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Abstract

In vitro selection using mRNA display is currently a widely used method to isolate functional 

peptides with desired properties. The analysis of High Throughput Sequencing (HTS) data from in 
vitro evolution experiments has proven to be a powerful technique but only recently has it been 

applied to mRNA display selections. In this Perspective, we introduce aspects of mRNA display 

and HTS that may be of interest to physical chemists. We highlight the potential of HTS to analyze 

in vitro selections of peptides and review recent advances in the application of HTS analysis to 

mRNA display experiments. We discuss some possible issues involved with HTS analysis and 

summarize some strategies to alleviate them. Finally, the potential for future impact of advancing 

HTS analysis on mRNA display experiments is discussed.
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1. Introduction

The development of peptides and proteins with desired activities is one of the great 

challenges of biotechnology. While rational design is an active field of research and can be 

applied in certain cases1–4, very often, the sequence-structure-function relationships are not 

understood with sufficient depth to employ rational design. In these cases, ‘irrational’ 

evolutionary strategies can be used, in which candidate sequences are selected or screened 

from a large number of variants on the basis of activity. Such methods have been highly 

successful, as recognized by the 2018 Nobel Prize in Chemistry. In vitro selection is of 

particular interest to physical biochemistry due to the ability to carefully control the 

selection environment, which enables probing of a variety of phenomena, including 

molecular interactions, folding behavior, and evolutionary pathways. During in vitro 
selection, functional molecules with desired properties are isolated from very large pools of 

random (or semi-random) sequences. This is achieved through iterative cycles of selection, 

amplification, and mutagenesis, until the final pool is sufficiently enriched with variants 

exhibiting the desired properties (Fig. 1). While it is often applied to nucleic acids, in vitro 
selection, when combined with peptide display technologies, can identify functional 

peptides of interest. In particular, mRNA display is widely used for this purpose, and it will 

be the focus of this Perspective.

High Throughput Sequencing (HTS) data analysis for in vitro evolution experiments has 

become increasingly common in the last decade for DNA and RNA molecules. However, 

this approach has not been as widely applied to mRNA display selections. The focus of this 

Perspective is to examine possible applications of mRNA display and HTS in contexts 
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relevant for the field of physical chemistry, such as the improvement of binding kinetics 

measurement and the understanding of molecular fitness landscapes. We discuss the 

capability of HTS analysis applied to in vitro selections of peptides and review recent 

progress made in the field. Based on our experience, we discuss some possible issues that 

might arise during the sequencing process or the data pre-processing steps. Finally, we offer 

our perspective on possible future applications of HTS and mRNA display experiments, and 

discuss the potential effect that future improvements in sequencing technology might have 

on the field.

2. In vitro selection of displayed peptides

While directed evolution itself can be carried out at an organismal level, molecular selection 

techniques, which allow access to very large, diverse libraries, rely on linking phenotype and 

genotype. In other words, the physical isolation of a protein exhibiting a particular 

phenotype must also recover its sequence information, which can be amplified, mutated, and 

expressed. Thus display technologies are essential to the in vitro selection of peptides and 

protein ligands5. In this Perspective we focus on display techniques that accommodates 

pools of very high diversity, particularly mRNA display, and their combination with high-

throughput sequencing (HTS) methods. In this section we introduce different display 

technologies and how mRNA display compares with them.

2.1. Phage display of peptides

Broadly speaking, protein display approaches can be classified into two groups: those that 

require the peptide libraries to be cloned and expressed using cells (cellular) and those in 

which expression and display are achieved without the need for cells (acellular). One of the 

most widely used techniques for functional peptide selection is phage display, a cellular 

technique in which the library proteins are displayed by fusion to an outer coat protein of a 

bacteriophage. The diversity of phage display libraries is fundamentally limited by the 

efficiency by which bacteria can be transformed, and is therefore up to ~109 variants5. 

Typically, in this system, a short random sequence (encoding peptides roughly 6 to 45 amino 

acids long5, 6) is fused to a phage coat protein (e.g., the minor coat protein pIII, or, for short 

peptides, the major coat protein pVIII of the filamentous phage M13). A library of phages is 

created with each phage particle displaying the sequence encoded on its individual genome. 

The recombinant phages are produced and amplified using E. coli, purified, and subjected to 

selective pressure, such as binding to a molecule attached to a solid support. By cycling 

through the amplification and selection steps, phages displaying peptides with a desired 

phenotype can be enriched. The phage itself links the genotype (carried in its genome) with 

the phenotype (expressed as a fusion to its proteinaceous coat), and selected peptides can be 

sequenced after sufficient enrichment. Phage display is suitable for selection of peptides that 

can be used in antibody development, study of protein-protein interactions, and mediation of 

protein-ligand interactions5, 7. A limitation, however, is protein length, because peptides that 

are too long often interfere with phage assembly and/or infectivity, leading to an undesirable 

source of selection bias8. This can be somewhat mitigated by reducing the display valency, 

but other cellular approaches may be preferred when longer sequences are needed. Phage 

display has been extensively reviewed elsewhere9, 10.
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The phage genotype-phenotype linkage is exploited in another cellular method, called 

Phage-Assisted Continuous Evolution (PACE)11. In PACE, a library of plasmids encoding 

an evolvable gene is transformed into E. coli. The host cells also contain plasmids that 

express phage proteins, but expression of an essential gene, pIII, is suppressed. Instead, pIII 

is only expressed if the selection plasmid has the desired activity, enabling production of a 

functional phage. Phage encoding enzymes with higher activity produce more pIII, in turn 

producing more viable phage that can infect more cells, propagating their genotype. The 

major advantage of this system is faster evolution allowing many generations of selection in 

tandem; as its name suggests, PACE is continuous and does not require manual intervention 

to cycle through a selection scheme. PACE has drawbacks, though, primarily in the difficulty 

of the experimental design and implementation, genetic engineering, and use of custom-built 

apparatus that may be difficult for a non-expert to implement.

2.2. Acellular display of peptides

A primary drawback of cellular approaches, whether phage display or otherwise, is library 

size, which is limited by the number of cells that can be infected or transformed by unique 

genotypes. In selection experiments, the probability of discovering sequences of high 

activity is proportional to the size of the initial library, all else being equal. In other words, 

the larger the initial library, the more likely one is to find the rare, high activity sequences, 

and thus larger libraries are fundamentally desirable. For standard proteins composed of 20 

amino acids in which N positions are allowed to be variable, the size of sequence space is 

20N (≈101.3N), which becomes experimentally intractable in the lab for N > 12 if one desires 

full coverage of the sequence space. Whether full coverage of sequence space is important 

depends on the scientific or engineering problem at hand. Full coverage of sequence space is 

of special interest for understanding fundamental questions about potential evolutionary 

pathways. However, if the purpose of the study is the engineering goal of identifying 

functional molecules, the completeness of coverage of sequence space is not intrinsically 

important. Instead, the frequency of sequences with the desired phenotype within the space 

of sequences explored, and its ratio to the library size, is the critical parameter, and is 

heavily dependent on library design. With sufficiently efficient selective amplification of 

active sequences, it should suffice to have a library large enough to have one (or a few) of 

the sequences exhibiting the desired phenotype. Large library sizes can be achieved by 

acellular methods, which are limited by physical constraints on concentrated biomolecular 

solutions (e.g., protein aggregation) rather than much smaller biological constraints such as 

the rate of transformation or infection.

Two widely used acellular approaches for protein selection and evolution are ribosome 

display and mRNA display (Table 1). Library diversity using these methods usually is 1012–

1014 variants, surpassing the cellular methods by orders of magnitude5, 12–14. In addition to 

the increased library size due to lack of need for transformation, acellular approaches show 

reduced biases by avoiding cellular expression (e.g., the toxicity of protein sequences is not 

relevant in acellular approaches). Like cellular methods, acellular methods are amenable to 

combination with diversity-generating techniques that mimic natural evolution: error-prone 

PCR is used to introduce random mutations, gene shuffling (recombination) is used to 

generate permutations of mutations, and non-natural amino acids can be introduced.
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In order to create the physical link between genotype and phenotype, both ribosome display 

and mRNA display take advantage of the fact that an mRNA and its encoded protein, while 

not covalently bound, are in intimate proximity during translation. Thus, manipulation of 

events surrounding termination of in vitro translation can capture an mRNA together with its 

newly expressed protein molecule. In ribosome display15–17, the mRNA and the translated 

peptide or protein product are held together non-covalently by the ribosome. To accomplish 

this, the stop codon of the gene is deleted, and therefore the ribosome does not dissociate at 

the end of mRNA translation. This ternary complex of mRNA, ribosome and peptide is 

further stabilized mainly through high Mg2+-concentrations and incubation at low 

temperature. While this complex can be stable for days, any subsequent selection conditions 

are limited to those that preserve the integrity of the mRNA-ribosome-peptide complex. 

When more physiological and/or stringent conditions are of interest, mRNA display is an 

important alternative (Table 1).

3. mRNA display

mRNA display is a selection and evolution technique for functional peptides and proteins 

that is performed entirely in vitro18, 19. Like ribosome display, mRNA display can 

interrogate very large libraries of peptide variants, being orders of magnitude larger than 

libraries of other display technologies20. However, instead of using a ribosome to connect 

the mRNA and its peptide in a non-covalent ternary complex, the mRNA itself is covalently 

attached to the peptide. In an idealized sense, mRNA display is a minimalistic version of 

display techniques as the genotype (mRNA) and the phenotype (polypeptide) are connected 

by covalent linkage through a small molecule. Specifically, the 3′-terminus of the mRNA is 

modified by the small molecule antibiotic puromycin, which is a structural mimic of a 

charged tRNA and bears a free amine analogous to that of an aminoacyl-tRNA (Fig. 2). At 

the end of in vitro translation of the mRNA into the corresponding protein, the puromycin is 

‘mistaken’ by the ribosome as a charged tRNA and then covalently linked to the nascent 

peptide chain. After this reaction, the ribosome can be dissociated and the mRNA-displayed 

protein can be isolated and used as desired. This stable covalent link in effect renders every 

RNA sequence encoding its polypeptide directly selectable by the polypeptide’s phenotype, 

and also amplifiable after selection by reverse transcription and PCR.

Progress of the selection is commonly monitored by measuring the recovery of mRNA-

displayed proteins during the selection step, which is expected to increase over rounds if 

active variants are being selected. This measurement estimates the bulk activity (binding or 

catalysis) of the library of enriched variants. When the desired variants have been 

sufficiently enriched, the proteins are identified by DNA sequencing and subsequently 

analyzed individually as appropriate for the particular activity. In a complementary 

approach, the progress of the enrichment can also be monitored through DNA sequencing of 

the library after each round of selection. The comparison of populations of variants over the 

course of selection can reveal the enrichment of dominant proteins.

As with other selection techniques, the general biophysical nature of the selectable entity 

should be kept in mind. In this case, the mRNA-protein fusion is mostly RNA by mass. With 

an RNA monomer being roughly three times the mass of an amino acid and each codon 
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being three nucleotides long, the mRNA-protein fusion is approximately 1/10 protein by 

mass. A fortunate consequence of this is that the fusion benefits from the high solubility of 

the negatively charged RNA. Thus, while random protein sequences are prone to 

aggregations21, random mRNA-protein fusions are less so. Solubility can be further 

improved by a selection preceding the intended selection (a ‘pre-selection’), in which the 

soluble fraction itself is selected. On the other hand, the covalent linkage of the mRNA to 

the peptide means that it is possible for an mRNA-protein fusion to survive a selection due 

to activity of the mRNA, not the peptide. For example, a selection may inadvertently result 

in ribozyme or aptamer sequences. This outcome can be guarded against by strategies such 

as ‘protection’ of the mRNA in a duplex with complementary DNA. It is also possible that 

the presence of the RNA affects the peptide’s activity, e.g., by effects on folding, such that a 

fusion exhibiting a particular activity may not exhibit the same activity when expressed as an 

isolated peptide. In addition, the selection step often requires experimental measures that 

should be kept in mind during data interpretation, such as the need to attach an affinity tag to 

the substrate to render selected molecules isolable. As with any in vitro selection 

experiment, the resulting ‘hits’ must be validated by additional assays. Nevertheless, due to 

the minimalist display design, the stability of the covalent link, and the freedom to operate 

under a wide range of conditions in this in vitro format, mRNA display is a powerful method 

for peptide or protein display systems.

mRNA-displayed peptide and protein libraries have regularly been selected to isolate protein 

binders and, in some cases, even enzymes22, 23. For example, mRNA display has been 

utilized to study protein-protein interactions, or interactions between proteins and small 

molecules or other targets24–26. mRNA display has also been used to display cyclic peptide 

libraries, enabling the discovery of bioactive macrocycles as potential drug candidates27–29. 

More detailed reviews of the mRNA display technology and its applications can be found 

elsewhere24, 28, 30–33. Furthermore, mRNA display has proven to be particularly suitable for 

the investigation of fundamental questions. For example, mRNA display selection can be 

used to discover entirely de novo proteins from libraries of randomized polypeptides, with 

implications for the potential origin of the earliest functional proteins34, 35. Another example 

is using mRNA display to mimic natural Darwinian protein evolution in the lab to examine 

protein fitness landscapes36–39. The high versatility of mRNA display methods adds value to 

its potential benefits for the in vitro selection of peptides and proteins.

4. High throughput sequencing of mRNA display selections

Sanger sequencing has been widely used to analyze the outcome of mRNA display 

selections. While the low throughput of Sanger sequencing is usually sufficient to identify 

the winning proteins from a highly enriched library at the end of a selection, additional 

information on alternative variants with lower abundance is limited. Also, the abundance of 

a sequence often does not accurately predict its activity, and even enrichment can be a noisy 

correlate to binding affinity38, 40. Monitoring the progress of enrichment throughout a 

selection by Sanger sequencing is also very challenging or even impossible because the 

active protein variants are in the vast minority during all but the last rounds of selection. In 

contrast, high throughput DNA sequencing can overcome these challenges. A sequencing 
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depth of millions of reads potentially allows for the identification of many more active 

proteins with a wider range of activities, as opposed to only the most abundant variants.

High-throughput sequencing (HTS) refers to a number of technologies capable of producing 

a large amount of sequence data (Table 2). HTS methods are highly scalable, with some 

allowing a large number of different variants (thousands to millions or even billions) to be 

sequenced in parallel. HTS methods are also referred to as next-generation sequencing 

(NGS) or second-generation sequencing (2GS) in the literature. However, the terms NGS 

intuitively refers to the most recent sequencing technology, hence, it has been progressively 

abandoned in literature since the advent of more recent long-read sequencing methods. In 

the last 20 years, the data output capacity has outpaced Moore’s law and the associated costs 

have dropped almost at the same rate. While the sequencing of one entire human genome in 

the Human Genome Project took 13 years and cost nearly three billion dollars41, nowadays 

many whole human genomes can be sequenced within a single day for approximately a 

thousand dollars each. HTS technologies have tremendously impacted several fields of 

biological research and have opened the door to new approaches in medicine, such as in 

personalized medicine42–44.

The sequencing market is nowadays dominated by the Illumina platform. However, several 

other companies offer sequencing platforms that use different technologies (Table 2), which 

present different advantages and disadvantages. Illumina’s high popularity is mainly due to 

the sheer throughput and low cost, such that for genomic sequencing applications high 

coverage can be readily obtained. However, a major limitation is the length of individual 

sequence reads. For longer reads (more than a few hundred base pairs), other sequencing 

technologies are preferable or necessary (Table 3). Sequencing platforms capable of long 

reads usually have a higher error rate associated with them, but often strategies can be 

devised to circumvent this problem (e.g., multiple effective reads of the same base), and 

technologies are constantly under development in this highly competitive area. Detailed 

comparisons among different sequencing methods can be found elsewhere45–48.

In mRNA display selections, HTS enables the tracking of evolutionary paths of selected 

sequences throughout the selection and evolution process, as well as measurement of the 

distribution of activity of proteins over sequence space. A clear impact of HTS is that the 

high depth of sequencing can reveal a greater number of active sequences, especially those 

without closely related neighbors. Although such sequences might be rare, they could 

exhibit high activity and thus be of interest. Also, a practical benefit of deep sequencing is 

the potential for reducing the number of cycles required to identify active clones. Without 

HTS, a selection is usually pursued until the active variants represent a majority of the 

library, so that a small number of clones subjected to Sanger sequencing would identify the 

‘winning’ sequences. With HTS, however, the selection can be stopped relatively early and 

clones selected on the basis of the rate of their enrichment, even if they are present at 

somewhat low relative abundance (e.g., <1%)40. In summary, large sequencing depth while 

tracking selections can enable both improved identification of active clones as well as a 

better understanding of the evolutionary process. We discuss in Section 5 below some 

important applications in which NGS is transforming our understanding of fundamental 

problems.
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Given the unprecedented increase in data, an interesting question is whether NGS can allow 

one to entirely circumvent the evolutionary process during discovery of functional peptides 

from a diverse library. With unlimited sequencing capability, one could imagine sequencing 

the starting library, subjecting the library to a single screening reaction, and then sequencing 

the selected pool. In principle, a comparison of the composition of the pool before and after 

the screen should yield estimates of the relative activities of all of the different sequences in 

the library. Whether this is attainable in practice depends on the library size. In directed 

evolution experiments, initial libraries are generated to, ideally, cover as much sequence and 

structural diversity as possible while targeting the activity of interest; the larger the library, 

the greater the chance of discovering rare, active sequences. Libraries generated using 

mRNA display methods can typically contain up to ~ 1014 different variants. While Sanger 

sequencing could yield perhaps a few hundred sequences, massively parallel HTS methods 

can read up to 1010 (as of 2019, Illumina’s NovaSeq 6000 System can yield a maximum of 

20 billion reads per run49). However, despite the high number of different variants that can 

be sequenced nowadays, the number of variants that can be explored experimentally in the 

initial library is still higher. Therefore, if the initial library has fewer than ~1 billion variants, 

it is conceivable to use HTS effectively as a screen. But if mRNA display is used for 

exploring extremely diverse libraries, at least a few rounds of selection are currently 

necessary to reduce the complexity of an mRNA display library to a tractable size.

5. Molecular fitness landscapes

In molecular evolution, the fitness of a sequence is a quantitative measure of its evolutionary 

favorability, and can be defined in multiple ways in vitro, depending on experimental 

context. The function of fitness in the multidimensional space of all possible sequences is 

known as the fitness landscape. In simplified terms, the fitness landscape can be described as 

a series of peaks (corresponding to families of related sequences with elevated fitness) 

emerging above the background (corresponding to regions in the sequence space of low or 

zero fitness). Evolution over the fitness landscape can be conceptualized as a random walk 

with a bias toward climbing hills37, 50. Knowledge of the fitness landscape is critical for 

understanding molecular evolution, as evolutionary outcomes could be predicted, in 

principle, given complete knowledge of the fitness landscape in a particular environment. 

However, prior to HTS, empirical data on fitness landscapes was quite limited.

To understand the importance of HTS for examining fitness landscapes, let us consider how 

the shape of these landscapes influences natural selection. Under conditions in which 

selection pressures are strong, as is common during in vitro selection, sequences evolve by 

local uphill climbs over the landscape. Over a perfectly smooth peak, one could imagine 

easily reaching the global optimum through a continuously uphill climb. However, if the 

landscape contains many local optima with valleys separating them from the global 

optimum, populations of sequences may become trapped on the local optima37, 51. Thus, the 

ability of natural selection to discover an optimal sequence is heavily influenced by the 

ruggedness of the fitness landscape.

One measure of ruggedness is epistasis, which describes how different sites along the 

sequence interact to determine the fitness contribution of each mutation. In other words, in a 
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landscape with epistasis, the genetic background of a mutation influences how beneficial or 

detrimental that mutation is. Sign epistasis describes the situation in which the effect on 

fitness of a single mutation is either positive or negative depending on the presence or 

absence of another mutation. Reciprocal sign epistasis corresponds to a particular case of 

sign epistasis in which mutations that are independently advantageous became jointly 

unfavorable (or vice versa). Such epistasis is particularly important for the landscape, as it 

leads to local optima52. Epistasis is therefore an important feature determining the viability 

of individual evolutionary pathways of protein sequences37. Calculations to measure 

epistasis in experimental fitness landscapes have been reviewed elsewhere53.

To map fitness landscapes, individual sequences would be sampled and their fitness 

determined (such as by sequencing). Let us consider how the depth of sampling influences 

our ability to probe ruggedness and epistasis. In the most simple, smoothest landscape (i.e., 

that with a single peak), the absence of local maxima implies that under a regime of strong 

selection and weak mutation, evolution starting from any point in sequence space will end in 

the global optimum. Generally, sparse random sampling on these topographies will still give 

an adequate representation of the landscape, because the fitness of unsampled points in 

sequence space can be interpolated using an assumption of additivity among mutations (Fig. 

3a). In contrast, a highly rugged landscape would occur if the fitness of related sequences 

were totally uncorrelated (Fig. 3c). Evolution on this type of landscape will almost certainly 

not end in the global optimum, and populations will be ‘stuck’ in peaks corresponding to 

local maxima. In these topographies, sparse random sampling cannot give a proper 

representation of the landscape. Although these two cases (completely correlated and 

completely random fitness landscapes) are interesting as theoretical limits, most empirical 

landscapes exhibit an intermediate degree of ruggedness (as well as a certain degree of 

correlation), lying somewhere in between these two limiting cases. (Fig. 3b). The 

ruggedness of the landscape ultimately determines whether subsampling of sequence space 

can result in a trustworthy representation of the topography. Severe undersampling of a 

rugged landscape would miss many epistatic correlations. For realistically rugged 

landscapes, high sampling levels, enabled by HTS, are essential for understanding the fitness 

landscapes.

The issue of adequately sampling fitness landscapes resembles the core idea behind the 

Nyquist–Shannon sampling theorem for digital signal processing54. In this field, sampling 

refers to the process of converting a continuous signal into a string of discrete values. The 

theorem states that, for a given continuous function, there is a critical, minimum rate of 

sampling for which perfect reconstruction of the function is guaranteed, this rate being at 

least twice the maximum frequency response of the signal. That is, fN=fS/2, where fN is the 

critical frequency (also called Nyquist frequency) and fS is the sampling frequency. 

Similarly, for a given sample rate, there is a maximum bandlimit or frequency that ensures 

perfect reconstruction. For example, in the case of a sine wave, sampling at less than twice 

the maximum frequency will lead to a lower frequency sine wave. This phenomenon is 

known as aliasing (Fig. 3d). Sampling at more than twice the maximum frequency ensures 

perfect reconstruction of the wave function. In the case of fitness landscapes, whether the 

number of sampled sequences is large enough to reconstruct the topography of the fitness 

landscape depends on the topographical features of the landscape, which is determined by 
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the epistatic interactions. In this context, rugged landscapes are at a higher risk of suffering 

‘aliasing’.

In addition to mapping epistatic landscapes, which is discussed further in Section 6, the 

combined use of mRNA display libraries and HTS methods can provide a direct view into 

the evolutionary history of peptides over the course of selection37. Like Sanger sequencing, 

HTS can identify the different families of sequences selected for high activity at the end of 

the selection, but with higher depth. Additionally, it can provide valuable information on 

sequence composition at different points of the selection, i.e., ‘snapshots’ during evolution. 

At each snapshot, deep sequencing can reveal the number of families of similar sequences, 

the size of each family present, as well as information about the common motifs of a family 

or the different motifs across families. Merging the sequencing data across rounds of 

selection thus can provide a window into the details of the evolutionary process. For 

example, one can estimate how the number of families and their sizes changed over the 

selection, at which point of the selection the different families emerged (or were left behind) 

and how the different families compete with and related to each other. Importantly, one may 

potentially trace the evolutionary trajectory of the most active families across different 

rounds of selection.

6. Recent applications combining mRNA display and HTS

The analysis of High Throughput Sequencing (HTS) data from in vitro evolution 

experiments has only recently been applied to mRNA display selections. So far, studies 

combining both techniques have primarily focused on understanding the effect of epistatic 

interactions in a peptide fitness landscape, improving the characterization of peptide ligands 

and mapping a protein-protein interactome. These promising studies highlight the potential 

benefits of using HTS to understand and predict evolutionary pathways, and to accelerate the 

quantification of peptides’ binding affinities.

6.1. Epistasis

Many empirical examples of epistasis are known in local sequence space for proteins, in 

which a combination of mutations has an effect deviating from the sum of the effects of the 

individual mutations, but systematic characterization of epistatic interactions through larger 

sequence spaces was challenging, and indeed a herculean task, before HTS. In 2014, Olson 

and colleagues quantified the effects of all pairwise epistatic interactions in the IgG-binding 

domain of protein G (GB1, 56 amino acids in total) using a combination of mRNA display 

and HTS39. The relative binding ability of all single and nearly all double amino acid 

mutants of IgG-FC was estimated by measuring the frequency of each variant before and 

after affinity enrichment. Negative epistasis (in which fitness of the double mutant is 

decreased compared to the linearly added effects of the single mutants) was found to be 

dominant and to occur between combinations of destabilizing mutations, i.e., combining two 

deleterious mutations gave a double mutant that was even worse than expected. The 

predominance of negative epistasis had been previously observed in protein enzymes and 

RNA molecules, suggesting that negative epistasis may be a common feature of biological 

parts55–58. In comparison, positive epistasis (in which fitness of the double mutant is 
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increased compared to the linearly added effects of the single mutants) was found to be rare. 

These quantitative comparisons, requiring measurement of hundreds (or more) of mutants, 

are essentially enabled by HTS, as collecting the requisite data would be extremely tedious 

by other means.

Another important finding was that many mutations that were generally deleterious were 

found to be beneficial in at least one alternative mutational background. This is relevant 

because, although rare, positive epistasis can substantially expand the functional portion of 

sequence space, and thus, the accessible evolutionary pathways. Again, the depth of data 

from HTS was required to discover these rare situations, which may have an outsized 

impact. An illustrative example of the importance of these rare pathways came in 2016, 

when the same group used mRNA display and HTS to experimentally characterize the 

fitness landscape of four amino acid sites in protein GB1, corresponding to 204 = 160,000 

variants36, including several mutations with interactions known to be positively epistatic39. 

Reciprocal sign epistasis (i.e. mutations that are separately advantageous became jointly 

unfavorable) blocked many direct evolutionary paths through genotype space59, leading to 

an appearance of difficult optimization over the local landscape. However, these ‘dead end 

paths’ could be circumvented by following longer indirect paths through consecutive gains 

and losses of mutations. In other words, they are overcome through reversible mutations that 

avoid the need to lose fitness at any particular step. This mechanism allows protein 

optimization by natural selection (i.e., uphill climbs) despite epistasis. The indirect paths 

reduce the constraint on adaptive protein evolution, supporting the idea that the previously 

ignored regions of the functional sequence space may be crucial for the evolution of 

proteins. This highlights the qualitative importance of HTS, which allows much deeper 

exploration of sequence space and discovery of rare but important features, for 

understanding evolutionary trajectories.

6.2. Accelerated discovery and characterization of peptide ligands

A major application of in vitro selection techniques is the generation of high affinity 

polypeptide ligands against individual targets of interest. Usually, several rounds of selection 

are performed until most clones are functional (enriched)60. Recently, a new approach 

combining mRNA display with continuous-flow magnetic separation analyzed by HTS has 

markedly accelerated the process, to the point of achieving the selection of human IgG 

binders with nanomolar affinities in only a single round61. This highlights the practical 

benefit of HTS in saving experimental time and resources.

One consequence of using HTS to analyze in vitro selection is that one may obtain quite a 

long list of candidate sequences. Additional experiments are required to quantify relative 

binding affinities for each candidate sequence. Even for a relatively small number of 

sequences, this characterization step is often labor-intensive and represents an experimental 

bottleneck in analysis of selected sequences. Given results from HTS, the problem is 

seriously compounded by the number of candidates. To solve this problem, the Roberts 

group recently used a combination of mRNA display and HTS to calculate the on- and off- 

rates for many thousands of mRNA-displayed ligands simultaneously, without synthesizing 

or purifying individual sequences38. To do so, they devised a method based on the fact that 
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the on- and off- rates of a sequence (kon and koff) determine its fractional presence at 

different time points during the selection step. That is, sequences with high on-rates are 

present in higher fractions at early time points because they bind quickly to the target; 

however, at later time points, as the fraction of ligands with slower on-rates bound to the 

target increases, the fraction of the ‘fast’ ligands bound to the target decreases. Following 

this idea, they mixed a library of mRNA–peptide fusions with an immobilized target and 

removed an aliquot at different time points for washing, PCR, and deep sequencing. The 

resulting HTS data yielded the identity of all the ligands bound to the target at each time 

point and their frequencies, which could be used to calculate the on-rates of each ligand. 

Off-rates could be measured in an analogous fashion, and binding affinities (Kd = koff/kon) 

were therefore obtained for thousands of ligands in parallel. This example illustrates the 

creative use of HTS for not only tracking sequences during evolution, but also for massively 

parallelizing a binding assay.

6.3. Interactome

An interesting application of HTS in mRNA display capitalized on the fact that its depth 

enables analytical coverage of the proteome, allowing production of high-throughput 

protein-protein interactome datasets25. In 2012, Fujimori et al. described the first complete 

interactome for proteins that interacted with mouse interferon regulatory factor 7 (Irf7), by 

using mRNA display technology combined with HTS62. The accuracy of the analysis was 

validated by comparing the results with real-time PCR assays for randomly selected 

interacting regions. The high degree of overlap between the positives found from the HTS 

analysis and those from the real-time PCR assays confirmed the high reliability and 

coverage of the method. An advantage of this method over others (e.g., yeast two-hybrid 

system) is the ability of mRNA display to access a larger sequence space of potential 

proteins.

7. Possible issues and suggested practices

The high depth of HTS analysis requires additional attention to detail and can reveal biases 

in the selection, the library design or the library synthesis that would otherwise be 

undetectable or considered minor. In addition, choices during the sequencing and data 

analysis can strongly influence the error rate and the number of full-length sequences 

recovered at the end of the bioinformatic pre-processing. Some aspects of the sequencing 

and preliminary bioinformatic treatment that may be considered to produce acceptable 

processed data and facilitate posterior analysis are discussed here, based on our experience 

with Illumina data.

7.1. Library design

The presence of conserved regions in the library can be important for experimental reasons, 

such as preserving a structural scaffold. Conserved regions are also useful for alignment 

during bioinformatic analyses. However, these regions can be problematic for HTS63. Low-

diversity amplicon libraries have documented quality score issues64. For example, in the 

Illumina sequencing-by-synthesis platform, the location of PCR colonies generated by 

individual template molecules is determined by finding fluorescent spots on an image during 
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the early cycles of synthesis. If there is a high density of spots of the same color, as would 

occur when a large fraction of templates have an identical constant region, discrete spots 

cannot be reliably identified, leading to low quality. Thus, some level of nucleotide diversity 

at each position is important for the generation of high-quality data. Two possible causes of 

low diversity are library design and the convergence of the selection process. First, even 

highly randomized libraries usually contain conserved regions on the 5’ and 3’ ends for PCR 

primer complementarity, inducing low diversity at the beginning of the sequencing run. 

Second, after a successful selection process, later rounds are typically dominated by a few 

families, resulting in low nucleotide diversity.

There are a few means to overcome these issues. One method to combat the problem of 

overlapping fluorescent spots is to reduce the density of spots by diluting the sample, thus 

sacrificing sequence depth for higher quality. Other methods include increasing nucleotide 

diversity65, 66. For example, one may add (‘spike in’) a sample of high diversity such as the 

ΦX174 genome. This genome is from a small, well-characterized bacteriophage that has a 

relatively uniform base composition (and was incidentally the first whole genome to be 

sequenced). Sequencing reads derived from this genome can be readily removed during 

bioinformatic processing. Spiking in ΦX174 DNA increases the sample diversity at the 

beginning of the read, improving intensity distribution issues during initial reading of the 

template. Depending on the specifics, it might be necessary to spike in between 5% and 50% 

ΦX174 DNA to achieve a sufficiently diverse sample67. As with the method of sample 

dilution, the main disadvantage of spiking a high amount of ΦX174 is the loss of sequencing 

depth for the desired sample. Ideally, the amount of ΦX174 used should achieve a good 

balance between improvement in sequencing quality and loss of reads.

An alternative method to increase nucleotide diversity without sacrificing sequencing depth 

is the use of degenerate insertions after the adapter constant region. To increase the diversity 

of the pool, a series of random nucleotides can be added to the adaptor region, after the 

primer binding site68. If the added series of random nucleotides is of varying length (e.g. 2, 

4, and 6 nt), this addition can improve sequence diversity by essentially frame-shifting the 

sequences with respect to one another. This increases the diversity in not only the initial 

primer but also beyond it, due to the frame shift, and is likely superior to spike-in or dilution 

methods. However, while the spike-in and dilution methods can be applied to samples that 

have already been prepared (i.e., after an issue has been identified), the addition of a small 

randomized region would require design of additional PCRs and fresh sample preparation. 

Since these methods are not mutually exclusive, a combination of methods could be 

considered for particularly problematic cases.

An interesting advantage of HTS is the identification of minor anomalies in the constant 

regions that may have been otherwise overlooked during selection. These unanticipated 

insertions, deletions and substitutions might be either functional (i.e., selected) or non-

functional (e.g., primer synthesis errors or sequencing errors). Knowledge of expected error 

rates and profiles during both synthesis and sequencing can be helpful, and the overall error 

rate from each run should be compared to standard error rates obtained using that 

technology. In general, we find that it is most useful to have a method for independent reads 

of the same template (e.g., in Illumina sequencing, paired-end reads with as much overlap as 
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possible; or in PacBio sequencing, consensus sequencing) in order to reduce the error rate. 

In any case, anomalies point toward a need for further consideration.

7.2. Library synthesis

Library synthesis is a critical step in mRNA display selections. In principle, an optimal 

library can be chemically synthesized using a trimer-block system to control codon type and 

frequency, and to prevent the introduction of premature stop codons. While trimer-block 

synthesis is the ideal method of library generation, slight impurities can undermine 

selections and downstream analyses and therefore should be kept in mind. For example, 

synthesis can be contaminated by monomer, dimer, or tetramer blocks, which introduce 

frame shifts that can result in undesired codons and truncated sequences. While these 

sequences might be lost during selection, preliminary data from our mRNA display studies 

suggests they persist and may be amplified in at least some conditions. Therefore, depending 

on the application, it may be critical that libraries are purified (e.g., size-selection by HPLC), 

that quality control data is obtained from the supplier, and that researchers independently 

confirm library purity by HPLC, capillary electrophoresis, high-resolution gel 

electrophoresis, or preliminary sequencing.

7.3. Sequencing

In single-end reading, the template is read in one direction (from one end to the other), while 

in paired-end reading, the template is read from both directions, resulting in forward and 

reverse reads of the same template sequence. Single-end reads are more economical, but 

pair-end reading offers increased quality with low error rates and also helps identify 

insertion and deletion errors in sequencing, which cannot be distinguished from true 

insertions and deletions in the DNA during single-end reading. Double coverage by paired-

end reading allows creation of a consensus sequence having low error rate (e.g., given 1% 

error per base in one direction, paired-end error rates can be 0.01% if all sequences 

containing disagreements are discarded)69, 70, reducing the chance that errors introduced 

from sequencing are carried over into downstream bioinformatic analyses.

7.4. Bioinformatic pre-processing of data

Pre-processing of sequencing data is imperative for successful downstream data 

transformations and analyses (see refs.71–73 for some examples and discussion). Pre-

processing steps typically entail an initial quality assessment, removal of low-quality reads, 

quality trimming, adapter trimming, read joining/merging for paired-end reads, and primer 

trimming/sequence extraction (Fig. 4).

Quality Assessment and Filtering: The initial quality assessment gives a look into read 

length and quality distributions to check conformity to expectations. This step can be 

implemented using tools like FastQC74 or FASTX Toolkit75, among others. Ideally, reads 

will have near-uniform length, matching the expected length based on amplicon size and 

sequencing method, and high average quality scores. In a standard, high-quality sequencing 

run, >95% of reads will have an average read quality score >Q3076. Unusually low quality 

scores can be a criterion for removing low quality reads, if desired. Under ideal conditions, 

Q30 is equivalent to the probability of an incorrect base call being 1 in 1000 times, which 
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corresponds to a base call accuracy (i.e., the probability of a correct base call) of 99.9%. 

While Q30 is considered a benchmark for quality in HTS, quality scores are only based on 

instrument metrics, thus, they are usually higher than the true quality. Spiking in a standard 

sequence such as ΦX174 DNA and evaluating its error profile may give a more accurate 

estimation of sequencing error77. For a comprehensive review on error correction and 

available tools, see ref.78.

During quality assessment, it is important to consider the library’s properties and sequencing 

method, and how they will influence quality scores. For example, low-diversity libraries and 

read lengths >150bp will typically have lower average quality scores than high-diversity 

libraries sequenced with short read lengths. In addition, it is expected in Illumina sequencing 

that quality decays later into the read. Therefore, reads can be quality-trimmed to remove 

low-quality bases with tools such as Trimmomatic79 or BBDuk80, using parameters 

informed by the quality assessment (e.g. distribution of low-quality bases and their scores). 

This step ensures that only high quality bases are retained, which enables optimal read 

joining (for paired-end sequences) and reduces error-based noise in downstream analyses.

Adapter trimming: In cases where the amplicon being sequenced is shorter than the read 

length, adapter sequences will be found on the 3’ end of the read, so an adapter trimming 

step might need to be implemented, using tools similar to Cutadapt81.

Merging paired-end reads: Next, in paired-end sequencing, the full amplicon is 

reconstructed by joining (or merging) forward and reverse reads using tools such as 

PANDAseq82, PEAR83, or fastq-join84. Depending on the desired application, the joining 

process should be optimized to allow the maximum overlap between forward and reverse 

reads, while minimizing mismatch allowance. Maximum overlap will ensure that the 

regenerated amplicon is of the highest possible quality (in general, for each base pair in the 

overlap, the higher quality base is retained) and minimize the chance of introducing a 

frameshift. Mismatch allowances should be determined based on overlap length and quality 

of bases in the overlapping regions. The probability of reading a frame shift or ‘mutation’ 

from sequencing error will increase with the number of mismatches allowed (i.e. more 

mismatches allow more frameshifts and mutations). Conversely, the number of reads that are 

joinable will decrease as the number of mismatches allowed decreases (i.e. more stringent 

tolerances allow fewer joined reads). When optimizing the mismatch allowance, the need for 

greater sequencing throughput must be weighed against the need for lower error rates in the 

context of the particular application.

Primer trimming: The final pre-processing step is sequence extraction, i.e., the isolation 

of the sequences of interest. This is achieved by removing conserved sequences (e.g., from 

library design) at the 5’ and 3’ regions, like priming sites, that could interfere with 

downstream analyses like clustering. Tools like CutAdapt81 and PANDASeq82 can perform 

this function with user-supplied sequences. Selecting extraction sites should be done with 

care, particularly on the 5’ end where the extraction site may set the reading frame during in 
silico translation. The 3’ end is also important, as it will determine where translation will be 

terminated if a stop codon was not included in the sequenced amplicon. It may be 

advantageous to remove the entire PCR primer region, since this region is not expected to be 
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subject to mutation. However, if extracting from regions that were designed to be constant in 

the initial library but were subject to possible mutation, it is critical to optimize the 

extraction sequence and mismatch allowances; failure to do so can result in problems such 

as a large fraction of frame shifts or untranslatable sequences.

Library metrics should be collected at each step of the pre-processing pipeline to assess 

progress toward the goal of retaining the most reads at the highest quality as well as to 

quickly identify any errors of coding. Common metrics include average read quality scores, 

read length distributions, total read counts, unique read counts, and percentage of reads 

retained. By monitoring these metrics at each step, the pre-processing pipeline can be fine-

tuned to optimize the final output. It should also be noted that pre-processing steps are not 

limited to those listed here; other methods like length filtering, head cropping, and 

contaminant filtering can be implemented as needed to further increase the quality of the 

final library.

Ultimately, the final indicator of successful pre-processing is the set of amino acid sequences 

produced by in silico translation of the pre-processed reads. These should have near-uniform 

length distributions at the expected length (or lengths), be consistent with the expected 

amino acid composition, and retain conserved or semi-conserved motifs and the overall 

structural framework, if any.

8. Summary and outlook

HTS has become a powerful tool for analyzing molecular evolution, and in vitro selection of 

mRNA-displayed peptides is a rising example of this trend. As the number of sequencing 

reads obtained by HTS technologies increases, pool compositions can be viewed with 

increasingly high resolution. Greater sequencing depth allows reduction of noise in 

estimation of some results (e.g., enrichment metrics), and, more importantly, it can capture 

qualitatively new information (e.g., delineating evolutionary pathways, including rare but 

important pathways; identifying low abundance but highly active sequences missed by low 

depth sequencing40; enabling quantitative analysis of fitness landscapes). In addition, if a 

traditional assay (e.g., measuring kinetic parameters) can be designed to give an output that 

can be measured by HTS38, 85, 86, the throughput of that assay can be increased by several 

orders of magnitude over classic biochemical methods. Because of this potential, conversion 

of traditional assays to HTS format is indeed a hotbed of research that shows no sign of 

slowing, as indicated by the rapid proliferation of methods relying on HTS.

As the affordability of HTS increases, future progress is expected in the field of molecular 

evolution. Experiments performed in the past, in which only a few variants were sequenced 

and tested for activity might now be the starting point to future studies. As long as samples 

for such experiments are still available, a kind of molecular archeology can be performed on 

the freezer samples. A notable subject of such study is the Lenski lab’s famous long-term 

evolutionary experiment (LTEE) on E. coli, which began in 1988 and has progressed through 

more than 60,000 generations87–89. Although the beginning of the LTEE predated HTS, 

freezer samples examined from early generations can reveal the emergence of new 

mutations, including new metabolic activities.
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As HTS technology improves, it is interesting to consider whether greater sequencing depth 

is always desirable. While more information is undoubtedly obtained, greater computational 

time is also required to process the data, and in some samples, there is likely to be little 

overall benefit to greater sequencing depth. For example, the number of unique sequences 

(i.e., the pool complexity) in very diverse samples, such as the initial pool, probably exceeds 

the capacity of sequencing (i.e., 1014 different sequences); the benefit of 109 reads compared 

to 108 reads or even fewer is unclear. At the other extreme, for a highly converged pool of 

low complexity, such as would be derived from samples late in the selection, additional 

reads are also less useful; if the pool contains 100 unique sequences, the benefit of having 

109 vs. 108 sequences is also marginal. Thus greater sequencing depth will become most 

useful for pools of intermediate diversity. Having said this, there are certain scenarios in 

which very deep sequencing of low and high complexity pools may be useful, such as if one 

intends to characterize the bias among k-mers of the synthesized pool90, 91 or if the 

frequency distribution of sequences in a highly converged pool is very uneven (i.e., some 

sequences of interest are present at very low abundance). Another special scenario that may 

require increasingly deep sequencing is the systematic exploration of fitness landscapes, in 

which all mutations at certain sites are investigated. If it is desirable to compare frequencies 

of each mutant before and after selection, then the number of reads that can be obtained 

from the initial pool becomes a critical parameter (i.e., a 20-fold increase in sequencing 

depth will allow one additional site to be explored by saturation mutagenesis).

At the same time, while HTS analysis offers important quantitative and qualitative 

advantages for the analysis of in vitro evolution experiments, care is required during each 

step of the analysis to ensure that the analysis itself does not bias the results (i.e., high 

quality data are preserved and artifacts are not introduced). Seemingly minor choices during 

data processing, such as number of errors tolerated in the adapter or primer sequence, or 

length of the sequence extracted, can have unexpectedly large effects on the quality and 

quantity of the resulting sequences; thus attention should be paid to any processing step that 

gives an unexpectedly low yield of passing sequences. Sequencing error is a frequent issue 

when studying evolutionary trajectories, since it is essential to distinguish between 

sequencing errors and true mutations. In our experience, experimental measures taken to 

reduce sequencing error rates (e.g., paired-end sequencing with stringent joining criteria, 

consensus sequencing, etc.) are usually worth their effort and expense in order to reduce 

uncertainty in data interpretation or the need for error correction strategies. It is also good 

practice to validate results obtained from HTS by classical biochemical assays whenever 

possible, to ensure the reliability of the results and expose any biases that may have been 

introduced by the HTS analysis itself. On a practical note, it can be useful to take advantage 

of rapid ‘micro’ or ‘nano’ low-output runs to generate a small preliminary data set to test the 

analysis pipeline as well as the quality of the input sample. For example, for the low 

complexity samples generated by in vitro evolution, such preliminary runs can uncover 

important but correctable sample issues.

As HTS instruments themselves decrease in cost and new instruments replace old ones, 

another interesting avenue for future research will be custom modification of the instruments 

themselves to achieve new goals. HTS technology combines miniaturization, massive 

parallelization, and highly sensitive detection – these features are assets to a number of 
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potential applications. For example, an mRNA bound to the surface of a chip could be 

translated, assayed, and sequenced all at once92. Some sequencing technologies assay single 

molecules, and could probe not only nucleobases and epigenetic modifications but also other 

chemical varieties that could be of interest. In the next stage of technology exploration, it 

will become increasingly common not only to use HTS as a ‘black box’ that produces 

sequencing data, but to adopt and alter the hardware directly in the laboratory for new, ‘off-

label’ applications.
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Figure 1. General scheme for the isolation of active sequences from in vitro evolution 
experiments, HTS and the analysis of the sequencing data.
A large library of mutant variants is subjected to a selection process in which survival 

depends on the ability to carry out a specific biochemical function (e.g., binding). Selected 

variants are isolated and amplified while unselected variants are discarded. The cycle of 

selection and amplification is repeated several times (rounds) until variants with high 

activity dominate the library. The final library (and possibly intermediate pools) is then 

sequenced, such as by using high throughput sequencing (HTS) technologies. Finally, HTS 

data is analyzed using bioinformatic tools appropriate for the project’s goal. For a more 

detailed explanation of the selection process see Figure 2.
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Figure 2. Selection and evolution of proteins by mRNA display.
The procedure begins with a library of DNA (1) that encodes the library of protein variants. 

The DNA is transcribed into RNA, modified with puromycin and translated to mRNA-

displayed proteins. In the selection step (2), the protein variants with the desired properties 

are separated from the undesired proteins. The selected variants are reverse transcribed to 

cDNA (can also be done before the selection step), and multiplied by PCR amplification (3). 

This round of selection and amplification is repeated until the resulting library is dominated 

by proteins with the desired properties. For protein evolution, the amplification step can be 

modified to introduce additional diversity (e.g., mutations).
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Figure 3. Representation of fitness landscapes with different levels of ruggedness.
Simplified 2D visualization of A) a smooth landscape (Mount Fuji type), B) an intermediate 

ruggedness landscape, and C) a highly rugged landscape. Red dots correspond to random 

sparse sampling on sequence space. In D), the gray line corresponds to a sine wave of 

frequency f, red dots correspond to sparse sampling below the critical sampling frequency 

(fS<2f), and red dashed line corresponds to the aliased wave reconstructed from 

undersampling.
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Figure 4. General flow chart for bioinformatic pre-processing of high throughput sequencing 
data for mRNA display.
Pre-processing steps include an initial quality assessment of the fastq sequences (i.e., 

sequencing data with associated quality metrics), quality filtering to discard sequences of 

low quality, adapter trimming in the case of amplicons shorter than the read length, joining 

of pair-end reads, and primer trimming. Some examples of tools that can be used at each 

step are given. Note that the use of each step depends on the data and desired downstream 

analysis.
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Table 1.
Typical features of selection methods.

The values features listed below represent estimates for the most common protocols for each selection method. 

Some deviations from those estimates are possible.

Cell-based selections
a In vitro selections

Ribosome display mRNA display

Library diversity 106–109 ~1013 ~1013

Genotype-phenotype 
connection

Non-covalent Non-covalent Covalent

Type of protein Cell-compatible only Any Any

Temperature range
±5°C

b ~4°C 0–100°C

Buffer conditions Must be compatible with cell or 
phage integrity

High Mg2+, low T; must be 
compatible with ternary complex

Generally tolerant as long as 
compatible with chemical integrity of 

protein and RNA

a
Selection parameters and conditions are limited to ensure compatibility with cell survival.

b
Optimum temperature depends on the type of cell used. Phages may tolerate wider temperature ranges.
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Table 2.

Technical specifications of sequencing products.

Company Platform Run Time Maximum Output Maximum Read 
Length Reads per run

Illumina Inc.

MiSeq 4 – 55 hrs 15 Gb 2 × 300bp 25 M/ per lane

NextSeq 12–30 hrs 120 Gb 2 × 150bp 400 M / per lane

HiSeq 3000 < 1 – 3.5 days 750 Gb 2 × 150bp 2.5 B /per lane

HiSeq 4000 < 1 – 3.5 days 1,5 Tb 2 × 150bp 5 B / per lane

HiSeq × Series < 3 days 1,8 Tb 2 × 150bp 6 B /per flow cell

NovaSeq 6000 ~13 – 38 hrs N/A 2 × 250bp 10 B/per lane

Pacific Biosciences Inc PacBio RS II 0.5 – 4 hrs 1Gb ~10 – 15 kb 50 – 80 k

Life Technologies Corp.

Ion GeneStudio S5 4.5 –19 hrs 15 Gb 200 – 600 bp 2 – 130M

Ion GeneStudio S5 Plus 3 – 20 hrs 30 Gb 200 – 600 bp 2 – 130M

Ion GeneStudio S5 
Prime 3–10 hrs 50 Gb 200 – 600 bp 2 – 130M

Sequencing by Oligo 
Ligation Detection

SOLiD 5500 W 10 days 120 Gb 2 × 50bp 1.2 B

SOLiD 5500×1 W 10 days 240 Gb 2 × 50bp 2.4 B

Roche Inc.
454 GS FLX+ 10–23 hrs 450 – 700 Mb Up to 1 kb 1M

454 GS Jr 10 hrs 35 Mb 400 bp 100 k

Oxford Nanopore

Flongle 1 min – 16 hrs 2 Gb

>2Mb

126 channels

MinlON 1 min – 48 hrs 50 Gb 512 channels

GridlON Mk1 1 min – 48 hrs 250 Gb 512×5 channels

PromethlON 24 1 min – 72 hrs 5.2 Tb 24×3000 channels

PromethlON 48 1 min – 72 hrs 10.5 Tb 48×3000 channels

Abbreviations Mb, Gb and Tb correspond to Megabytes, Gigabytes and Terabytes, respectively (for comparison, the human genome has 3×109 bp 
or 3 Gb). Abbreviations hrs corresponds to hours, bp to base pair, kb to kilobase, M and B to millions and billions.
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Table 3.

Comparing sequencing technologies.

Advantages Disadvantages Library 
amplification

Sequencing technology

Illumina Inc. Large user base platform Low 
cost per base High coverage (high 
output)

Short reads Bridge-PCR on flow 
cell surface

Reversible terminator 
sequencing by synthesis

Pacific Biosciences 
Inc

Very long reads (> 1 kb) Short 
run time Low reagents cost

High basal error rate Low 
output

NA Single-molecule, real-
time DNA sequencing 
by synthesis

Life Technologies 
Corp.

High coverage Longer reads Lower output PCR on FlowChip 
surface

Polymerase synthesis

Sequencing by 
Oligo Ligation 
Detection

Low cost per base Low reagents 
cost Inherent error correction 
(two-base encoding)

Short reads Long run time Emulsion PCR Sequencing by ligation

Roche Inc. Longer reads Short run times 
High coverage

Higher cost per base High 
reagents cost High error rates 
in homopolymer repeats

Emulsion PCR on 
microbeads

Pyrosequencing

Oxford Nanopore Very long reads Customization High error rate Difficult to 
design multiple parallel 
pores

NA Nanopore exonuclease 
sequencing

Basic advantages and disadvantages of different sequencing platforms and the sequencing technology or chemistry they use. NA means not 
applicable.
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