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Abstract
Computer simulation of dense crowds is finding increased use in event planning, congestion prediction, and threat
assessment. State-of-the-art particle-based crowd methods assume and aim for collision-free trajectories. That is an
idealistic yet not overly realistic expectation, as near-collisions increase in dense and rushed settings compared with typi-
cally sparse pedestrian scenarios. Centroidal particle dynamics (CPD) is a method we defined that explicitly models the
compressible personal space area surrounding each entity to inform its local pathing and collision-avoidance decisions.
We illustrate how our proposed agent-based method for local dynamics can reproduce several key emergent dense
crowd phenomena at the microscopic level with higher congruence to real trajectory data and with more visually convin-
cing collision-avoidance paths than the existing state of the art. We present advanced models in which we consider dis-
traction of the pedestrians in the crowd, flocking behavior, interaction with vehicles (ambulances, police) and other
advanced models that show that emergent behavior in the simulated crowds is similar to the behavior observed in real-
ity. We discuss how to increase confidence in CPD, potentially making it also suitable for use in safety-critical applica-
tions, including urban design, evacuation analysis, and crowd-safety planning.

Keywords
Agent-based modeling, crowd modeling and simulation, crowd pedestrian models, GPU, heterogeneous crowd, particle
dynamics, personal space

1. Introduction

Human motion is seemingly non-deterministic, and pedes-

trian path simulation is currently an exercise in imprecise

abstraction. Dense crowd simulation is concerned with

assessing and predicting the motion paths of large groups

of people within a limited physical space. Applications

range from presenting crowds in gaming and film produc-

tion, to designing public spaces and assessing their quality

of occupancy, to the safety-critical analysis of the potential

for stampedes and crowd crashes.1 When simulating the

movement of high-density pedestrian traffic (e.g., at out-

door festivals, concerts, or mass-gathering events), macro-

scopic methods that rely on aggregate parameters

(bringing a sense of determinism through bounded sto-

chasticity) can be very effective when analyzing collective

motion metrics, such as rate of evacuation and expected

human density distribution over an area. Because they do

not rely on simulating individual entities, those macro-

scopic methods are often efficient enough to accommodate

large-scale simulation of the position update of thousands

of crowd members. However, microscopic methods that

can reproduce the intricate details of every single individu-

al’s trajectory and cognitive state are becoming increas-

ingly accessible to designers, architects, and event

planners to readily assess the risks and focus stakeholder

efforts around potential congestion issues.

Using a hierarchy of systems, we can divide the abstrac-

tions into three inter-operating levels: a cognitive model

(for decision-making), a global pathing model (for finding

a path to the destination), and the local dynamics model

(for minor interaction in the optimal path). For a quick ana-

logy, the cognitive model would involve a car driver decid-

ing on a destination and entering it into their GPS device;
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the global pathing model would use the navigation service

to suggest a route; and the local dynamics model would

take care of the driver control over the car (e.g., lane

switching, overtaking slower cars, collision avoidance,

etc.). While there are crowd-simulation methods that blur

the lines and attempt to solve more than one level simulta-

neously (e.g., Continuum Crowds),2 this hierarchical view

encourages separation of concerns (e.g., the GPS naviga-

tion model is not expected to also be a self-driving local

avoidance model) and allows further experimentation and

mixing of components and solutions from various sources.

The main contribution of this research focuses on

advanced modeling of local dynamics of dense crowds,

with the assumption that the cognitive and global pathing

is modeled adequately by other methods, and they can

feed their desired destination into our local dynamics

model. The research presented here focuses on the model-

ing and simulation of motion paths adjustments (i.e., tra-

jectory of entity’s center of mass) in response to changes

in an entity’s short-range environment (roughly an arm’s

length); particularly for high-density scenarios.

Our research provides new methods for avoidance and

steering decisions that each entity makes in response to

the position of other entities or obstacles. We use the term

personal space (PS) to refer to that short-ranged area of

interest. At this level of density, we do not consider psy-

chological factors. To this end, we present a novel area-

based penalty force that operates on the premise of PS pre-

servation and we demonstrate promising results obtained

from simulation on consumer-grade graphics hardware.

The method, called centroidal particle dynamics (CPD), is

an explicit 2D model of the dynamics of response to viola-

tions of PS. It is implemented through autonomous

Lagrangian agents, which emergently recreate global phe-

nomena observed in dense crowds with high congruency

to real-life trajectory data. The model reproduces empiri-

cally known phenomena where state of the art either strug-

gles or fails completely, including collision-avoidance

behavior exhibited by individuals in high-density crowds,

as in Figure 1.

The article includes new extensions to the original CPD

model that include different types of vehicles, allowing

heterogeneous crowd models using the Minkowski sum

approach. The computation allows for arbitrary shapes.

We show a close-range model that allows compression of

PS. The method presented has the following advantages:

- It is a resolution-free space that does not require

adaptive meshing schemes just to accommodate

non-axis-aligned structures.

- It is a modular modeling approach where each entity

(or class of entities) is responsible for encoding its own

behavior with the environment, as opposed to the typi-

cally monolithic modeling in a Eulerian grid where

every fixed node (cell) has to encode the behavior of

any and all possible entities that pass through its space.

- From a purely qualitative M&S (modeling and simula-

tion) point of view, the Lagrangian evaluation of crowd

dynamics is a more faithful representation of the real-

life processes performed by the entities being simu-

lated. That is, individuals tend to continuously evaluate

their next moves during motion, as opposed to doing

so at fixed spatiotemporal intervals.

The paper is organized as follows. The relevant back-

ground is discussed in Section 2; the proposed method and

a GPU-accelerated implementation are presented in

Section 3, followed by a discussion of the extensions to

the model in Section 4. Finally, in Section 5, we reflect on

validation, limitations, and opportunities for future work.

2. Background

Human path planning simulation is fundamentally an exer-

cise in stochastic abstraction, due to the apparent non-

determinism of steering decisions and other socio-

psychological factors which would become too complex

to use as a basis for dense crowds. Replicating human

decision-making is an ambitious endeavor, never mind

simulating an entire crowd. To this end, the abstraction of

motion dynamics by generalizing observed phenomena is

necessary to achieving a computable result. Historically,

the earliest methods were macroscopic, simulating aggre-

gate behavioral patterns, rather than actual individual tra-

jectories in the scene. They were based on adapting

existing fluid simulation models to incorporate aggregate

human motion parameters. They were typically computed

over a Eulerian grid3–5 to provide computational stability

Figure 1. Dense pedestrian activity at Shibuya crossing, Tokyo, Japan; CPD pedestrian simulation.

530 Simulation: Transactions of the Society for Modeling and Simulation International 97(8)



and high performance. This granularity was enough to

assess and validate collective motion parameters such as

egress rate (i.e., evacuation) and density distribution over

a given scene layout. Flow-based methods have since

evolved, with notable contributions such as Continuum

Crowds2 delivering visually convincing large-scale results

at interactive frame rates, suitable for animation, gaming,

and training.

Fluid dynamics models study the crowd as a continuum

using coupled nonlinear, partial differential equations that

can be solved for simple geometries; in particular Bradley6

suggested that the Navier–Stokes equations could be

applied to pedestrian flows. In Hughes,7 crowds were

modeled using fluid dynamics, but with the additional

assumption that human flows ‘‘think’’ (to consider physio-

logical, psychological, and social factors that affect the

crowd). Network optimization techniques have also been

adapted to simulate occupant movement within a prede-

fined multi-compartment environment.7,8 Each compart-

ment is treated as a graph node that might represent a

section within a room, a hallway, or even an entire build-

ing. The choice of what a node represents depends on the

desired granularity of describing the spatial structure of

the model. The edges connecting those nodes would then

represent the capacity of pedestrians moving from one

node to another. Safety engineers, architects, and event

planners who are concerned about occupant experience

could then utilize classic optimization techniques such as

Dijkstra’s shortest path9 or max-flow detection10 to focus

their limited resources and efforts on areas of potential

pedestrian bottlenecks.

With ever-increasing hardware capabilities and

improved modeling methodology, we can now simulate

entity-to-entity interactions. These methods, called micro-

scopic, focus on simulating individual agents with loca-

lized rules, in which we can find emergent behavior that

matches the results of macroscopic methods (and more

importantly, reality). For instance, cellular automata (CA)

divide space into a uniform grid, whose future state is

determined based on the states of the cells in the local

neighborhood11 using discrete time steps. Numerous

authors used CA for modeling crowds, for instance Vihas

et al.12 where the authors defined a CA in which pedes-

trians follow leaders, or Was et al.13 where a detailed rep-

resentation of spatial relations was discussed, as well as Ji

et al.14 where models of acceleration and overtaking of

aggressive and conservative pedestrians were presented.

Other models include the situated CA15,16 used to study

the jamming of pedestrian crowds that occurs due to the

formation of arches at bottlenecks.

Although CA have shown success, the discrete-time

evolution of the models reduces the potential for perfor-

mance, and it makes it hard to integrate the models with

other components. Likewise, CA are logical models (i.e.,

only the logical aspects of the rules are considered, and

time is not explicitly modeled). The Cell-DEVS formal-

ism17 provides a discrete-event approach for cellular mod-

els’ specification, which shows it can be used for modeling

and simulating pedestrian behavior and crowds.18 For

instance, Figure 2 shows a visualization of a Cell-DEVS

model used to study a corridor of concern for the tenants

of a commercial building (Sun Life, Ottawa, Canada)

which expected a rush of new foot traffic due to the open-

ing of a public transit rail station.19 The figure shows the

reference corridor of concern, contextualized within the

rest of the building and demonstrating its potential for bot-

tlenecks, a layered view of the state variables used, and a

3D visualization of the underlying Eulerian simulation.

Discrete-event modeling simulation has been explored

in both macroscopic and microscopic crowd simulation

models, most of which rely on a Eulerian numerical solu-

tion and an axis-aligned grid-like tessellation of the scene

layout, such as Cell-DEVS. These are popular for crowd

modeling due to parallel-friendly processing and visualiza-

tion (every cell is both the computational unit and the

visual representation). Nevertheless, grid-based Eulerian

evaluation of agent dynamics using discretized stepping or

finite directions of motion does not faithfully reflect the

fluidity of human trajectories. Lagrangian methods,

instead, are spatially unrestricted and can perform their

numerical computations (e.g., neighborhood sampling,

collision detection, advection, etc.) in-place, avoiding the

finite and limited degrees of motion exhibited by Eulerian

models. For instance, Helbing et al.20 proposed the social

force method, where the human motion is viewed as a

complex behavior subject to a self-driving force combined

with other forces from pedestrians and obstacles. The

model, extended in Helbing at al.,21 included escape panic,

mixing socio-psychological and physical forces.

Finally, agent-based models are also popular for model-

ing crowds, making everyone in the crowd a separate

Figure 2. Pedestrian simulation in a building.19
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agent that takes decisions independently of the others.

Agent-based models usually try to simulate crowds at fine

scale, which makes them computationally demanding and

more suitable for short-term simulations with small-sized

crowds. The local phenomena affect everyone, and there-

fore we can see emerging patterns that are deducted by the

social and physical aspects of each individual.22 Agent-

based methods such as ORCA23 and modifications enable

the exhibiting of density-dependent behavior,24 and data-

driven motion profiles.25 While those methods typically

operate on linear path and velocity predictions, methods

such as WarpDriver26 perform non-linear prediction of the

upcoming optimal path for a relatively short imminent

time frame. Ideally, entities would not have access to the

predicted paths of their surrounding neighbors, to mimic

the true encapsulation of such data in real pedestrians.

Our own approach, called CPD,27 is based on PS, and

can be seen as a variant of the social forces method. The

study of the intangible PS often occurs under the umbrella

of proxemics, a sub-field of social sciences that is focused

on non-verbal spatial communication.28 The method is

based on the idea that when we focus our attention on

avoidance behavior at a very short range, the reference sys-

tem we are trying to model turns out to be more biomecha-

nical and deterministic than the systems deriving long-

range (global) and medium-range (within vision distance)

path planning decisions. Medical studies have discovered

the specific cause for the phenomenon of PS preservation,

proving that it originates from and is regulated by the

amygdala, the fear center of the brain.29 PS is a fear

response rooted in physiology, confirmed by observing the

lack of PS preservation in patients that had damaged or

missing amygdalae. One evolutionary explanation indi-

cates that PS is a mechanism for subconsciously affording

us (and mammals in general) a buffer of time to react to

potentially negative outcomes, especially near strangers. In

an interesting display of ‘‘nature vs. nurture’’, the specific

PS radius varies across cultures and social settings,30 but

the shared biological origin could explain the near univer-

sal radius of ~ 0.8 m–1.0 m. Other studies have determined

that conditions leading to crowd crushes and stampede dis-

asters in what are otherwise peaceful gatherings can typi-

cally be traced back to the mismanagement of crowd flow,

ultimately exceeding critical crowd densities.31–33 Based

on these ideas, CPD, discussed in the next section, models

close-range interactions of pedestrians in dense crowds by

explicitly asking them to step in the direction that would

best maintain and attempt to regain PS in their vicinity.

3. CPD

The main idea of the CPD method is to model close-range

interactions of pedestrians in dense crowds by explicitly

asking them to step in the direction that would best

maintain and attempt to regain PS in their vicinity. For our

purpose, a dense area of the crowd is one with 3 ft2 to 10

ft2 per pedestrian34 (less than that is considered a contact-

collision with possible injury). With the CPD approach,

we first build a personal space map (PSM) for the pedes-

trians in the model, by checking the surrounding area of

each pedestrian, and calculating the available and violated

space for each of them. Then, we compute a new geo-

metric center that would allow the pedestrian to regain the

full range of PS (the centroid). We also calculate the cen-

troidal force, a vector pointing from the current location

of the pedestrian to the new calculated centroid. The cen-

troidal force is built as a combination of the individual’s

drive toward the destination, their regard for PS violations,

and their resistance to paths that deviate from their path.

The PS definition of shared space can be geometrically

represented by a constrained centroidal Voronoi tessella-

tion.23 In the context of Lagrangian crowds, the Voronoi

tessellation has been used to accelerate spatial queries such

as nearest neighbor search or developing a navigation

mesh for global path planning. Voronoi diagrams use the

idea of proximity to a finite set of points in the plane. The

diagram associates every point to its closest point, con-

forming covering sets. Points equidistant to two elements

define the border of a region. The resulting sets define a

tessellation of the plane (exhaustive, as every point

belongs to a set, and they are mutually exclusive). Voronoi

diagrams can be used for describing paths surrounding

obstacles (and indicating the distance to them). These indi-

cators allow to determine if the path is feasible to pass

through the path. This tessellation does not need to happen

pairwise; it can be computed over the entire domain of

entities (including obstacles), accounting for the aggregate

infringement of each entity’s PS. The PSM can be treated

as a truncated Voronoi diagram, whose cells are bounded

by a certain distance from their sites. We use textured 3D

cones to represent the entities and their PS, with the tip of

the cone representing the footprint center, and the base

representing the outer edges of the PS. In effect, the height

along the surface of the cone encodes the distance to the

center of the entity. When rendered from an orthographic

top view facing the tips (free of any perspective distor-

tion), two cones will overlap at precise points that are

equidistant to both entities, as seen in Figure 3.

Once the local centroidal force is computed, it is inte-

grated with other forces relevant to the pedestrian (e.g.,

global path, friction, proximity to nearby family mem-

bers), and we give weights to the forces, which can then

be treated as the parameters of the overall model. Lastly,

the advection due to the net acceleration experienced by

each pedestrian is integrated using a typical numerical sol-

ver. We use a Verlet integrator35 executed in parallel in

CPU (central processing unit)-GPU (graphics processing

unit). We do not model the physics of contact collisions or

friction among pedestrians as previously done in rigid/
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soft-body simulation literature in this area, and it is outside

our scope of research. The mass of the individuals can be

modeled by adjusting the height of the cones. The heavier

the individual is (less likely to be affected by force), the

closer the cone should be to the camera. Lighter individu-

als must exert more force to make up for their increased

distance to infringe on the heavier individual’s space.

The compute flow of the method is presented in

Figure 4: we encode the entities as geometric primitives

and use the GPU’s depth buffer to quickly obtain the

PSM tessellation as discrete pixels, obtaining a shared

data structure that allows each entity to compute its rela-

tive centroid and resulting penalty forces in a data-

parallel fashion. The entities do not need to conduct a

costly nearest neighbor search, as they simply consume

and interact with the set of pixels representing their PS

in the PSM. To differentiate between the rendered cones,

they are colored using a reversible hash map that is a

function of the unique entity IDs. The reverse lookup (a

constant cost function) enables any entity to directly

identify the ID of another entity infringing on its pixel

space. After the PSM is evaluated, we compute the total

force experienced by each entity as a weighted sum of

the local forces (including the centroidal force and the

global pathing direction). In ideal conditions with a sin-

gle entity in the scene, it would simply follow the cur-

rent global path direction to its destination. However,

with other entities in the scene, the local forces are nec-

essary to enact collision-avoidance maneuvers with their

surrounding environment.

Trying to accelerate the PSM computation, we found

out that the CPU was a primary bottleneck, due to repeated

rendering calls made for each entity cone. Each render call

produced overhead on the graphics API (application pro-

gramming interface) and the CPU-to-GPU memory trans-

fers. Modern graphics APIs have features that allow

instanced rendering: the CPU sends the shape information

only once, along with a point cloud of instance locations.

Then, the GPU would perform the replication on-chip

without communicating again with the CPU over the rela-

tively slow system bus. Unfortunately, using this feature

for PSM computation was not straightforward, because of

the dynamic PS shapes (especially with the introduction of

velocity-dependent extensions, and the extensions to be

discussed later in this article). Consequently, we opted

instead to develop Geometry Shaders that dynamically

generate the PS shapes on the GPU. Geometry Shaders are

part of the modern graphics processing pipeline that can

programmatically generate new meshes and geometry that

the CPU did not initially send. Our Geometry Shaders

accept a point cloud of entity positions along with an array

of entity attributes (e.g., current velocity, bearing, comfort

speed, etc.) and let the GPU generate the appropriate voro-

noidal PS shapes per entity. This reduction in CPU render

calls has improved the simulation frame rate (a perfor-

mance analysis of such reduction is not the goal of this

Figure 4. Data-parallel implementation of the CPD method.

Figure 3. (a) PSM computation of forces; (b) side view of 3D
cones.
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research; some performance results can be found in

Hesham et al).27

The CPD in the model presented in Hesham et al.27,36

assumes that the agents are individual, cooperative and

behaviorally homogenous; they also have little to no rela-

tionship with each other. In those initial studies, we could

analyze phenomena of self-organized lane formation,

bidirectional flows of real crowds in general, and in dense

crowds. We illustrated how these phenomena, which

appear to be organized, are in fact just emergent global

behaviors due to each entity pursuing entirely individualis-

tic pedestrian dynamics. The model was validated with

sources of in-lab bidirectional scenarios where the entities

are not forming lanes due to any explicit laning rules, cul-

tural norms, or barriers in the scene, but rather it is a glo-

bal phenomenon that emerges from local optimization

decisions.

Custom obstacle maps can be introduced to modify the

behavior of the crowd in the presence of various kinds of

obstacles, as seen in Figure 5, which shows a bidirectional

flow crowd built with the CPD method and several types

of obstacles.

In the centralized PSM computation, the GPU renders a

global PSM map that all entities can query. To decentralize

this, we utilize a truncated Voronoi tessellation, in which

every entity computes only the Voronoi cell it belongs to,

and not the whole PSM diagram. In this way, every entity

ends up with a polygonal cell representing its unviolated

PS kernel, and the centroidal force computation continues

in the same data-parallel fashion, as seen in Figure 6. As

we can see in the figure, given an entity a surrounded by

neighbors b, c, and d within a’s proximity sensor range,

the unviolated PS cell can be updated using the perpendi-

cular bisector of the vector to each neighbor. Notice that

even though c is within a’s detection range, it is not close

enough to affect the PS cell update.

This is a zero-communication implementation that does

not require a message passing between the agents, does

not query a centralized cone renderer, but instead relies

purely on the sensory abilities available to each agent. If

the agents lack perfect detection and proximity sensing of

their surroundings, then it will be reflected in the fidelity

of the PS kernel they can locally generate and update.

In the remaining sections, we discuss advanced emer-

gent results found with our method, expanding the use of

CPD to cases of intentional organization (e.g., pedestrians

in a tour group, or friends staying close at a crowded festi-

val), non-homogenous behavior and groups with non-

cooperative behavior. In those cases, the entities require

additional social forces to be accounted for when

Figure 5. (a) Center gate; (b) barricade; (c) custom path.

Figure 6. Distributed computation of CPD.
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computing each entity’s net force. Having said that, in all

cases we assume that overall, the PS (centroidal) forces

and their amygdala-driven dynamics do not change; every

entity still wants to maintain a reasonable PS within its

surrounding.

4. Advanced emergent behavior modeling
with CPD

This section shows extensions to CPD to simulate scenar-

ios that exhibit micro-grouping, competitive pathing, dis-

tracted entities, and uncooperative behavior. To do so, the

extended models’ computation of forces has been changed.

We added a variety of new applicable forces to the special

entities, and the main applicable forces we consider in the

extended models include:

Bidirectional force: this is used to define a global

pathing force in bidirectional settings (hallways, cross-

walks). It splits the crowd into two groups, each head-

ing to the opposite side of the modeled space.

VoroForce: this is a collision-avoidance force that

works according to the PS. When any PS intrusion hap-

pens, the VoroForce tries to retract and restore the PS

to its initial position.

Gathering: it helps in defining grouping, flocking,

uncooperative, searching and meeting behaviors, by

bringing together specified entities (a group of people,

family and/or friends).

The following sub-sections discuss a new series of

observed behaviors based on a combination of the CPD

and these new forces applied to the method.

4.1. Flocking in CPD

We first introduce the results of crowds with micro-

grouping in which the entities present flocking behavior.

The entities that are part of a flock follow three simple

steering behaviors known as the Boids flocking rules,

namely alignment, cohesion, and separation.37 The align-

ment behavior causes a particular entity to line up with the

entities near it, and each individual to steer toward the

average heading of the remaining local flock mates.

Cohesion causes the entities to steer toward the average

position of entities within the certain radius that deter-

mines whether the entity is a part of a flock or not. Finally,

separation is a steering force whose behavior causes indi-

viduals to steer away from other neighboring entities.

The extended model combines the flocking behavior of

individuals in the crowd as a combination of these three

forces. Figure 7 shows a scenario of disruptive micro-

grouping, in which a crowd of 990 entities is in bidirec-

tional flow through a 40 m corridor. Here, 10 of the enti-

ties are grouped by the Boids flocking rules. The case

study considers the flock starting from the sideline, and

the group is asked to move across the bidirectional stream

to reach the opposite end, and, starting from the north, the

group is asked to move along the bidirectional stream to

reach the south. The average time it took the group to

complete task (a) was 83.75 s and task (b) 68 s, confirm-

ing the intuitive notion that going across the established

flow of a dense crowd will be slower, as the group has to

wait either for openings to cross or to force their way to

disrupt the bidirectional flow. As we can see in the figure,

the 10 individuals grouped stay together as they traverse

across the scene, while the rest of the crowd follows a

north-south bidirectional motion.

While the opposing-flow pedestrians resulted in

observed lane formation as an emergent optimization strat-

egy, the micro-groups flocking across the corridor did not

display any emergent behavior, further explaining the

delays in performing task (a). The disparity between tasks

(a) and (b) did not noticeably change for larger micro-

groups of more than 10 individuals; however, as the

groups became smaller, nearing individualistic behavior,

the disparity between the two tasks was significantly

reduced, and almost imperceptible in groups of two. The

immediately observable explanation is that smaller groups

can seize on smaller ‘‘openings’’ available to cross amidst

the dense crowd. Additionally, task (b) is limited by the

emergent bidirectional flow rate, which at high-enough

densities effectively equalizes movement speed for large

portions of the crowd. In other words, even though task

(b) seems easier, overtaking people ahead in a very dense

Figure 7. Shows 10 entities explicitly grouped using Boids flocking (a) initial and (b) final positions.
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crowd is quite difficult; hence the reduction in disparity

between tasks (a) and (b) as the group size decreases.

We also conducted different tests varying the three steer-

ing forces. The time taken by the flock to travel horizon-

tally under the influence of all three steering forces was

slower than when the cohesion and separation forces were

turned off; on the other hand, the time taken for vertical

travel under the influence of all three steering forces was

greater than when the cohesion and separation forces were

turned off. When the cohesion and separation forces were

turned off, the flock took less time when passing through

the perpendicular crowd (in the absence of the two forces,

the entities travelled more individually and made their own

way through the crowd), as seen in Figure 8.

The model can be modified to have two individuals

meet at a certain point in the middle of the crowd when

placed at various locations. This is presented in Figure 8,

which shows a moving crowd with individuals at opposite

horizontal positions. To define the meeting/finding beha-

vior, we use the gathering force, the VoroForce and the

frictional force. The strength of each of these can be chan-

ged to provide different speeds for searching and finding,

and interaction with the crowd.

4.2. Uncooperative behavior

In certain situations, there will be entities that do not act in

the best interest of the collective motion of a crowd. For

instance, construction workers might stop in the middle of

a busy hallway to inspect the area, causing the hallway to

become narrower, less navigable, and potentially leading

to more pedestrian collisions, or when people suddenly

stop while in the middle of a busy lane (e.g., exiting a

train). Those ‘‘uncooperative’’ persons effectively become

an obstacle, like any other in the environment. To model

these scenarios, we modified the forces of attraction to the

initial position force, and a gentle sway normally used to

make the visualization of the pedestrians better. Figure 9

shows a basic scenario where uncooperative pedestrians

interfere with bidirectional flow and create disturbances.

The uncooperative entities are attracted to their initial

position (using the attraction force to the initial position,

and a gentle sway force).

Based on this modification, Figure 10 shows a case of

non-cooperative behavior of pedestrians blocking a pas-

sage. The ideal pedestrian would pay attention all the time

to their surroundings. By pre-emptively and carefully

retaining their PS, they should be able to avoid most

collisions and disruptions to their intended motion. We see

such efficiencies in busy crossings, where hundreds of

pedestrians with competing trajectories can cross

smoothly. However, unlike clearly visible and static obsta-

cles in the scene (e.g., wall, vegetation, park benches),

stationary subgroups in the crowd can be more difficult to

detect in a dense scenario until close to that group.

Figure 10 shows such a case for a bidirectional scenario in

a 3.5 m hallway. The figure shows how a few pedestrians

standing still could cause significant congestion.

Figure 8. Two entities, finding and meeting crossing horizontally a bidirectional crowd.

Figure 9. Non-cooperative pedestrian scenario.
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As expected, the pedestrian flow rate across the hallway

is decreased: we observed a reduction by 40% on average.

The clogging behavior matches observed behavior in nar-

row hallways38 involving uncooperative agents. Our 2D

compressible PS kernel permits smooth passage for many

entities, but over time, the density pileup overwhelms the

compressibility threshold of the PS kernel (a threshold that

varies stochastically across entities) and thus creating a

congestion that slows the flow rate significantly until com-

pletely stopping for the previously mentioned 36%. An

intuitive way to visualize this phenomenon is to imagine

that eventually, the congestion leaves a single lane that is

one entity-wide, and now both directions of flow need to

alternate in sharing that single path. Thus, many entities

will wait until that lane frees up, or the overall density dis-

sipates to the point that compressibility will allow for other

lanes again.

When a much wider 40 m corridor was simulated, as

shown in Figure 11, we could observe interesting emer-

gent behavior. As expected, the area surrounding the unco-

operative group (for instance, a group of friends chatting

in the middle of a crowded area) experienced congestion.

However, later in the simulation, we observed multiple

pockets of congestion forming away from the initial group.

These secondary masses of congestion result from the

diverted traffic concentrating on the new limited space. A

high pedestrian flow rate will cause pockets of congestion

to inevitably form across the width of the corridor. This

observation agrees vehicular accidents in one lane can

cause traffic to slow down and potentially congest across

the width of the road, due to the decreased traffic band-

width (i.e., available lanes).

4.3. Distracted pedestrians

The next phenomenon modeled as a new extension to

CPD included distracted pedestrians. It is known that dis-

tracted pedestrians can cause injury to themselves and oth-

ers. Large events are tricky to navigate as it is, and the

possibility for slight collision (shoulder rubbing) is reason-

able to expect. Therefore, we wanted to simulate how dis-

tracted pedestrians might make navigating such events

even harder. One of the causes of such distracted behavior

is pedestrians using their cell phones.39,40 This is a serious

enough issue that the experiments from the literature rec-

ommend that cities with high pedestrian traffic should con-

sider and implement a ban on cell-phone usage at street

crossings.41

To model this behavior, we modified our asymmetric

PS kernel (which is an extension to the basic PS behavior

presented in Figure 2) to represent the PSs of distracted

pedestrians as in Figure 12. We introduce a distraction

period argument, during which the speed of the pedestrian

slows down to 40%39 and the PS weight map is culled to

match the reduced visibility ahead of the distracted entity,

as shown in Figure 12.

We also introduced a collision detection system. PS

truncation happens because the pedestrians are looking

down at their phones, so they will have less forward and

peripheral range of visibility. Since a distracted pedes-

trian’s PS is reduced, they tend to reduce their movement

speed to give themselves more time to react to obstacles.

The comfort speed of pedestrians was reduced by about 50

percent to mimic their behavior in real life. This reduction

is overall and dynamic since an entity’s speed also depends

Figure 10. (a) Entities standing still; (b) same simulation time
instance with no blockage.

Figure 11. North-south bound bidirectional flow. Left: entities disrupting the flow by standing still. Right: an unimpeded corridor
captured at the same simulation time as the left scenario.
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on the crowd density and on the maximum speed. As for

the collision detection system, this was to search the imme-

diate neighborhood of each entity. If an intrusion is

detected, the collision-avoidance force is activated to repel

the entity in a direction opposite to the occurring intrusion.

After the reduction in PS, the centroid of the entity is recal-

culated and shifted to account for the reduction in PS.

Consequently, collision avoidance will be delayed until a

bigger intrusion has happened, which gives the entity less

time to react to that intrusion.

A collided state is applied to an entity if a certain degree

of intrusion has been recorded in its PS. The amount of

intrusion required to go into a collided state is chosen in a

way that disregards minor collisions such as shoulder rubs,

and only accounts for serious collisions that have an

impact.

The first set of simulations, presented in Figure 13, are

performed in a crowd with a bidirectional flow. The crowd

size affects the crowd density and the amount of space

available for each pedestrian. Multiple simulations were

done by varying the total crowd count and the distraction

ratio or the canvas width. The total collision count was

measured for all simulations.

In the absence of any distracted pedestrians, only a

handful of instances of high collision likelihood have been

observed. The count increases exponentially as the ratio of

distracted entities increases within the dense crowd, as seen

in Figure 14. These collision counts were also inversely

proportional to corridor width; not due to increased bidirec-

tional flow density, but rather due to the lack of additional

space for undistracted pedestrians to perform their avoid-

ance maneuvers. Collisions counts were much less pro-

nounced in unidirectional flow, where the biggest effect

was instead the slowdown of surrounding entity motion.

That can be explained by observing that relative veloci-

ties between the entities are on average less than the rela-

tive velocities in bidirectional flow, which gives fully

aware entities a larger amount of time to react and maneu-

ver around the distracted crowd when needed.

4.4. Competition

Another set of modifications included competitive pathing

to illustrate the potential use of CPD in an architectural/

urban design context to address anticipated dense-crowd

issues. The scenario to be discussed is an artificial setup,

where entities are initially arranged equally around a ring.

Each entity’s target is to arrive at the opposite side of the

ring. There are no other global paths and no organized

grouping. This setup is designed to assess an algorithm’s

ability to manage the least optimal configuration: all

pedestrians are headed into each other, and all are compet-

ing for the center of the ring to reach the other side in the

shortest path possible. Such scenarios can be seen in real

case scenarios; indeed, major crossings such as Shibuya

(Figure 1) can display such a massively competitive pedes-

trian scenario. Figure 15 shows the results of the crowd

motion at various time instances. Figure 15(a) shows the

results for an aggressive crowd, in which the average den-

sity experienced by all entities is 3.3 ft2/pedestrian, with a

Figure 12. PS weight map for a pedestrian distracted on their
phone (left) is culled from the front due to lack of visibility, in
contrast to a normally walking CPD kernel.

Figure 13. Collisions highlighted.
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peak density of 1.75 ft2/pedestrian. Figure 15(b) shows

low aggression crowd with an average density of 3.4 ft2/

pedestrian and a peak density of 1.92 ft2/pedestrian).

Figure 15(c) introduces a cylindrical architectural artifact

at the center of the ring with a low aggression crowd (aver-

age density: 3.3 ft2/pedestrian; peak density: 2.5 ft2/pedes-

trian). These different behaviors are obtained by varying

parameters in the CPD equations presented in Hesham

et al.:27

a) High aggression: the individuals display higher-

than-default drive toward the destination and lesser

regard for the PS violations. Additionally, the enti-

ties are highly resistant to paths that deviate from

the optimal route (i.e., straight through the center

of the ring). Hence, we can see heavy congestion

and a pattern where some entities pierce through

the others to get to the other side.

b) Low aggression: the individuals display higher

regard for PS violations than the aggressive enti-

ties in (a). They are also more receptive to deviat-

ing from the optimal path.

c) A round obstacle is inserted at the center of the

ring, with the entities maintaining their low aggres-

sion parameters.

In the last scenario, as if gently guided by the obstacle, a

cyclone pattern quickly forms and facilitates the crowd’s

collaborative turning motion. It might be counter-intuitive

to think that an obstacle would ease traffic, but this is an

example where architectural design can experiment with

ways to help guide flow without explicitly designating

single-way lanes. In-lab experiments confirm the possibil-

ity of crowd motion shaping solely through passive obsta-

cle design. For instance, it turns out that forcing queue

lines to form near a congested gate will emergently reduce

the peak experienced density;42 also, counter-intuitively, a

column placed near (but not blocking) a gate will improve

its flow rate and reduce experienced density.38 This shows

how CPD can complement and integrate with the recent

trend of generative design (i.e., design-by-optimization) in

the field of architecture and urban design.43

4.5. Heterogeneous crowd and multi-layered PSM

The centroidal force computed a locally preferred bearing

and direction of motion for the entity to restore its PS.

However, acting on that centroidal ‘‘preference’’ can be

left up to the entity and its constraints. Human motion is

quite flexible with the ability to turn in-place if needed.

To extend the simulation to non-human and heterogeneous

entities sharing the same simulation space, we can still

compute the centroidal forces as we did with humans, but

the mechanics of following that centroidal ‘‘preference’’

to compute the relevant forces might differ for each kind

of entity (e.g., strollers, shopping carts, bikes, vehicles).

Those other kinds of entities will use the same rules

about PS update but execute those maneuvers under their

own physical constraints (e.g., a bike or a car will have a

turning radius compared with a human’s ability to turn on

the spot). To complement this effort, other methods for

computing the Voronoi PSM must be evaluated, since the

scene might include lengthy entities whose centroid is no

longer a concentric point, but possibly spine segment. In

this case, the jump flooding technique44 might be a suit-

able alternative to Voronoi cones.

We extended the CPD method to allow polygonal

objects such as vehicles and shopping carts. To do so, we

built a 3D cone around a 2D object that can be staged by a

Minkowski sum approach. The idea is that, for a given

two sets P and Q, the sum P � Q is constructed by consid-

ering a secondary polygon on multiple segments around

each vertex of the primary polygon. The segments of the

convolution will form several closed polygonal curves,

Figure 15. Concentric crowd motion under different
parameter values.

Figure 14. An example of 30% distracted pedestrians in north-
south bidirectional flow. Red indicates detected instance of high
likelihood of collision. Orange indicates all distracted
pedestrians.
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generally represented as convolution circles. Based on the

convolution circles of P and Q polygons, we compute the

winding numbers which represent the faces formed by

Minkowski boundary (Figure 16).45

These models needed to be included in the heteroge-

neous environment, which is different from the traditional

homogeneous setup (where the entities are all humans rep-

resented as circles). With heterogeneity and n-sided poly-

gon profiles, we need to compute the geometric center of

their shape, to account for irregular shapes and to allow

them to stand still when no external forces are

experienced:

VoroForce=
cos(2x)

2
+ 0:5 ð1Þ

The CPD method uses a global PSM to mask over the

defined space and to accelerate the nearest entity search

by carefully pointing and calculating its short-range direc-

tional vectors. The VoroForce is used to compute the

response to a local violation to PS. In order to balance the

local response against the intended global path, we used a

VoroForce that has to be specifically defined such that the

resultant path has to be either 1 or 0. Equation (1) repre-

sents this motion, and we integrated the equation into the

net VoroForce entity system to mimic a real-life behavior,

like the one observed in vehicles or objects. Here, the x in

the equation is the angle between the local VoroForce and

the global path vector.

The entities are modeled after this governing force in

the form of a linear force in the direction of the centroid.

Based on this approach, PS uses a geometrical approach.

It is computed over the entire defined scene of simulated

obstacles, vehicles, and entities, as seen in Figure 17. The

resulting force f is formed from repelling the force of the

PS, denoted as the penalty force p, and the attraction to

the destination global force g. This calculated approach

represents individuality, and it opens the possibility of par-

allel computing. This is exploited for better acceleration of

calculation and load sharing in GPUs or multicore CPUs.

The first scenario in Figure 18 shows a motorcycle (in

a circle) trying to pass through a dense crowd. In this sce-

nario, a motorcycle is trying to pass through a dense crowd

count of 100 from left to right while half of the crowd is

moving from bottom to top and the remaining 50 entities

are trying to move from top to bottom.

In the next set of experiments, an ambulance is trying

to cross the path from left to right through entities moving

in a bipolar direction. In Figures 19 and 20 we can observe

an ambulance (in a circle) and a tail-side empty space. As

in real-world scenarios, the crowd do not have any option

to step aside from an ambulance that is passing. When this

happens, we can notice that people do not tend to go

behind the back of ambulance just because of available

empty space. We can notice such emergent behavior in the

simulation justifying the assumed geometrically defined

forces and parameters for the simulation.

This simulation was run multiple times to get an aver-

aged value of the vehicle crossing time. Changing the

crowd count varying from 100 to 900 entities represented

in the same scene, this increase in crowd count is used in

this case to simulate dense crowd situations and behavior

among the crowd under high reduction of PS and the

unwanted introduction of a vehicle to the scene.

The simulation demonstrates how the crowd interacts

with moving traffic, representing a truly heterogeneous

environment. The barricades are forcing the crowd to take

a detour and causing a stream of individuals. The entities

are colliding with the vehicle’s PS and altering their direc-

tional vector path as per geometrically defined VoroForce.

Though the net force of combined entities is overwhelm-

ing the vehicle, the vehicle prefers to keep its destination

vector and chooses to ignore in recalculating its resultant

Figure 16. Minkowski sum representation of a triangle and a
square.

Figure 17. Representation of an entity experiencing a net force f from global path force g and collision penalty force p.
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destination path. Moreover, the entities are in a free flow

and choose to favor the resultant VoroForce derived from

resulting vectors. This experimental simulation of such a

scenario is visually appealing and mimicking a situation

akin to real life. This opens the possibility of future oppor-

tunities in creating multi-lane traffic junctions and traffic

simulations that are highly customizable and scalable.

5. Discussion

The application of our research and its proposed CPD

method so far has been the film, gaming, and serious edu-

cation industries. But safety-critical applications such as

civil planning, crowd control, and large-scale event threat

assessment stand to benefit the most from dense-crowd

simulation research. Our method uses empirically driven

parameters to produce visually convincing emergent beha-

vior. We echo our earlier assertion that crowd-path model-

ing is essentially an exercise in abstraction with no precise

microscopic ‘‘ground truth’’ to converge on. According to

the established wisdom in crowd M&S literature (exten-

sively surveyed in Shi et al.)46, the very concept of data-

validation in the context of crowd simulation is not with-

out its criticism. The first critique comes from fire-safety

literature,47 which brings attention to the absence of an

international standard for the verification and validation of

evacuation models, and that the definition of ‘‘validity’’ is

itself still ambiguous and can carry different meanings and

differing levels of acceptable rigor to different experts in

different fields. They argue that the problem is further

compounded by the M&S literature’s tendency to ‘‘vali-

date’’ against data ‘‘outside their original context of use’’

(e.g., building evacuation data being used to validate ship

or stadium evacuation models). Another critique comes

from the field of neurocomputing,48 which presented

crowd-trajectory data captured in lab settings; and it argues

that collision-avoidance methods in general should take

empirically captured macroscopic statistical ‘‘truths’’ into

account when deriving their microscopic model. That is,

instead of calibrating some abstract model parameters and

‘‘hoping’’ to validate the model by achieving certain

macroscopic properties that match the statistical data, it is

argued that those learned macroscopic truths should be

known to the microscopic model beforehand, and thus

guaranteeing the desired emergent macroscopic properties.

This is a bit too restrictive, in our view, and it encourages

a model that departs from the way that actual pedestrians

process their surrounding stimuli and make collision-

avoidance decisions locally. Their recommended approach

means that each virtual pedestrian would have knowledge

about the surrounding aggregate dynamics than the real

pedestrian entity it supposedly models.

State-of-the-art methods that share our target application

of real-time crowd dynamics for film, gaming and educa-

tion (methods such as WarpDriver, ORCA, RVO, Social

Forces, discussed in Section 2) struggle to reproduce

believable microscopic effects, particularly in dense bidir-

ectional flow scenarios, due to the emergent lane rigidity

or artificial congestion. One of the causes for their artificial

congestion is the rigid 1D separation distance between enti-

ties. In contrast, CPD models use a compressible 2D area.

6. Conclusion

We presented advanced models based on CPD, an agent-

based short-range collision-avoidance model for pedes-

trians in dense crowds. We have shown our model’s ability

to reproduce visually convincing emergent crowd phenom-

ena that show high congruence to real pedestrian trajectory

data. We introduced extensions to the CPD model for

Figure 18. Motorcycle crossing through crowd moving in a
bipolar direction.

Figure 19. Ambulance trying to pass through 200 entities; tail
space caused due to the movement.

Figure 20. Simulation with an ambulance trying to pass
through 900 entities.
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crowd modeling and simulation that address the addition

of vehicles, motorcycles, and obstacles entities into a sin-

gle system, making it heterogeneous.49 We added the

Minkowski sum approach, flexibility for adding foreign

objects and simulating traffic scenarios. The developed

engine displays potential to simulate multiple scenarios of

vehicle and crowd interactions. We made use of some of

such scenarios and reviewed in-depth analysis on each case

while keeping the global variables fixed as per defined geo-

metrically derived variables and global path parameters.

The tool used in simulating has the potential for prototyp-

ing interactive simulations and cross-platform flexibility.

Our explicit 2D approach to modeling PS meant that it

can be edited and modified visually and intuitively (e.g.,

culling the front of a PS cone for pedestrians distracted on

cell phones). Additionally, the PSM computation allows

for arbitrary shapes, affording high flexibility of scene

walls, obstacles and barrier designs, a favorable property

when simulating crowd motion in architectural and urban

design contexts. The inherent compressibility of our PS

model meant that it accommodates dense scenarios cor-

rectly as opposed to existing methods that treat the PS as a

rigid 1D separation distance leading to artificial conges-

tion and unnecessary clogging of pathways.

From the simulation results, the vehicles are leaving a

trail of empty space upon forward movement which resem-

bles a real-life scenario. Likewise, the simulation results

show that upon increasing the density of the crowd, the

vehicle’s movement is restricted. Based on this result we

can determine which are the upper limits of the crowd den-

sity that will lead to a traffic jam situation. For future

development, gathering more statistical data from real-life

events or social experiments will greatly improve the beha-

vioral patterns used in these heterogeneous simulations.
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29. Kennedy DP, Gläscher J, Tyszka JM, et al. Personal space

regulation by the human amygdala. Nat Neurosci 2010; 12:

1226–1227.

30. Chattaraj U, Seyfried A and Chakroborty P. Comparison of

pedestrian fundamental diagram across cultures. Adv

Complex Syst 2009; 12: 393–405.

31. Bandini S, Mondini M and Vizzari G. Modelling negative

interactions among pedestrians in high density situations.

Transp Res Part C Emerging Technol 2014; 40: 251–270.

32. Fruin J. The Causes and Prevention of Crowd Disasters. In:

first international conference on engineering crowd safety,

London, 1993.

33. Pelechano N, Allbeck JM and Badler NI. Controlling indi-

vidual agents in high-density crowd simulation. In: pro-

ceedings of the 2007 ACM SIGGRAPH/Eurographics on

computer animation, 2007, Eurographics Association,

pp.99–108.

34. Job aids manual. Special events contingency planning.

United States. Federal Emergency Management Agency,

April 2010.

35. Van Den Bergen G and Gregorius D (eds). Game physics

pearls. 1st edition. New York: AK Peters/CRC Press, 2010.

36. Hesham O, Princy, Aburime W, et al. Observed behaviours in

simulated close-range pedestrian dynamics. In: symposium on

simulation in architecture and urban design (SimAUD 2018),

Delft, The Netherlands. 2018.

37. Morin A, Caussin JB, Eloy C, et al. Collective motion with

anticipation: flocking, spinning, and swarming. Phys Rev E:

Stat Nonlinear Soft Matter Phys 2015; 91: 763–782.

38. Shi X, Ye Z, Shiwakoti N, et al. Examining effect of archi-

tectural adjustment on pedestrian crowd flow at bottleneck.

Physica A 2019; 522: 350–364.

39. Thompson LL, Rivara FP, Ayyagari RC, et al. Impact of social

and technological distraction on pedestrian crossing behavior: an

observational study. Injury Prevention 2013; 19: 232–237.

40. Nasar JL and Troyer D. Pedestrian injuries due to mobile

phone use in public places. Accid Anal Prev 2013; 57:

91–95.

41. Schwebel DC, Stavrinos D, Byington KW, et al. Distraction

and pedestrian safety: How talking on the phone, texting,

and listening to music impact crossing the street. Accid Anal

Prev 2012; 45: 266–271.

42. Sieben A, Schumann J and Seyfried A. Collective phenom-

ena in crowds - where pedestrian dynamics need social psy-

chology. PLoS One 2017; 12: 1–19.

43. Nagy D, et al. Project Discover: an application of generative

design for architectural space planning. In: symposium on

simulation in architecture and urban design 2017, pp.59–66.

44. Rong G and Tan TS. Jump flooding in GPU with applica-

tions to Voronoi diagram and distance transform. In: pro-

ceedings of the 2006 symposium on interactive 3D graphics

and games, 2006, pp.109–116.

45. Pustylnik G and Sharir M. The Minkowski sum of a simple

polygon and a segment. Inf Process Lett 2003; 85: 179–184.

46. Shi X, Ye Z, Shiwakoti N, et al. A review of experimental

studies on complex pedestrian movement behaviors. In:

CICTP 2015, pp.1081–1096.

47. Ronchi E, Kuligowski ED, Nilsson D, et al. Assessing the

verification and validation of building fire evacuation mod-

els. Fire Technol 2016; 52: 197–219.

48. Lu W, Wei X, Xing W, et al. Trajectory-based motion

pattern analysis of crowds. Neurocomputing 2017; 247:

213–223.

49. Janapalli S, Hesham O and Wainer G. Heterogeneous crowd

simulation. In: proceedings of annual simulation symposium,

2019, Tucson, Arizona.

Author biographies

Omar Hesham has a PhD in Electrical and Computer

Engineering from Carleton University, where he

researched real-time simulation of soft-body dynamics

and dense crowds. He is currently the Visualization and

HPC Lead at Zetane Systems in Montreal, working on AI

visualization & debugging solutions.

Gabriel Wainer is Professor in the Department of

Systems and Computer Engineering at Carleton

University. He is a member of the Board of Directors of

SCS. He is the author of three books and over 350 research

articles. Prof. Wainer is Special Issues Editor of

SIMULATION, member of the Editorial Board of IEEE/

AIP CISE, Wireless Networks (Elsevier), and others. He

received the IBM Eclipse Innovation Award, the First

Bernard P. Zeigler DEVS Modeling and Simulation

Award, the SCS Outstanding Professional Award (2011),

the SCS Distinguished Professional Award (2013), the

SCS Distinguished Service Award (2015) and various Best

Paper awards. He is a Fellow of SCS.

Hesham and Wainer 543




