaded information, 54.91%
PAAD patients have died. Of the 173 PAAD patients, the
pathologic stage mainly focused on the G2 stage (n = 93,
53.76%) and G3 stage (n = 46, 26.59%); the clinical stage
mainly concentrated on stage II (n = 142, 82.08%). Stages I,
III, and IV patients accounted for 10.98% (n = 19), 2.31%
(n = 4), and 2.89% (n = 5), respectively. Patients with
T3 stage accounted for the majority (n = 139, 80.35%).
Tx, T1, T2, and T4 patients accounted for 1.16% (n = 2),
4.05% (n = 7), 12.14% (n = 21), and 2.31% (n = 4),
respectively. Patients with positive lymph node metastasis
and distant metastasis accounted for 69.36% (n = 120)
and 2.89% (n = 5), respectively, which further proved that
insidious onset of PAAD resulted in advanced stage and poor
prognosis when diagnosed.

Variance Analysis
The expression variance of 1,542 RBPs between 171
normal samples and 178 PAAD samples is shown in
Figure 2. RBPs (453) were differentially expressed in
normal and tumor samples (FDR < 0.01 and | log2FC|
> 1). Compared with normal samples, 224 DE-RBPs

FIGURE 2 | Pie chart (A), heatmap (B), and volcano map (C) of RBPs in PAAD. (A) Gray, brown, and blue pieces represented number and percentage of up-,
down- and no significant difference RBPs. (B) X- and Y-axes represented samples and RBPs, respectively. Higher, lower, and medium expression of RBPs is shown,
respectively, in red, green, and black. Blue and pink bars on top of the heat map indicate normal pancreatic samples and PAAD samples, respectively.
(C) Downregulated, upregulated, and no significant difference RBPs in PAAD are shown in green, red, and black dots, respectively. False discovery rate (FDR) < 0.01
and | log2FC| > 1 was considered statistically significant.
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TABLE 2A | GO and KEGG functional enrichment analysis of differential expression –RBPs (DE-RBPs) in PAAD.

Classification ID Description p-value q-value Count

GO-BP GO:0008380 RNA splicing 1.02E-71 2.12E-68 102

GO:0006401 RNA catabolic process 6.83E-60 7.09E-57 86

GO:0000377 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 1.15E-54 5.99E-52 80

GO:0000398 mRNA splicing, via spliceosome 1.15E-54 5.99E-52 80

GO:0000375 RNA splicing, via transesterification reactions 2.21E—54 9.18E-52 80

GO:0006402 mRNA catabolic process 1.69E-51 5.84E-49 76

GO:0034660 ncRNA metabolic process 9.76E-46 2.90E-43 79

GO:0006417 Regulation of translation 2.85E-43 7.41E-41 73

GO:0022613 Ribonucleoprotein complex biogenesis 3.41E-42 7.87E-40 75

GO:1903311 Regulation of mRNA metabolic process 1.06E-41 2.21E-39 64

GO-CC GO:0005840 Ribosome 5.46E-44 1.03E-41 61

GO:0035770 Ribonucleoprotein granule 2.64E-43 2.49E-41 56

GO:0044391 Ribosomal subunit 2.45E-42 1.54E-40 52

GO:0036464 Cytoplasmic ribonucleoprotein granule 4.00E-42 1.88E-40 54

GO:0005681 Spliceosomal complex 3.68E-39 1.39E-37 49

GO:0015934 Large ribosomal subunit 1.13E-29 3.56E-28 35

GO:0022626 Cytosolic ribosome 9.46E-26 2.55E-24 31

GO:0010494 Cytoplasmic stress granule 2.01E-23 4.74E-22 24

GO:0005684 U2-type spliceosomal complex 2.57E-22 5.38E-21 26

GO:0000313 Organellar ribosome 1.93E-21 3.30E-20 25

GO-MF GO:0140098 Catalytic activity, acting on RNA 2.03E-48 5.46E-46 78

GO:0045182 Translation regulator activity 6.48E-35 8.70E-33 43

GO:0003730 mRNA 3′-UTR binding 1.19E-32 1.07E-30 35

GO:0004540 Ribonuclease activity 5.49E-30 3.68E-28 36

GO:0003735 Structural constituent of ribosome 8.86E-28 4.75E-26 43

GO:0090079 Translation regulator activity, nucleic acid binding 6.70E-27 3.00E-25 33

GO:0004518 Nuclease activity 2.24E-23 8.60E-22 39

GO:0008135 Translation factor activity, RNA binding 1.44E-21 4.31E-20 26

GO:0043021 Ribonucleoprotein complex binding 1.44E-21 4.31E-20 31

GO:0003727 Single-stranded RNA binding 2.10E-21 5.63E-20 27

KEGG hsa03013 RNA transport 2.83E-28 2.59E-26 41

hsa03010 Ribosome 4.98E-23 1.63E-21 34

hsa03015 mRNA surveillance pathway 5.33E-23 1.63E-21 28

hsa03040 Spliceosome 2.47E-17 5.64E-16 28

hsa03008 Ribosome biogenesis in eukaryotes 1.59E-16 2.91E-15 24

hsa03018 RNA degradation 3.30E-14 5.04E-13 19

hsa05164 Influenza A 2.11E-05 2.77E-04 15

hsa00970 Aminoacyl-tRNA biosynthesis 2.11E-04 2.42E-03 8

BP, biological process; CC, cellular component; MF, molecular function. p-value < 0.05 and q-value < 0.05 was considered statistically significant.

were upregulated and 229 DE-RBPs were downregulated
in PAAD samples.

Functional Enrichment Analysis
To research the function and molecular mechanisms of
453 DE-RBPs, we subsequently implemented GO functional,
KEGG pathway enrichment analysis, and GSEA. GO functional
enrichment analysis was classified by three categories: BP—
biological process, CC—cellular component, and MF—molecular
function. As shown in Table 2A and Figure 3, the top
10 components of BP were RNA splicing, RNA catabolic
process, etc. The top 10 components of CC were ribosome,
ribonucleoprotein granule, etc. The top 10 components of MF
were catalytic activity acting on RNA, translation regulator

activity, etc. According to the NES of GSEA, the function
of DE-RBPs in PAAD were enriched in the protein DNA
complex, abnormality of the thorax, and limitation of joint
mobility; the function of DE-RBPs in normal pancreatic group
were enriched in cytoplasmic translation, peptide metabolic
process, peptide biosynthetic process, etc. (Supplementary
Figure 1, Table 2B and Figure 3). The KEGG pathway
enrichment analysis showed that DE-RBPs in PAAD were
enriched in RNA transport and ribosome mainly. None enriched
pathways were found by GSEA. Therefore, RBPs may mediate
various regulatory processes of post-transcription, such as
RNA splicing and polyadenylation, which then affect the
occurrence and progression of malignant tumors and other
biological functions.
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FIGURE 3 | GO, KEGG, and gene set enrichment analysis (GSEA), enrichment analysis of differential expression-RBPs (DE-RBPs) in PAAD. Panels (A,B) are barplot
and bubble plot, respectively, of GO functional enrichment analysis; BP, biological process; CC, cellular component; MF, molecular function. Panels (B,D) are barplot
and bubble plot, respectively, of KEGG pathway enrichment analysis. P-value < 0.05 and q-value < 0.05 are considered statistically significant. (E) GSEA analysis
for DE-RBPs. P-value < 0.05 and normalized enrichment score | NES| > 1 were considered statistically significant.

Protein–Protein Interaction Network and
Critical Sub-Network Construction
All DE-RBPs except disconnected nodes were imported in the
STRING database to construct the PPI network including 422 PPI
nodes and 5,840 edges, which were then visualized with cytoscape
in Figure 4A. Then, critical sub-networks were separated out to
construct sub-networks by MCODE as shown in Figure 4B.

Prognostic Risk Model in Pancreatic
Adenocarcinoma
Twenty eight prognosis-related RBPs (pRBPs) were selected by
univariate Cox regression (Figure 5A). It should be noted that
patients in TCGA were classified into two cohorts randomly

and equally, one cohort for modeling and the other for
validating. Multivariate Cox regression was further applied
to select pRBPs to construct a prognostic risk model in
modeling cohort. These eight pRBPs are shown in Table 3
and Figure 5B. Of the eight pRBPs, three pRBPs (PABPC1,
PRPF6, and RBM5) were low risk and five pRBPs (OAS1,
LSM12, IPO7, FXR1, and RBM6) were high risk. According to
coefficient values of modeling pRBPs and corresponding pRBP
expression value, risk scores of PAAD patients in modeling
cohort and validation cohort were calculated. The formulation
was: risk score = (−1.2467 × ExpPABPC1) + (−1.4246 ×
ExpPRPF6) + (0.4943 × ExpOAS1) + (−1.9552 × ExpRBM5)
+ (1.4727 × ExpLSM12) + (1.3216 × ExpIPO7) + (3.0145
× ExpFXR1) + (1.6201 × ExpRBM6). Kaplan–Meier survival
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TABLE 2B | Functional enrichment analysis of DE-RBPs in PAAD by gene set enrichment analysis (GSEA).

Name ES NES P-value

GSEA GO protein DNA complex 0.88 1.48 0.00

HP abnormality of the thorax 0.70 1.41 0.03

HP limitation of joint mobility 0.82 1.35 0.03

GO cytoplasmic translation −0.51 −1.62 0.01

GO peptide metabolic process −0.33 −1.56 0.01

GO peptide biosynthetic process −0.33 −1.56 0.01

GO cellular amide metabolic process −0.33 −1.56 0.01

GO amide biosynthetic process −0.33 −1.56 0.01

GO organonitrogen compound biosynthetic process −0.32 −1.55 0.00

GO translational initiation −0.38 −1.55 0.01

GO gland development −0.75 −1.54 0.01

GO intracellular transport −0.35 −1.52 0.01

HP abnormal nervous system electrophysiology −0.60 −1.52 0.03

GO intracellular protein transport −0.35 −1.48 0.02

textit| NES| > 1, and p-value < 0.05 was considered significant.

FIGURE 4 | Protein–protein interaction (PPI) network analysis (A) and critical sub-network analysis (B). Lilac ovals, downregulated RBPs; pink ovals, upregulated
RBPs.

curves indicated that higher risk score was especially relevant
to poor prognosis (p = 1.196e-06); the validation cohort got the
same conclusion (p = 3.747e-03) (Figures 6A,B). ROC curves

verified favorable accuracy (AUC value was 0.728 and 0.727,
respectively) (Figures 6C,D). Risk curves further confirmed
that the higher the risk score, the lower the survival rate,
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FIGURE 5 | Forest maps of prognosis-related RBPs (pRBPs) in PAAD by univariate (A) and multivariate (B) Cox regression analysis. Green boxes, lower risk RBPs
with hazard ratio (HR) < 1; red boxes, higher risk RBPs with HR > 1.

TABLE 3 | RNA-binding proteins (RBPs) selected to construct prognostic risk model by multivariate Cox regression analysis in modeling cohort.

RBPs Coef HR 95% CI p-value

PABPC1 −1.2467 0.2874 0.0952–0.8683 0.0271

PRPF6 −1.4246 0.2406 0.0646–0.8957 0.0337

OAS1 0.4943 1.6393 1.0260–2.6192 0.0387

RBM5 −1.9552 0.1415 0.0180–1.1142 0.0633

LSM12 1.4727 4.3609 0.8456–22.4889 0.0785

IPO7 1.3216 3.7493 0.9315–15.0916 0.0629

FXR1 3.0145 20.3788 3.8333–108.3398 0.0004

RBM6 1.6201 5.0533 0.8561–29.8298 0.0737

Coef, coefficient value; HR, hazard ratio; CI, confidence interval.

and the worse prognosis (Figure 7). Then we analyzed the
effect of risk score on the prognosis of PAAD by univariate
and multivariate Cox regression. As shown in Table 4 and
Figure 8, high risk score is an independent worse prognostic
indicator for PAAD patients either in the modeling cohort or
in the validation cohort. We then established a nomogram
by assigning to quantize clinical factors of PAAD patients
such as age, gender, grader, stage, tumor size, lymph gland
involvement, and risk score (Figure 9). Based on multivariate
Cox regression analysis and the influence of various clinical
characteristics on the prognosis, each value level of each factor
was scored. By adding up each score, the total score was obtained,
and the total score can evaluate 1-, 3-, and 5-year survival

rate, which might assist clinicians in making clinical decisions
for PAAD patients.

Expression, Survival Value and Gene Set
Enrichment Analysis of 8 Modeling
RNA-Binding Proteins
We further analyzed the expression differences of eight modeling
RBPs between normal and cancer cases from RNA and protein
expression level. The results are shown in Figure 10. Of
the eight modeling RBPs, half were upregulated including
PABPC1, PRPF6, OAS1, IPO7, and half were downregulated
including RBM5, RBM6, LSM12, and FXR7 in cancer cases.
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FIGURE 6 | (A,B) Kaplan–Meier survival curves. Low-risk score subgroup and high-risk score subgroup are highlighted by blue curve and red curve, respectively.
The cutoff value of risk score is determined by its median value. Panels (A,B) are modeling cohort (p = 1.196e-06) and validation cohort (p = 3.747e-03),
respectively. (C,D) Receiver operating characteristic (ROC) curves. X- and Y-axes represent false-positive rate and true-positive rate, respectively. Area under curve
(AUC) value of modeling cohort and validation cohort are 0.728 and 0.727, respectively.

Results of immunohistochemical staining are in accordance
with RNA expression level. KM survival curves are shown in
Figure 10. All of the 8 modeling RBPs were associated with
overall survival in PAAD. Higher expression levels of PABPC1,
OAS1, LSM12, IPO7, and FXR1 predicted poor prognosis,
and adversely, higher expression levels of PRPF6, RBM5, and
RBM6 predicted favorable prognosis. To gain insight into the
molecular mechanisms in which these RBPS may be involved,
we performed GSEA for these modeling RBPs (Figure 11 and
Supplementary Table 1). In Supplementary Table 1, we listed
all significant pathways and separated the top 5 in sheet 2.
According to NES of GSEA, signaling pathways that were
enriched in highly expressed phenotypes in PABPC were thyroid
cancer, adherens junction, dorso ventral axis formation, small cell
lung cancer, and basal transcription factors; signaling pathways
that were enriched in highly expressed phenotypes in PRPF6
were ribosome, spliceosome, nucleotide excision repair, RNA
polymerase, Huntington’s disease, etc.; signaling pathways that
were enriched in low expressed phenotypes in PRPF6 were
cytokine–cytokine receptor interaction, cell adhesion molecule
cams, leishmania infection, Toll-like receptor signaling pathway,
FC gamma R-mediated phagocytosis, etc.; signaling pathways
that were enriched in highly expressed phenotypes in OAS1
were rig I-like receptor signaling pathway, base excision repair,
proteasome, and cytosolic DNA-sensing pathway; signaling
pathways that were enriched in low expressed phenotypes in
RBM5 were amino sugar, and nucleotide sugar metabolism,

mismatch repair, pyrimidine metabolism, proteasome, N-glycan
biosynthesis, etc.; signaling pathways that were enriched in low
expressed phenotypes in RBM6 were sphingolipid metabolism,
citrate cycle (TCA cycle), O-glycan biosynthesis, amino sugar
and nucleotide sugar metabolism, N-glycan biosynthesis, etc.;
signaling pathways that were enriched in highly expressed
phenotypes in LSM12 were cell cycle, mismatch repair,
nucleotide excision repair, one carbon pool by folate, basal
transcription factors, etc.; signaling pathways that were enriched
in highly expressed phenotypes in IPO7 were dorso-ventral
axis formation, adherence junction, endometrial cancer, ERBB
signaling pathway, prostate cancer, etc.; signaling pathways that
were enriched in highly expressed phenotypes in FXR1 were
ubiquitin-mediated proteolysis, basal transcription factors, small
cell lung cancer, renal cell carcinoma, glioma, etc.; signaling
pathways that were enriched in low expressed phenotypes
in FXR1 were linoleic acid metabolism, arachidonic acid
metabolism, alpha linolenic acid metabolism, retinol metabolism,
Parkinson’s disease, etc.

DISCUSSION

Pancreatic adenocarcinoma is the most malignant digestive tract
tumor with a 5-year survival rate of less than 10% (McGuigan
et al., 2018). In the background of rapid development of diagnosis
and treatment for malignant tumors, the worse status of early
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FIGURE 7 | Risk curves in modeling and validation cohort. X- axes of the six figures all represent PAAD samples, arranged in order of increasing risk score. (A,D)
Dot plot of risk score. Y-axis represents risk score. Red and green color dots represent, respectively, high- and low-risk score samples. (B,E) Dot plot of survival.
Y-axis represents survival times (years). Red and green color dots represent, respectively, dead and living PAAD samples. (C,F) Heat map. Y-axis represents eight
modeling RBPs. Higher, medium, and lower expression levels of RBPs are shown in red, black, and green, respectively. Blue and pink bars on top of the heat map
indicate low- and high-risk score samples, respectively.

diagnosis and treatment of PAAD has not been greatly improved.
Recently, several studies have revealed that parts of RBPs
significantly influence the progression of PAAD. For example,
MSL1 and MSL2 were drivers of PAAD, which were proved to
promote the transition of pancreatic intraepithelial neoplasias to
PAAD and to increase the aggression of PAAD (Fox et al., 2016;
Kudinov et al., 2017). Considering the significance of RBPs in
PAAD, in this study, we systematically explored RBP expression
in PAAD in order to provide potential biomarkers for diagnosis
and treatment of PAAD.

First, we screened DE-RBPs and pRBPs in PAAD. RBPs
(453) are expressed differentially between normal and PAAD
samples, 28 of which are prognosis related. Of the 453 DE-
RBPs, most of them are functionally associated with ribosome,
ribonuclease, and spliceosome. Ribonucleases (RNases) are
a group of hydrolytic enzymes to catalyze RNA molecule
degradation, which are classified by two types: endoribonucleases

and exoribonucleases (Shlyakhovenko, 2016). Biologically,
RNases take part in many physiological activity such as
RNA metabolism, remobilization of phosphate, defensin-like
activity, and senescence (Fang et al., 2012; Tatsuta et al., 2014).
Researchers were attracted by the cytotoxic effects (inducing
apoptosis) of RNases, which can be applied in anticancer activity.
One study indicated that defection of RNases inhibited the
apoptosis of prostate cancer cells (Malathi et al., 2004). The
loss of RNase T2 stimulated ovarian tumorigenesis (Acquati
et al., 2013). Ribosome is one of the important organelles
of protein synthesis. Studies have shown that in order to
satisfy the tumor cells’ continuous growing, it is necessary
to increase ribosome biogenesis to maintain high protein
synthesis efficiency. Therefore, abnormal ribosome biogenesis
may result in the occurrence of carcinoma (Pelletier et al., 2018).
Specific ribosomal proteins were found to be upregulated in a
variety of tumors. For example, the expression of RPL5, RPS3,
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TABLE 4 | Effects of clinical factors and risk score on prognosis of PAAD patients analyzed by univariate and multivariate Cox analysis.

Clinical factors Univariate Cox Multivariate Cox

HR 95% CI P-value HR 95% CI P-value

Modeling cohort Age 1.4147 0.7532–2.6574 0.2807 2.0586 1.0091–4.1999 0.0472

Gender 0.7157 0.3812–1.3440 0.2982 0.4671 0.2168–1.0064 0.0519

Grade 1.2443 0.7385–2.0965 0.4116 1.4324 0.8168–2.5120 0.2099

Stage 0.7860 0.3522–1.7544 0.5567 0.6072 0.1880–1.9618 0.4044

T 1.2105 0.4707–3.1128 0.6919 1.0465 0.3040–3.6033 0.9425

N 1.7419 0.8861–3.4241 0.1075 1.4781 0.7249–3.0139 1.0547–1.1403 0.2825

Risk Score 1.0789 1.0424–1.1167 0.0000 1.0967 0.0000

Validation cohort Age 1.2958 0.7067–2.3759 0.4021 1.2531 0.6333–2.4796 0.5170

Gender 0.7898 0.4361–1.4301 0.4359 0.7325 0.3943–1.3607 0.3245

Grade 1.6263 1.0562–2.5041 0.0272 1.4897 0.9193–2.4140 0.1056

Stage 3.3088 1.2432–8.8068 0.0166 2.2772 0.4170–12.4372 0.3421

T 2.6153 1.0112–6.7644 0.0474 1.0182 0.2743–3.7796 0.9784

N 2.9102 1.1341–7.4682 0.0263 1.3213 0.3728–4.6832 0.6661

Risk Score 1.0491 1.0197–1.0793 0.0010 1.0529 1.0210–1.0857 0.0010

HR, hazard ratio; CI, confidence interval; P < 0.05 was statistically significant, and P-value less than 0.05 in the table are shown in red bold.

FIGURE 8 | Forest map of the relationship of risk score and clinical characteristics with prognosis in PAAD by univariate (A,C) and multivariate (B,D) Cox analysis.
Panels (A,B) and (C,D) are forest maps of modeling and validation cohort, respectively.

RPS6, RPS8, and RPS12 in colorectal cancer was higher than
that in normal colorectal mucosa. The expression of RPL15
was upregulated in gastric cancer tissues and cell lines. The
mRNA level of RPS8, RPL12, RPL23A, RPL27, and RPL30
was detected as upregulated in hepatocellular carcinoma
tissues and cell lines (Wang et al., 2015). Related mechanism
studies show that ribosome biosynthesis is an important
part of Ras/Raf/MEK/ERK, MYC, and PI3K/Akt/mTOR
pathways, which are proven to drive malignant tumors. Besides,
therapeutic effects of many anticancer drugs used in the clinic

are partly by destroying ribosome biosynthesis. For example,
cisplatin, oxaliplatin, adriamycin, and mitomycin C inhibit
ribosome synthesis at the rRNA transcription level, while
5-fluorouracil-camptothecin inhibits ribosome formation at
the rRNA processing level (Burger and Eick, 2013; Derenzini
et al., 2018). There is no doubt that spliceosome is a hot
spot in the field of cancer research in recent years. The
spliceosome consists of five snRNP containing U1, U2, U4,
U5, U6, and several splicing factors (SFs) (Hsu et al., 2015).
The disorder of SFs expression can activate tumor-related
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FIGURE 9 | Nomogram for predicting 1-, 3-, and 5-year overall survival (OS) of PAAD patients based on modeling cohort.

FIGURE 10 | Differential expression and Kaplan–Meier survival curves of eight modeling RBPs in PAAD based on TCGA, HPA, and KM-PLOT databases.
(A) PABPC1; (B) PRPF6; (C) OAS1; (D) RBM5; (E) RBM6; (F) LSM12; (G) IPO7; (H) FXR1. P < 0.05 is considered significantly.

alternative splicing events, leading to cell carcinogenesis
ultimately (David and Manley, 2010; Zhang and Manley,
2013). Then, the KEGG pathway enrichment analysis indicated

that these DE-RBPs are mainly enriched in RNA transport,
ribosome, mRNA surveillance pathway, spliceosome, ribosome
biogenesis in eukaryotes, RNA degradation, influenza A,
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FIGURE 11 | Gene set enrichment analysis of eight modeling RBPs in PAAD. (A) PABPC1; (B) PRPF6; (C) OAS1; (D) RBM5; (E) RBM6; (F) LSM12; (G) IPO7;
(H) FXR1. Only the top 5 enrichment pathways according to NES in each phenotype were displayed if available. NOM P-value < 0.05 and FDR q-value < 0.25 were
considered significant. NES, normalized enrichment score.

as well as aminoacyl-tRNA biosynthesis, which echoed GO
functional analysis.

In addition, we established a PPI network with 422 nodes
and 5,840 edges for DE-RBPs. Of 28 pRBPs, 8 RBPs including
PABPC1, PRPF6, OAS1, RBM5, LSM12, IPO7, FXR1, and
RBM6 are selected to construct a prognostic risk model by
multivariate Cox regression. PABPC1 (poly A binding protein,
cytoplasmic 1) is known to participate in RNA degradation and
translation (Takashima et al., 2006). PABPC1 promotes growth
and progression of gastric cancer cells by regulating miR-34c
and induces proliferation of hepatocellular carcinoma cells by
promoting entry into the S phase (Zhang et al., 2015; Zhu et al.,
2015). On the contrary, PABPC-1 is considered as a tumor
suppressor in glioblastoma cells by binding to BDNF-AS (Su
et al., 2020). PRPF6 is reported to be related with spliceosome
in colon cancer (Adler et al., 2014) and androgen receptor (AR)
signaling in hepatocellular carcinoma (HCC) (Song et al., 2020).
Most studies about OAS1 are limited in bioinformatics analysis.
A study from Robert et al. indicated that OAS1 expression
was correlated with azacytidine (AZA) sensitivity in the NCI-
60 tumor cell lines and was a biomarker for predicting AZA
sensitivity of tumor cells (Banerjee et al., 2019). Besides, one gene
expression profiling combining bioinformatics analysis in regard
to PAAD identified that OAS1 was related to worse prognosis
of PAAD (Tang et al., 2019). A basic experiment showed
that pancreatic cancer cell lines with high OAS expression
were resistant to oncolytic virus therapy (Moerdyk-Schauwecker
et al., 2013). RBM5 (RNA-binding motif protein 5) and RBM6
(RNA-binding motif protein 6) were initially reported as tumor

suppressors. Both of them map to the 3p21.3 region with
frequent alteration in lung cancer (Lerman and Minna, 2000;
Oh et al., 2002). RBM5 was observed to promote cell apoptosis
and retard tumor growth. RBM5 was highly downregulated in
breast cancer (Rintala-Maki et al., 2004) and prostate cancer
(Zhao et al., 2012). By contrast, some studies indicated that RBM5
was upregulated in breast cancer and ovarian cancer as a result
of overexpression of oncogene EGFR-2 (Zhang et al., 2019). It
seems that both overexpression and downexpression of RBM5
influence the progression of cancer. RBM6 mRNA was reported
to be highly upregulated in many cancer types, such as breast
cancer, malignant fibrous histiocytoma, ovary cystadenoma, non-
Hodgkin’s lymphoma, and pancreatic cancer. A study from Chen
Huang et Al. proved that upregulated RBM6 in pancreatic cancer
may be released into the blood, which could be a candidate
and potential serum biomarker for early diagnosis of pancreatic
cancer (Duan et al., 2019). Elevated IPO7 was found in various
cancer types such as colorectal cancer (CRC), which can be
explained by the fact that the transcription of gene IPO7 was
suppressed by p53 and promoted by c-Myc (Golomb et al.,
2012), as well as glioma, in which IPO7 increased promoter
activity of FOXM1, leading to the nuclear import of GL1 and
glioma development (Xue et al., 2015). IPO7 was found to be
upregulated in several pancreatic cancer lines (Suit2 and MIA
PaCa2) (Cui et al., 2017). A lot of studies suggested the tumor-
promotive function of FXR1, and FXR1 was highly upregulated
in oral squamous cell carcinoma (Majumder et al., 2016), lung
squamous cell carcinoma (Comtesse et al., 2007), head and neck
squamous cell carcinoma (Qie et al., 2017), triple negative breast
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carcinoma (Qian et al., 2017), ovarian carcinoma (Zhao et al.,
2017), etc. It not only has potential diagnostic and prognostic
value but also can predict specific metastasis and response
to chemoradiotherapy. The function of LSM12 has not been
reported in the development of cancer. Our analysis suggests that
LSM12 may be a high-risk RBP with carcinogenesis in PAAD.
The abovementioned researches and our analysis of ROC curve,
validation cohort, risk curves, as well as nomogram proved the
reliability and accuracy of the model.

In general, we successfully constructed an RBP-associated
prognostic risk model in PAAD, which has potential clinical
application prospect. However, there are still many limitations in
our study. First, we did not compare the prognostic risk model
with other recognized prognostic factors such as KRAS and TP53.
Second, most of the eight modeling RBPs are not reported in
PAAD, and functional studies are needed to verify the roles of
modeling RBPs in PAAD.

CONCLUSION

We constructed a prognostic risk model consisting of eight hub
RBPs in PAAD based on TCGA database. The corresponding
results not only help us understand the significant values of RBPs
in occurrence and progression of PAAD but also help develop
new therapeutic targets and prognostic molecular markers.
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