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ABSTRACT

Several bioinformatics methods have been
proposed for the detection and characterization of
genomic structural variation (SV) from ultra high-
throughput genome resequencing data. Recent
surveys show that comprehensive detection of SV
events of different types between an individual
resequenced genome and a reference sequence is
best achieved through the combination of methods
based on different principles (split mapping, re-
assembly, read depth, insert size, etc.). The im-
provement of individual predictors is thus an
important objective. In this study, we propose a
new method that combines deviations from
expected library insert sizes and additional informa-
tion from local patterns of read mapping and uses
supervised learning to predict the position and
nature of structural variants. We show that our
approach provides greatly increased sensitivity
with respect to other tools based on paired end
read mapping at no cost in specificity, and it
makes reliable predictions of very short insertions
and deletions in repetitive and low-complexity
genomic contexts that can confound tools based
on split mapping of reads.

INTRODUCTION

The characterization of intra-specific genomic diversity
has enormous implications for biomedical sciences
and for biology in general and is one of the principal
objectives of contemporary genomics. Recently, ultra

high-throughput next-generation sequencing [NGS (1)]
technologies have greatly facilitated ambitious genome
resequencing projects and associated studies focused on
human health [e.g. http://www.1000genomes.org/ (2)]
and on generating a wider understanding of genome evo-
lution (3,4).
One of the most interesting general conclusions to

emerge from such studies is that, contrary to long-held
assumptions, structural variations (SVs)—genomic re-
arrangements, including insertions, deletions, copy
number variations and inversions—typically explain a
very significant proportion of normal intra-specific
genetic variation (5–9). Although the widespread associ-
ation of SV with hereditary diseases and cancer (10–17)
justifies their study, the use of SVs as molecular markers in
non-human systems, for genome-wide association studies,
genetic mapping and marker-assisted breeding approaches
is also increasing.
Bioinformatics tools to detect SV with high-throughput

resequencing data tend to be specialized to accommodate
specific types of data or rely on different expected patterns
of mapping of reads from a resequenced (donor) genome
on a reference sequence in the vicinity of SVs. For
example, in the context of the 1000 genomes project (2),
mixed samples of genomic DNA from multiple individuals
have often been sequenced together as part of an effort to
generate a comprehensive catalog of variants and haplo-
types in human populations. Dedicated and highly
sophisticated tools that use probabilistic methods to
identify variations that are not present in all sequenced
individuals have been developed and shown to be highly
effective (18,19).
Tools developed to detect SVs from high-coverage indi-

vidual genome resequencing may be categorized as align-
ment based or statistics based. Approaches dependent on
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the alignment of reads to a reference sequence may include
partial de novo assembly of reads (20) or may rely on split
mapping of short reads (21). Although such methods
should be capable of precisely identifying break points,
difficulties in de novo sequence assembly, the presence of
sequencing errors, limits on the maximum detectable size
for insertions and the impact of repetitive genome se-
quences mean that they are incapable of identifying all
SV events [reviewed in (22,23)].
Statistics-based methods include read density-based

approaches that exploit the same principle as DNA hy-
bridization arrays. These tools are particularly efficient in
detecting copy number variation but cannot easily identify
the introduction of novel sequences (24,25). Paired end
(PE) read-based approaches are particularly suited for
identifying insertion and deletions. Such methods aim to
identify genomic loci where donor reads map at inconsist-
ent distances. A number of tools based on this principle
have been developed and either detect genomic loci ex-
hibiting statistically significant clustering of PE reads
with anomalous mapping distances (26,27) or compare
local distributions of mapping distances to an expected
distribution in an attempt to identify regions harboring
SVs (26,28). The first approach is more suited to the iden-
tification of long deletions, whereas the second tends to be
more computationally intensive but generally applicable.
One obvious disadvantage of statistics-based methods is
that they do not identify precise break points.
Most older approaches to detect SV from resequencing

data are based, essentially, on one of the aforementioned
metrics. However, several recent publications attempt to
incorporate multiple types of information. For example,
Breakpointer (29) uses specific coverage measurements to
identify regions potentially harboring SV and split-
mapping data to provide additional support and to fine
map break points, whereas GASVPro (30) directly incorp-
orates both read depth and mapping distance information
to increase the specificity of prediction of large deletions
and inversions. Indeed, different types of genomic re-
arrangements, even those involving only a few base pairs
of DNA, are expected to generate complex and particular
signatures in mapping patterns of PE reads. Additionally,
each sequencing reaction and reference genome has a
series of characteristics which can, in principal, impact
on methods used to identify SV. For example, each
library has a characteristic insert-size distribution, and
each sequencing reaction shows a particular profile
and frequency of sequencing errors. Furthermore, individ-
ual reference genome sequences show a particular distri-
bution of repetitive sequences. All these factors are
relevant to the selection/parametrization of appropriate
statistical tests for the identification of SVs from insert-
size perturbations.
Support vector machines (SVMs) are an ensemble of

statistics/computational techniques that have been
widely used in biological classification problems including
the recognition of micro-RNA precursors, the discrimin-
ation of coding from non-coding sequences, the classifica-
tion of differential gene expression profiles from
microarray data, the recognition of protein secondary
structure and the identification of candidate drug

targets. SVM uses a series of training data points,
each known to belong to one of two (or more) classes
of origin and described by a number of quantitative
features, and, having transformed them into a higher
dimensionality than allowed by the number of associated
features and through the use of a kernel function,
identifies the hyperplane that maximizes their separation
by class in a multidimensional space. Once the optimal
discriminating function has been established, it is used
to classify unknown instances [for an introductory
review see (31)]. Several software libraries implementing
SVM are freely available, and the method can be
adapted to function in multiple category classification
problems.

In this study, we show that the incorporation of differ-
ent characteristics of mapping data derived from PE
resequencing reads can improve the sensitivity of detection
of relatively small indels (1–30 bp) that constitute the
majority of intra-specific SV events (32). We use SVMs
to incorporate these diverse mapping characteristics to
address the indel finding/classification problem. The SV
mapping using SVMs (SVM2) software presented herein
calculates and integrates a combination of features based
on statistics and resequencing coverage measures for
windows around a given genomic coordinate. The
method does not make a priori assumptions regarding
the insert-size distribution of a particular library or on
the optimal P value cutoff to be used in any of the statis-
tical tests that it uses, rather, it is trained using a given
resequencing data set and reference genome sequence. In
this work, SVM2 was trained to discriminate genomic loci
flanking four classes of events (deletions, insertions
shorter than the library insert size, insertions longer than
the library insert size and hypervariable regions) from
normal genomic regions, although in principal there is
no restriction to the number of classes/sizes of events
that could be recognized.

SVM2 attains a similar specificity and a far superior
sensitivity than state of the art PE-based methods using
the same data and seems to be more robust than conven-
tional split mapping to the confounding effects of some
genomic contexts.

Recent surveys confirm that comprehensive detection of
SV events of different types between donor and reference
sequences is best achieved through the combination, with
rigorous filters, of predictions made by methods based on
different principles (2). In this light, the improvement of
individual predictors is of course desirable. Indeed,
resequencing is becoming ever more accessible and eco-
nomical, and in some experimental contexts, notably the
development of molecular markers for crop and animal
positional cloning and marker-assisted breeding
programs, workers are likely to prefer to use one or two
methods to maximize the detection of small to medium
insertions and deletions (1–30 bp) without the requirement
of implementing and optimizing particularly complex bio-
informatics pipelines. We provide evidence that combining
our method with split mapping could provide a reasonable
starting point for the identification of small- to medium-
sized SV events.
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MATERIALS AND METHODS

SVM features

For each chromosome, we store the read mapping data in
a sorted (ascending order, by mapping coordinates)
doubly linked list. Every node (N) in the list contains
the following information:

(1) Genomic coordinates (start end) or inner distance (ID).
(2) Coverage by paired and unpaired reads on each

strand (within the coordinates).
(3) Observed insert-size distribution of PE ‘covering’ the

node on each strand.

Consecutive positions with identical coverage statistics
are merged into single nodes, and positions with no
coverage are not incorporated into nodes. Positions and
lengths of uncovered regions can be trivially calculated
from the difference between the coordinates of two con-
secutive nodes.

For a given node N (which includes a genomic position
X), we call M (genomic position Y) the node exactly 1
insert-size downstream in covered bases. The objective is
to identify a site in the reference genome that is beyond the
SV event and corresponds to the expected position of
mapping of the partners of reads mapping to X. It is
acknowledged that bases covered by only redundant
mapping reads will lead to errors in the calculation of M
as will insertions in the donor genome.

We define the following genomic windows (in ID) X-read
length to X, X-10 to X, X to X+10 and X to X+read
length (and equivalent intervals for Y). The windows of
1 read length correspond to expected positions of peaks
of BP reads as X moves within one insert size of an SV
event, whereas the windows of 10 bases were chosen arbi-
trarily with the objective of accommodating errors in the
estimation of position Y and to aid the precise delineation
of the sharp peaks of broken pairs of reads (BPs) expected
to flank junctions of deletions in the donor genome.

For each of these windows, we calculate (for each
genomic strand) the mean total coverage per base and
normalize these values to the total coverage of X or Y,
respectively.

For each of these windows, we also record (for each
genomic strand) the mean proportion of reads mapping
to each of these windows that are BPs.

We define an additional window: X-read length to
Y+read length (in ID).

We record the length of this long window in genomic
bases, the longest interval of consecutive uncovered bases
contained within it and the total number of uncovered
bases in the interval.

For each visited node in the long window, we perform
the following statistical tests: a Z test to compare the
observed ‘upstream’ read length distribution to the
global insert-size distribution, another Z test to compare
the observed ‘downstream’ read length distribution to the
global distribution, a Student t-test (Welch) and a
Kolmogorov-Smirnov (KS) test to compare the ‘down-
stream’ to the ‘upstream’ distribution to each other. We
record the proportion of genomic positions in the window

supporting a perturbation of mapping distance according
to a particular test with a P value within the following
ranges: �10�5, 10�5 to 10�4,10�4 to 10�3 and 10�3 to
10�2.
Finally, for each node in the long window, we compute

the BPs to total number of reads ratio for each strand
and record the proportion of positions on each strand
in the window with ratios within the following ranges
0.15–0.25, 0.25–0.50, 0.50–0.75 and >0.75.
The aforementioned statistics are recorded in an

ordered vector and used as a feature set for SVM analysis.

Cluster formation and SV calling

Sites classified as non-normal and of the same type by the
SVM are merged into clusters when located less than five
bases apart on the genome. Clusters with a number of
‘non-normal’ positions that exceeds an ‘indicator cutoff
parameter’ are promoted to the status of indicators and
a comparison of mapping distances for all paired reads
mapping to the cluster and pointing toward the putative
SV event with the global mean mapping distance is used to
estimate where a complementary strand cluster/indicator
is expected to fall (two mean insert sizes plus or minus the
estimated size of the SV event in the case of deletions and
insertions, respectively). If a cluster or an indicator with
the same type of predicted event is identified in the
expected interval, an event of that type is called at the
base falling half way between the outer coordinates of
the two supporting clusters. If a cluster or indicator of
contradictory type is identified in the expected region, an
indeterminate indel (IndIndel) is called. When intervals
between two called events overlap by more than 80% of
their lengths, the predictions are merged.

Size estimation and detection of heterozygosity

The expected position of the event (or break points) is evi-
dently half way between the two clusters. Once a position
has been predicted, a more accurate estimate of the size
of the event is obtained by identifying all pairs of reads
mapping across the predicted break point and comparing
their mean insert size to the mean global insert size.
To discriminate between homozygous and heterozygous

events, we use an EM algorithm and a log-likelihood test
similar to that implemented in the software Modil (27). In
brief, for any genomic locus where an indel has been pre-
dicted, we model the mapping distances of reads covering
the predicted event data a single distribution (homozy-
gous) or (heterozygous) a pair of distributions, one of
which is constrained to the global insert-size distribution
and compute the respective likelihoods. At least 30% of
reads covering the position must be assigned to each dis-
tribution. A log-likelihood test with 1 degree of freedom is
used to verify whether the two distribution models are
significantly more likely (P value �10�3).

Coarse filters for the identification of regions potentially
containing SVs

The genomic sequence (read map) is traversed in a 50–30

direction on each strand. Only positions with total
coverage above a ‘minimum coverage’ parameter are
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considered. To avoid unnecessary calculations, the SVM is
invoked only by sites that satisfy at least one of two
‘coarse filter’ criteria: if the ratio of BP reads to mapped
pair reads overlapping the position is in the highest ‘BP
proportion parameter’ percentage of genomic sites or if
the mean insert size falls outside of ‘map distance devi-
ation’ standard deviations (SDs) of the mean of the global
insert-size distribution.

Training and parameter optimization

Randomly selected genomic regions of at least 15 kb in
length, within which no bases would invoke SVM
analysis and where all bases show coverage to expected
coverage ratios of between 0.5 and 4 are selected as tem-
plates for SVM training and parameter estimation.
To produce the training set for the SVM, we use 100

selected regions and randomly introduce a single insertion
or deletion of length 1–2500 bp to each. Real sequence
reads are then remapped to the in silico-mutated
genome. The process is repeated to give a total of 1500
indel events. To simulate the effect of hypervariable
regions, random windows of length 35–500 were selected
and subjected to random mutation at different substitu-
tion rates (10–25%). A total of 1000 simulations were per-
formed for each combination of size and substitution rate.
Each position on the positive strand upstream by less than
an insert size from in silico break points (or polymorphic
hot spots) and every position on the negative strand down-
stream by less than an insert size are labeled with the
relevant type of event (deletion, small insertion, large in-
sertion and hypervariable). For each set of remapped
reads, the initial coarse filters are re-applied and features
calculated around positions, which would invoke the
SVM. Appropriately labeled feature vectors are used in
conjunction with the libsvm facilities to train a multi-class
SVM and obtain the SVM model file. The polynomial
kernel was used in all experiments.
Several parameters required for the analysis must be

specified at runtime. The minimum coverage parameter
determines the minimum total read coverage of a site for
consideration. The ‘BP proportion parameter’ and the
‘map distance deviation’ parameters govern the invocation
of the SVM, whereas the cluster promotion parameter is
required in the definition of indicators in the post process-
ing step. These values can be determined by the user or
optimized after SVM training using provided scripts.
These tools perform simple parameter sweeps and
attempt to the select parameter values that minimize the
number of overlapping predictions and false-positive pre-
dictions with the optimized SVM model and a subset of
the simulated events that were not used in SVM training.

Data pre-processing and mapping of reads

To evaluate the proposed method, we downloaded 3.5
billion reads (1.75 billion pairs of reads) from the NCBI
short read archive: ftp://ftp-private.ncbi.nlm.nih.gov/sra.
All reads were 36 bases in length, and the libraries con-
tained theoretical insert sizes of �208 bases. Similar to
Hormozdiari et al. (28), we removed any read (and its
mate) where the average phred quality was below 20 and

pairs of reads where one read contained more than 2Ns.
This leads to the elimination of 650 million pairs. We
aligned the reads to the human genome hg18 reference
assembly using SOAP2 (33), allowing only unique
mapping reads/pairs with up to 2 mismatches/read.

This generated 1 billion uniquely mapping pairs and 40
million uniquely mapping unpaired reads.

Predictions from other tools, data download and
comparison criteria

We ran BreakDancer on our mapping data using the par-
ameters reported in the original article. PinDel predictions
from the same data set were downloaded from http://
www.ebi.ac.uk/�kye/pindel/ and Variation Hunter pre-
dictions from http://compbio.cs.sfu.ca/strvar.htm.

Repeat and gene annotations were downloaded from
the UCSC genome browser (genome-mysql.cse.ucsc.edu).

To compare different validation and prediction set, we
used the latest version of the intersectBED program from
the BEDtools (34) suite and custom Perl scripts. We used
simple overlap (�1 bp) between different sets as main cri-
terion of validation/equivalency. As the significant inter-
vals predicted by PE-based tools tended to be longer (avg
290 bp), respect to the predictions by Pindel, we extended
Pindel predictions by 60 bp upstream and downstream.

RESULTS

Rationale and description of the approach

In the vicinity of indels between a donor and a reference
genome, three types of perturbations in the ‘normal’ PE
mapping pattern are expected—in different degrees—de-
pending on the type of event (deletion in donor genome,
insertion smaller than library insert size and insertion
larger than library insert size).

First, PE reads spanning the indel will show a perturb-
ation from the expected mapping distance (increased
distance for a deletion, decreased for an insertion in the
donor genome provided that the insertion event is smaller
than the library insert size. Insertion events larger than the
library insert will lead to an absence of PE reads spanning
the junction on the donor genome). These phenomena are
expected to be observed within one library insert size 50 of
junctions of rearrangements.

Second, given sufficient sequence coverage and
presuming correct and comprehensive mapping of reads,
a peak of BP mappings is expected to be observed from
one library insert size 50 of rearrangement junctions,
toward the junctions. In the case of deletions in the
donor genome, this peak will be narrow (one read
length) as only reads mapping on the rearrangement
junction will fail to map, whereas in the case of an inser-
tion in the donor genome, this peak will extend the length
of the insertion toward the rearrangement junction.

Finally, and as a corollary to the previous observation,
the rearrangement junctions (and the region deleted in the
case of deletions in the donor genome) will show an
absence of coverage by any reads (PE or BP). A schematic
illustration of these expected patterns is provided in
Supplementary Figure S1.
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Existing tools to exploit PE mapping perform a single
statistical test, comparing the local insert-size distribution
with that for all mapped PE reads. The assumption
underlying our approach is that avoiding the use of strin-
gent statistical cutoff values by using a series of ad hoc
descriptors of read mapping patterns, supervised learning
and searching for concordance between neighboring
genomic sites, it might be possible to improve sensitivity
of SV detection without loss of specificity.

In this method, for any genomic position, we first
attempt to identify the expected mapping position for
the partners of PE reads covering that position. We then
define a series of genomic windows centered on these pos-
itions (see ‘Materials and Methods’ section and
Supplementary Figure S2). For these windows, statistics
regarding the aforementioned phenomena is recorded, and
a multi class SVM classifier is used to assign the site to one
of several different categories (‘normal’, flanking a
deletion, flanking a small insertion, flanking a long inser-
tion and flanking a hypervariable region).

In practice, as the starting position approaches a SV
event, the disposition of different types of perturbations
along the different windows changes, meaning that a
single characteristic pattern of feature value biases
cannot be associated linearly with a single type of event.
However, the advantage of SVM over hierarchical
methods such as decision tree is that it is not necessarily
‘looking’ for a single combination of feature values to
make a classification, rather, it should recognize different
patterns that were associated with a class in training.

It is of course expected that multiple sites flanking a
single SV event (upstream on each strand) will be
recognized by the SVM classifier as indicating a similar
type of event, and this expectation is exploited in a post-
processing step that detects relevant clusters of indicative
sites on each strand of the genomic sequence and calls
insertion and deletion events between complementary
clusters, where such cluster conflicts in their assignment
of the nature of their event, we assign an indeterminate
indel (IndIndel). Finally, dimensions of called events are
estimated by comparing map distances of PE reads
spanning the predicted event to the global mean insert
size, and a likelihood-based method is applied to identify
heterozygous SVs. As for other mapping distance
methods, an inherent weakness of our approach is its
relative inability to detect insertion events larger than
the PE library insert size. Indeed, although it uses BP
data and might be expected to detect some such events
in regions of high sequence coverage, it is unable to
estimate the insertion size.

Although the implementation of our approach is effi-
cient and rapid, it is not necessary to apply the SVM to all
positions in the reference genome. Our method uses initial
filters to identify a subset of genomic positions where
either the ratio of mapped unpaired reads to paired
reads or the mean insert size of reads on one strand are
potentially anomalous with respect the global situation.
Given that most SVs are very short (too short to
actually perturb the insert-size distribution), the net
effect is that the SVM is mostly invoked as a consequence
of the presence of BP reads.

The SVM itself is trained using the experimental data
and genome sequence under study, with simulated inser-
tion and deletion events. Several parameters relevant to
the analytical pipeline are also optimized automatically
during the training of the system for a particular combin-
ation of data set and genome. The method is implemented
in the software SVM2—a package written in C++ with
accompanying Perl scripts and uses the freely available
Libsvm package (35). SVM2 is rapid and requires only
limited RAM memory after the initial read mapping
phase.

Simulation

To estimate the specificity and sensitivity of our method,
we artificially implanted 9000 random insertions and de-
letions of different sizes (1–600 bp—note that beyond the
library insert size, detection of insertion events is not
influenced by dimensions of the insertion) into human
chromosome 17 (hg18 assembly) and generated artificial
reads (theoretical coverage 30X, error rate 1%) from the
mutated genome (mate pairs: insert size, 208; standard
deviation, 13 and theoretical coverage, 35X) using the
dwgsim program (36).
Results presented in Table 1 show good overall recall

rates (88% and 91% for insertions and deletions, respect-
ively) and generally low false-positive rates. The column
‘recall’ indicates percentage of simulated events that were
correctly classified as insertion or deletion (subdivided
by the actual length of the event simulated), whereas the
‘recall as any’ column shows the total proportion of
simulated events that were identified as either insertions
or deletions. It is clear that both false-positive predictions
and misclassification of the nature of events constitute sig-
nificant issues only with predictions of very short events
(less than 10 bases). An exception to this trend is provided
by insertions longer than the insert size, which are re-
covered with a slightly lower recall rate. This is unsurpris-
ing given that detection of such events relies exclusively on
the presence of BPs.

Heterozygosity

The identification of heterozygous SV events is an inher-
ently difficult problem for non-alignment-based methods.
Heterozygosity reduces apparent perturbation in insert
sizes and lowers ratios of unpaired to paired reads. Low
read depth also raises the probability of unequal sampling
of haplotypes, further complicating the issue. However,
we anticipated that with sufficient depth of coverage our
method should be able to recognize longer indel events.
Accordingly, we simulated a set of SVs of different size

(1–40 bp, 250 events/size/category) with a theoretical 40X
depth of coverage, and for each SV, we generated the het-
erozygous and the homozygous version. The results are
summarized in Table 2, for each set of SV, we computed
the recall rate for the homozygous and the heterozygous
event and the fraction of heterozygous SVs that was cor-
rectly classified as heterozygous (see ‘Materials and
Methods’ section). The results confirm that although our
method is particularly accurate in detecting homozygous
SV of any size, it lacks sensitivity both in the detection and

PAGE 5 OF 11 Nucleic Acids Research, 2012, Vol. 40, No. 18 e145

http://nar.oxfordjournals.org/cgi/content/full/gks606/DC1


correct classification of heterozygous SVs less than 20
bases in length. Additional simulations showed that, as
expected, proportions of heterozygous alleles sampled in
resequencing impacts on detection and classification
(Supplementary Table S1).

Comparison with other tools

To compare the performance of our method to other tools
using real PE resequencing data, we have taken advantage
of publicly available PE resequencing data from an an-
onymous human donor (37) generated with the Illumina

technology. The peculiarity of this data set is that a large
and consistent set of SV was previously detected and
validated using low-coverage (0.3X) longer insert
(Sanger 40+kb fosmids) from the same individual (38),
thus it has been widely used as a benchmark to compare
different SV detection tools. Indeed, the Kidd et al. data
were recently subjected to a second analysis (39), and in
this study, we consider the union of both sets of predic-
tions as a validated indel set (265 264 events).

We compared the performance of our tool with that of
BreakDancer (26) (a widely used PE-based method) that,
in previous studies of the same data set, exhibited the
highest sensitivity and specificity among PE-based tools
in detecting relatively small indels (indicatively greater
than 10 bp) and PinDel (21), a popular split-mapping
approach.

The sensitivity (the proportion of indels in the valid-
ation set that was recovered by each method, as a
function of the validated size of the indel) of each
method is shown in Figure 1A (and Supplementary
Table S2). Under this criterion, SVM2 outperforms
BreakDancer in all size categories, overall recalling 4.5
times as many events. As expected, the split-mapping
method (PinDel) is more sensitive in the detection of

Figure 1. Sensitivity and specificity of different methods with the Kidd
et al. data set. (A) Number of indels from the Kidd et al. data set
(binned by size of event in bp) recalled by each method.
(B) Proportion of predicted indels (binned by predicted sizes) that are
validated by an indel in the Kidd et al. validation set. Size bins:
size� 1, size� 2, size� 3, size� 4, 5� size� 10, 10< size� 20,
20< size� 30 and size> 30.

Table 2. Simulations of heterozygous events

Sizea Recall
rateb (%)

Correctly
classifiedc (%)

Recall rate if
homozygousd (%)

Deletions
1 10 0 83
3 10 0 87
5 13 15 94
10 40 20 98
15 53 29 99
20 63 45 99
30 85 87.5 99
40 87.5 93.5 99

Insertions
1 10 0 80
3 10 0 86
5 17 3 94
10 28 14 99
15 48 32 99
20 57 47 99
30 81 89 99
40 88 96 99

aSize of the event.
bRecall rate for the heterozygous case.
cProportion of recalled indels classified as heterozygous.
dRecall rates for equivalent (same locus) homozygous indels.

Table 1. Simulation

Size Recalla (%) Recall as anyb (%) FP rate (%)

Deletions
1–5 69 83 8.5
6–10 82 89 6.3
11–20 91 92 2
21–40 94 94 0
41–60 97 97 0
61–100 95 95 0
101–200 97 97 0
>200 97 97 0

Insertions
1–5 70 86 9
6–10 82 88 6
11–20 94 94 2
21–40 92 92 0.5
41–60 93 93 0
61–100 91 91 0
101–200 89 89 0
>200 86 86.00 0

aCorrectly classified as insertion or deletion.
bCorrectly identified locus, includes indindel and hypervariable
predictions.
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very small indels (up to 5 bp), although SVM2 recalls a
larger proportion of events over this threshold.

The number of predictions and apparent specificity by
predicted event size (proportion of predicted indels of
coinciding with any indel in the validation set as a
function of the predicted size of the indel) for each
method are shown in Figure 1B (and Supplementary
Table S3). It should be noted that the genome coverage
of the Kidd et al. data, 0.3X, represents the maximum
theoretical specificity in this benchmark. All the evaluated
methods demonstrate similar overall performance.
PinDel in particular shows a marginally better specificity
with respect to the smallest events (<10 bp), whereas the
size/specificity profile of SVM2 and BreakDancer are rela-
tively uniform at approximately 26–27% ‘validation’ for
each size bin. Both SVM2 and BreakDancer suffer an
apparent loss in specificity with regard to predicted
events greater than 30 bp or more. This last observation
is likely a stochastic effect due to the fact that larger re-
arrangements constitute a very small minority of SVs. To
partially ameliorate the low genome coverage of the valid-
ation set, we compared predictions with all events in
dbSNP 130, which contains more than 4.2 million known
rearrangements derived mostly from Sanger sequencing
data (39). The 81.5%, 80.6% and 80.4% of the predictions
made by BreakDancer, PinDel and SVM2, respectively,
correspond to known human SV events. The specificity
by size profile strongly resembles that observed with the
Kidd et al. SVs (Supplementary Figure S3A and
Supplementary Table S4). Cross referencing the predic-
tions from the various methods with the collection of
human genomic SVs provided by the 1000 genomes
project, derived from NGS data (2) (1.32 million events),
showed that 61% of BreakDancer predictions, 69% of
SVM2 predictions and 80.7% of PinDel predictions were
coincident with events present in that database; 54% of the
Kidd et al./Sanger-based validation set events were present
in the 1000 genomes database (Supplementary Figure S3B
and Supplementary Table S4).

Although the identification of very large SVs is not a
primary objective of our method, we also compared the
capacity of several methods to identify 98 long deletions
(10 kb or more) called in the original work of Kidd et al.
In this particular task, Variation Hunter, a method de-
veloped specifically for the identification of large SVs
(28) recovered 65 events, whereas BreakDancer and
SVM2 recalled 55 and 51 events, respectively. All tested
methods demonstrated a lower apparent specificity than
GASVPro (30), underlining the capacity of that method in
its specialized function—namely the detection of large
deletions.

The Venn diagram in Figure 2 shows the overlap of
validated calls made by SVM2, BreakDancer and
PinDel. The union of all methods identified 108 158 of
the 265 264 events recovered from the Sanger data
(41%); 24 842 (23%) are found by PinDel and SVM2,
and 9122 (8.5%) are identified by BreakDancer and
SVM2. Only 1730 (1.5%) are found by BreakDancer
only, whereas 49 972 (46%) are unique to PinDel and
20 974 (19%) are unique to SVM2; 87% of validated
BreakDancer predictions are also made by SVM2. Taken

together, these observations confirm that the incorpor-
ation of additional mapping information in SVM2

allows a great increase in sensitivity over methods that
use only mapping distance information. Furthermore, it
is evident that a notable proportion of events are re-
covered by SVM2 but not other methods. When
compared with the sensitivity profile by event size
(Figure 1A), it is evident that SVM2 identifies a significant
number of small events not detected by PinDel.

Accuracy of classification and genomic context of
predictions

The analysis of simulated data suggested that, for small
events, SVM2 may lack precision in classification.
Furthermore, genomic clustering of SV in variation ‘hot
spots’ may additionally complicate classification of real
events. As for the simulations, SVM2 showed a tendency
to misclassify only small events (�5 bp). Table 3 summar-
izes the classification patterns for such events, whereas
Supplementary Figure S4 illustrates profiles of SV size
prediction accuracy for SVM2. SVM2 shows a tendency
misclassify small (�5 bp) deletions rather than insertions.
Consistent with the difficulty of classifying small events,
our hypervariable and indindel predictions almost exclu-
sively contain small indels at a similar validation rate to
other categories.
Next, we asked whether for a series of size range bins,

the sensitivity by genomic context showed obvious differ-
ences between methods. Figure 3 confirms that for the
smallest events (�5 bp), PinDel outperformed the other
methods in most genomic contexts. However, the sensitiv-
ity of SVM2 in SINEs and low-complexity regions was
comparable with that of PinDel, whereas in simple
repeats, SVM2 outperformed PinDel. As expected, given
the small number of predictions by BreakDancer in this
size range, the sensitivity was low. For events of between 6
and 10 bp in size, SVM2 was the most sensitive method,
dramatically outperforming BreakDancer in all genomic
contexts. PinDel was almost as sensitive as SVM2 in DNA
transposons and non-repetitive DNA. As event size in-
creases, PinDel shows decreasing sensitivity particularly

Figure 2. Venn diagram showing intersection between validated (by
Kidd et al.) predictions by each method.
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in low-complexity regions and simple repeats (an inevit-
able property of split-mapping methods). Even for larger
(>20 bp) events, which BreakDancer was designed to
detect, SVM2 is more sensitive in all genomic contexts.
It is notable that, overall, SVM2 and BreakDancer seem
to show much less dependence on genomic context than
PinDel.
We were intrigued by the difference of apparent

specificities between methods previously observed when
using the 1000 genomes SV catalog (but not when using
dbSNP or the Kidd et al. data) as a validation set and by
the relatively large proportion of the small (<10 bp) events
found by SVM2 but not PinDel that fall in low-complexity
and simple repeat regions (10 037/19 274, 52%). We
reasoned that these observations might be linked by the
fact that the 1000 genomes catalog used split mapping to
identify small event, and showed that a notable propor-
tion (>97%) of the part of the genome deemed

‘inaccessible’ by their low coverage data, fell in regions
annotated as ‘high copy repeats or segmental duplications’
(2). Accordingly, we investigated the genomic distribution
of predictions validated by Sanger sequencing but not by
the 1000 genomes catalog by event size and method. We
observed that a relatively small proportion of the small
events (<10 bp) validated by the Kidd et al. data and pre-
dicted by PinDel but not supported by the 1000 genomes
data set fall in low-complexity regions and simple repeats
(1483/16 081, 9.25%), whereas the equivalent numbers for
SVM2 were (5991/18 450, 32%) suggesting that SVM2, or
similar methods, might effectively complement existing
tools and pipelines in the detection of very short SVs,
particularly in repetitive and low sequence complexity
areas of the genome.

Finally, we compared the frequency of predictions by
SVM2 in genic regions with the rest of the genome, rea-
soning that SV events should occur at lower frequency in

Figure 3. Sensitivity by size and genomic context. Fraction of events in the Kidd et al. data set, in different genomic contexts (tDNA=DNA
transposon, LTR=long terminal repeats, NR=non-repetitive), recalled at different size ranges [size� 5 (A), 5< size� 10 (B), 10< size� 20
(C), size> 20 (D)] by different methods.

Table 3. Classification accuracy of short indels predicted by SVM2

SVM2a Totalb Kiddc

Insertions Deletions Validation rated Misclassification ratee

Insertions 50 688 11 068 2288 13 356 (26.3%) 17.1
Deletions 46 102 3991 8111 12 102 (26.2%) 32
IndIndels 9118 1308 1049 2357 (25.8%)
Hypervariable 8503 1268 982 2250 (26.4%)

aClass predicted by SVM2.
bNumber of predictions by SVM2 by category.
cClass of the validating event in the data set.
dValidation rate for each category of SVM2 predictions (applies for small only).
eMisclassification rate for validated insertions and deletions.
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the former; 1.2% and 0.27% of predictions fell in genic
and CDS regions, respectively (using refseq genes). We
estimated the significance of the difference between
expected and observed frequencies using the Poisson dis-
tribution. The departure from the null model that predic-
tions are distributed randomly along the genome was
<10�20 for both categories.

DISCUSSION

With simulated data, both the sensitivity and specificity
attained by our method were exceptionally high,
although it should be emphasized that other methods
have generated similarly impressive results in similar
benchmarks but show, in particular, lower sensitivity
with real data (26,27). This is unsurprising as the effects
of repetitive sequences and inherent biases in sequence
coverage tend to be minimized in simulations. However,
for the study of heterozygous events, simulation for now
provides the only realistic possibility, due to the lack of
large scale validated heterozygosity catalogs associated
with individual genomes. SVM2 showed relatively poor
accuracy in the detection and classification of very short
heterozygous SV. All mapping-distance-based methods
are expected to suffer from this limitation as distance per-
turbations are diluted at heterozygous loci. In addition,
our current approach uses measures of coverage, and in
the case of heterozygous deletions, a reduction rather than
an absence of reads in the deleted region would be ex-
pected. Conversely, reduced perturbations of BP
mapping patterns are expected upstream of heterozygous
insertions. These limitations might be partially addressed
by some of the potential developments in the strategy that
are envisaged (see later). However, in simulation at least,
we note a satisfactory performance by SVM2 in the iden-
tification and classification of larger heterozygous events.

In this work, SVM2 was trained to recognize
hypervariable regions as distinct from SV events. In
practice, few predictions of this type were made. Indeed,
an examination of these predictions suggested that they
showed a similar specificity in detection of SVs as the
other categories of prediction—although all validated pre-
dictions in this category corresponded to events of four
bases or less. This is likely a function of the read mapping
strategy used. Allowing up to 2 mismatches in 35 base
reads tends to allow correct mapping of the majority of
reads in intra-specific comparisons, and in any case, per-
turbations of read mapping caused by hypervariable
genomic regions are expected to be extremely subtle.

The Bentley et al./Kidd et al. data represent one of the
few cases where extensive Sanger resequencing and SV
calling have been performed on an individual for which
PE NGS data are also available, providing an ‘independ-
ent’ validation set. For this reason, the data set has been
widely used in other studies (21,26,27) and allows imme-
diate comparisons between methods. These considerations
notwithstanding, the data set has several relevant limita-
tions that complicate interpretation of results and merit
discussion. First, the coverage by Sanger sequencing is
rather limited (theoretical coverage 0.3X), suggesting

that, even if we make the—optimistic—assumption that
all reads were mapped correctly and uniquely, at most
less than a third of the SV events between this individual
and the hg18 reference could be detected. Second, the low
coverage implies that the accurate annotation of hetero-
zygous events should be, at best, extremely limited.
Finally, the original study of Kidd et al. only attempted
to identify events of less than 100 bp in length, and al-
though a second evaluation of these data (39) was more
comprehensive, the detection of large insertions is limited
by the properties of split-mapping methods. It has been
suggested that the majority of intra-specific SVs are small
(32), and although this generalization is almost certainly
correct, our knowledge of the frequency of medium to
large events remains rather limited. Our method made
few predictions of insertions larger than the insert size of
the library. However, this is an inherently difficult
category of events to detect by any current approach
and, with the available data, it is difficult to perform stat-
istical analysis of sensitivity and specificity of tools with
respect to detection of such events.
Taken together, these observations render the objective

assessment of the overall specificity of methods, with
respect to both homozygous and heterozygous SV, ex-
tremely difficult. Additionally, the probability that a pro-
portion of the Kidd et al. and Mills et al. predictions are
heterozygous complicates estimates of sensitivity with
respect to homozygous events. In this context, we
believe that although limited in precision, apparent sensi-
tivity and specificity are the best available metrics for com-
parison of the performance of different methods. By all
metrics and validation sets used, SVM2 outperformed
BreakDancer in terms of sensitivity over a range of SV
event sizes, attaining at least the same apparent specificity.
This is perhaps not surprising given that additional
mapping information, not used by BreakDancer, is used
by SVM2. Perhaps more relevant is the observation that
SVM2 identified a large number of small SVs that were not
detected by a contemporary split-mapping method.
One alternative to the use of individual genome Sanger

resequencing as a biological validation set would be to
estimate specificity by comparing genome wide predictions
to collections of validated population level SVs [dbSNP
(40), 1000 genomes project (2)] making the assumption
that coincidence of predictions with an annotated SV
implied the presence of the same SV in the donor
genome. However, a recent study demonstrated a rela-
tively low overlap between the two aforementioned data-
bases, implying that a significant fraction of human SVs
remain undetected (39). It is also worth noting that the
1000 genomes set of SV events was generated from NGS
data. Given that our objective was to explore the potential
of this very type of data to uncover additional, previously
undetected events, we consider that the use of ‘independ-
ent’ data from the individual genome under study as our
principal validation set to be a justified strategy.
Nevertheless, comparisons of apparent specificity of dif-
ferent methods when ‘validated’ by Sanger or NGS-based
data sets showed interesting patterns, particularly with
respect to the genomic context of indel events.

PAGE 9 OF 11 Nucleic Acids Research, 2012, Vol. 40, No. 18 e145



The ‘elephant in the room’ of all methods to determine
locations of SV from resequencing data, be they based on
split mapping or on statistical approaches, is the abun-
dance of repeated sequences in complex genomes.
Sequence reads (from any technology) that fall within per-
fectly repeated regions cannot be unambiguously mapped.
PE approaches (dependent on library insert size and
repeat length) can ameliorate this problem to some
extent, as can probabilistic mapping strategies (28), but
the fundamental problem remains. For example, SVs
within recent segmental duplications present an almost
insurmountable problem for all approaches apart from
read-depth methods—and even these will not be able to
specify the location of the event. For now, the most
promising way to address the problem of repeats may be
the maximization of read length and the use of different
insert-size libraries. The use of larger insert-size libraries
will aid the detection of larger SV events by insert-
size-based methods (and contribute to an additional loss
of accuracy in the identification of small indels by such
methods). Conversely, as the production of longer
resequencing reads using NGS technologies becomes
more commonplace, the sensitivity of split-mapping
methods is expected to increase for small to medium size
events and to reduce the impact of repetitive sequences on
the performance of all methods. Despite these problems,
we note that our analyses of genomic context of predic-
tions and validated predictions suggest that in simple
repeats and low-complexity regions, SVM2 attained
higher sensitivity than other methods tested, even for
small SV events. The observations that a large number
of small SV events detected by Sanger resequencing, but
not by PinDel (or 1000 genomes) fall in simple repeat and
low-complexity regions, and that a larger proportion of
validated SVM2 than PinDel predictions fall in such
regions are interesting. In this light, the similarity of
overall ‘specificity’ between methods when evaluated
with the Kidd et al. data or with dbSNP and the differ-
ences in this metric with respect to the 1000 genomes
database is intriguing, particularly given the types of
data used to construct these catalogs. Simple repeat/low-
complexity regions represent a notable proportion of the
‘inaccessible’ genome described by the 1000 genomes con-
sortium (2). We suggest that our method, or others based
on similar principles, might be of particular use in address-
ing SV in such regions. Indeed, it is interesting to note
that Breakpointer (29), a recently proposed method that
incorporates information from read depth, mismatch
profiles and split mapping to identify genomic rearrange-
ments also showed an increased sensitivity to SV in repeti-
tive regions with respect to PinDel. However,
Breakpointer, unlike PinDel or SVM2, is apparently not
capable of identifying the very smallest (<3 bp) SV events,
again emphasizing the value of using complementary
approaches dedicated to the detection of different types
of events.
We can envisage several potential developments to the

approach presented in this study, some of which might be
expected to improve the performance with respect to het-
erozygous SV. First, sequence coverage might be
improved by using split mapping in the initial generation

of read maps (herein we have used only gapless align-
ment). Second, additional features, for example the
gapless and gapped alignment coverage for each
genomic site could be incorporated into the SVM
analysis. Another possible step would be to use positional
constraints (based on SVM2 predictions) in split mapping
of reads as a post-processing step in establishing add-
itional support for events and in fine mapping positions
of SV as currently implemented in Breakpointer (29).

In conclusion, we have shown that inclusion of more
detailed information on the local patterns of read
mapping can notably enhance the sensitivity of detection
of SV events by non-split-mapping methodologies.

Furthermore, we showed that insert-size-based SV de-
tectors such as SVM2 can complement split-mapping
approaches in the localization of ultra-short SV events,
particularly those in repetitive and low-complexity
regions of the genome.
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