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Abstract 

Background:  The combined application of immune cells and specific biomarkers related to the tumor immune 
microenvironment has a better predictive value for the prognosis of HCC. The purpose of this study is to construct a 
new prognostic model based on immune-related genes that regulate cross-talk between immune and tumor cells to 
assess the prognosis and explore possible mechanisms.

Method:  The immune cell abundance ratio of 424 cases in the TCGA-LIHC database is obtained through the CIB-
ERSORT algorithm. The differential gene analysis and cox regression analysis is used to screen IRGs. In addition, the 
function of IRGs was preliminarily explored through the co-culture of M2 macrophages and HCC cell lines. The clinical 
validation, nomogram establishment and performing tumor microenvironment score were validated.

Results:  We identified 4 immune cells and 9 hub genes related to the prognosis. Further, we identified S100A9, 
CD79B, TNFRSF11B as an IRGs signature, which is verified in the ICGC and GSE76427 database. Importantly, IRGs 
signature is closely related to the prognosis, tumor microenvironment score, clinical characteristics and immuno-
therapy, and nomogram combined with clinical characteristics is more conducive to clinical promotion. In addition, 
after co-culture with M2 macrophages, the migration capacity and cell pseudopod of MHCC97H increased signifi-
cantly. And CD79B and TNFRSF11B were significantly down-regulated in MHCC97H, Huh7 and LM3, while S100A9 was 
up-regulated.

Conclusion:  We constructed an IRGs signature and discussed possible mechanisms. The nomogram established 
based on IRGs can accurately predict the prognosis of HCC patients. These findings may provide a suitable therapeu-
tic target for HCC.
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Introduction
Hepatocellular carcinoma (HCC) ranks third in the 
global cancer-related mortality rate [1], usually caused 
by chronic hepatitis and liver fibrosis [2, 3]. Surgical 
resection and liver transplantation are often used as 
the two main treatments for HCC. However, due to 
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the shortage of liver donors and the high recurrence 
rate of patients, the overall prognosis is not satisfactory 
[4]. In China, HCC is usually diagnosed at a late stage, 
which leads to the existing treatment methods with 
greater limitations and poor results. Less than 14.1% 
of patients live for up to 5  years [5]. Therefore, there 
is a need for early prediction of the survival status of 
patients, exploring new treatment methods to provide 
patients with personalized treatment and improving 
the clinical prognosis of patients.

Some studies have shown that immunotherapy has 
shown broad application prospects in treating many 
advanced cancers, especially for virus-induced cancers 
[6]. In China, most HCC patients are associated with 
HBV and suffer from chronic hepatitis. Meanwhile, the 
liver is considered to be an immune-tolerant organ. It can 
limit hypersensitivity to antigens and bacteria through 
the portal vein and can effectively receive allogeneic 
liver transplantation, creating an immunosuppressive 
microenvironment for the liver [7]. This shows that HCC 
patients may be more appropriate for immunotherapy.

The development of immunotherapy focuses on the 
tumor immune microenvironment (TIME) [8]. In addi-
tion to tumor cells, various immune cells, mesenchymal 
cells, secreted cytokines, chemokines and other non-
tumor components that are also infiltrated in TIME 
have shaped different tumor heterogeneities [9, 10]. It 
has been reported that the HCC TIME has varieties 
of cytokines and is closely relevant to the prognosis of 
patients in many research, such as IL-6, IL-10, etc. [11, 
12]. Therefore, we believe that the different cytokines and 
cell components in TIME have important guiding signifi-
cance for the prognosis of patients. However, there is still 
a lack of immune-related genes that regulate the immune 
and tumor cells to effectively assess the heterogeneity of 
TIME and the prognosis of patients. Therefore, looking 
for key immune genes as HCC markers, clinicians can 
better understand the immunological characteristics of 
HCC and provide directions for patient prognosis and 
immunotherapy [13].

In this study, we downloaded the clinical survival 
information and RNA expression data of 424 cases in 
the Tumor Genome Atlas (TCGA-LIHC) database, and 
analyzed the content of 22 immune cells in the patients 
based on the CIBERSORT algorithm. Four immune cells 
related to survival in HCC were identified. And we also 
screened three IRGs that regulate the level of immune 
cell immersion. In the validation study, we chose M2 
macrophages and three HCC cell lines as our cell models. 
We reported three essential IRGs that regulate the "cross-
talk" between immune cells and tumor cells in TIME. 
Subsequently, we constructed a prognostic nomogram 
combining IRGs signature and clinical factors, which 

guides forecasting the prognosis of patients, and it may 
be a proper therapeutic target for HCC patients.

Materials and methods
Data source
From the Cancer Genome Atlas (TCGA) data portal, 
we downloaded the RNA-Seq gene expression profiles 
(FPKM and COUNT format) of 374 HCC and 50 adja-
cent normal HCC tissues, as well as clinical data on 
patient age, survival time, tumor staging, etc. In addition, 
RNA-Seq gene expression profiles and clinical informa-
tion on 243 HCC specimens were validated from the 
ICGC database and 115 HCC specimens from the GEO 
database (GSE76427), respectively.

Identifying survival‑related immune cells
The RNA-Seq (FPKM format) of 424 specimens were 
analyzed using the CIBERSORT algorithm and obtained 
a ratio matrix of 22 immune cells (perm = 100) [14, 15]. 
Owing to those samples with CIBERSORT P-value > 0.05 
may represent samples with low immune cell infil-
trate, they cannot be ignored. Therefore, we select 127 
samples with CIBERSORT P-value < 0.1 and follow-up 
days ≥ 30 days for follow-up analysis [16]. Then, we ana-
lyzed the correlation in 22 immune cells in 127 patients. 
Finally, the Kaplan–Meier analysis for overall survival 
was used to identify survival-related immune cells, whose 
cut-off level was set at the median value according to 
the abundance ratio of 22 immune cells. Through using 
independent sample t-test and one-way ANOVA test, we 
analyzed the relationship between the abundance ratio of 
immune cells and tumor grade, clinical stage, and stage T.

Identifying Differentially expressed Immune‑Related 
Genes (DEIRGs)
Cox proportional hazards regression was established 
based on the four survival-related immune cells identi-
fied in the previous steps. The 127 samples were sorted 
into high-risk (n = 64) and low-risk (n = 63) groups based 
on risk scores. We got 2498 unique immune-related 
genes from Immport database (https://​www.​immpo​rt.​
org/​home), and we established the expression matrix 
of immune-related genes in 127 samples (count for-
mat) [17]. Through the edgeR R package for analysis of 
DEIRGs with the conditions: |logFC|> 1 and P < 0.05 [18].

Protein–Protein Interaction Network Construction and Hub 
Genes Screening
The 412 differential IRGs were analyzed in the STRING 
database (https://​strin​gdb.​org/), with the condition: com-
bined-score ≥ 0.4 [19]. This network was visualized using 
Cytoscape 3.8.2 and analyzed by the MCODE plugin. 
Ultimately, we obtained 11 modules and 10 seed genes. 

https://www.immport.org/home
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At the same time, Cytohubba was used to screen the 
top 20 nodes ranked by degree. We selected 30 genes as 
immune microenvironment-related hub genes.

Relationship between clinical characteristics and hub 
genes
For our study, 127 patients were grouped and using 
Kaplan–Meier survival analysis, and the overall survival 
rate was analyzed according to the expression level of the 
30 hub genes. Here, we identified 9 survival-related hub 
genes. We analyzed and visualized the hub genes’ con-
nection with clinical characteristics by the "WGCNA" R 
package.

Construction of the IRGs signatures
To develop a prognostic model, 9 survival-related genes 
in Kaplan–Meier survival analysis were included in mul-
tivariate proportional hazards regression analysis. The 
127 patients were sorted according to their risk score, 
which was derived from gene expression multiplied by 
a linear combination of regression coefficients obtained 
from the multivariate Cox regression. The 63 patients 
with the low-risk score were defined as the low-risk 
group, and the remaining 64 patients were in the high-
risk group. Using the Kaplan–Meier analysis to compare 
OS between the two groups of patients and the "survival 
ROC" package to plot receiver operating characteristic 
(ROC) curve.

External validation of the IRGs
243 HCC specimens in the ICGC database and 115 HCC 
specimens in the GSE76427 were used as a verification 
cohort to verify the prognostic accuracy of the IRGs sig-
nature risk score model. The samples were divided into 
high-risk and low-risk groups by calculating risk scores 
based on the same formula, and their Kaplan–Meier and 
ROC curve were analyzed, respectively.

Enrichment analysis of differentially expressed genes 
(DEGs) between low‑risk and high‑risk groups
Through the edgeR R package for analysis of DEGs 
between low risk(n = 63) and high risk(n = 64) groups in 
TCGA with the conditions: |logFC|> 1 and P < 0.05. Ana-
lyzing DEIRGs in the GO (Gene Ontology) and KEGG 
(Kyoto Encyclopedia of Genes and Genomes) pathways 
via the DAVID 6.8 (https://​david.​ncifc​rf.​gov/) [20, 21]. 
The GO terms and KEGG signaling pathways are then 
visualized via R Package "ggplot2" with the conditions: 
FDR < 0.05 and counts ≥ 4.

Analysis of the degree of immune infiltration 
between low‑risk and high‑risk groups
The ssGSEA was executed to probe into the different 
infiltration degrees of immune cell types, immune-
related functions and pathways in the expression profile 
of low-risk and high-risk groups using the R package 
"GSVA" based 29 immune-related gene sets [22]. To 
prove the effectiveness of IRGs risk scores and to pic-
ture clustering heatmap, we made use of R package 
"ESTIMATE" to study the expression level of RNA-seq 
to count the tumor purity, estimate score(ES), immune 
score(IS), and stromal score(SS). Using the R package 
"ggpubr", we obtained the vioplots of ES, IS, and SS 
in low-risk and high-risk groups. The correlation of 
immune cells with IRGs signature risk score was ana-
lyzed and visualized by the "corrplot" package in R.

Construction of prognostic nomogram
To provide a quantitative analysis tool to predict the 
survival risk of HCC patients, we were further con-
structed the nomogram on the basis of IRGs as well as 
clinical parameters in 127 patients in TCGA. In order 
to evaluate the accuracy of the nomogram, we used 115 
patients in GSE76427 for external validation, and the 
calibration curve and DCA curves are drawn with the 
R-pack "rms" and "ggDCA".

Cell line culture
MHCC-97H, Huh7, LM3 HCC cell lines and THP-1 cell 
line were purchased from the Shanghai cell bank (Chi-
nese Academy of Sciences, Shanghai, China). HCC cell 
lines were cultured in a medium with 10% FBS and 1% 
P/S (Gibco, Thermo Fisher Scientific, Waltham, USA), 
and THP-1 cells were cultured in RPMI 1640 medium 
(Hyclone, Thermo Fisher Scientific, Waltham, USA) 
with 10% FBS. All cells were maintained in a humidified 
atmosphere with 5% CO2 at 37 °C.

THP‑1‑derived M2 macrophages and Establishment 
of co‑culture system
THP-1 cells were treated with phorbol 12-myristate 
13-acetate (PMA) (Sigma, Saint-Quentin Fallavier, 
France, 100  ng/mL) for 24  h to polarize THP-1 cells 
into macrophages. The IL-4 and IL-13 were then polar-
ized into M2 macrophages (Sino Biological Als, China, 
5  μg). MHCC-97H cells (1 × 106 cells) were placed in 
the lower chamber of a 6-well transwell plate. After 
24  h, M2 macrophages (1 × 106 cells) derived from 
THP-1 were placed on the 0.4-μm porous membrane 
in the upper chamber to establish a co-culture system 
in a serum-free DMEM medium [23]. Then 48 h later, 

https://david.ncifcrf.gov/
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MHCC-97H cells were collected for RNA extraction 
and other experiments.

Cell migration assay
Using transwell compartments (8 um pore) to assess 
the cell migration capacity (Corning, 353,097). Nor-
mal MHCC-97H cells and M2 macrophages co-culture 
treated MHCC-97H cells (5 × 104 cells) were suspended 
in serum-free medium in the upper compartment of 
a 24-well transwell plate, while medium with 30% FBS 
is placed in the lower chamber. After 24 h at 37  °C, the 
translocated cells were stained with 0.5% crystal violet for 
20 min.

Quantitative real‑time PCR (qPCR)
Total RNA was extracted with RNA-easy isolation rea-
gent (Vazyme, Nanjing, China). PrimeScript™ RT Kit 
(TaKaRa, RR047A) and SYBR Premix EX Taq™ (TaKaRa, 
RR820A) were used to cDNA synthesis and qPCR on 
the FTC-3000P real-time PCR system (Funglyn Biotech, 
Shanghai, China). Supplementary Table 1 shows the PCR 
primers used.

Statistical analysis
Using IBM SPSS Statistics performed all analyses (ver-
sion 23). A P < 0.05 indicated statistical significance.

Results
Identifying survival‑related immune cells
Using the CIBERSORT algorithm to analyze the abun-
dance ratio of 22 immune cells in 127 samples, revealing 
the relative content of 22 immune cells in normal and 
tumor samples (Fig. 1A, 1B). As shown in Fig. 1A, M0/
M1/M2 Macrophages, CD8 + T cells, and dendritic cells 
occupy a large proportion in the sample. In adjacent 
normal HCC tissues, the content of active mast cells, 
M0 macrophages and Tregs were significantly higher 
than that of tumor samples (P < 0.05), while the content 
of M2 Macrophages, plasma cells and monocytes were 
significantly lower than that of tumor samples (P < 0.05) 
(Fig. 1B). Correlation analysis further suggests that there 
are connections between 22 immune cells (Fig.  1C). 
CD8 + T cells are positively correlated with the content 
of T cells follicular helper, active CD4 + T memory cells, 
and Plasma cells, but negatively correlated with the con-
tent of resting CD4 + T memory cells, M0 macrophages, 
and M2 macrophages. In addition, Fig. 1D-G show that 
the abundance ratios of the four types of immune cells are 
related to survival rates by Kaplan–Meier analysis, among 
CD8 + T cells (P = 0.006), Plasma cells (P = 0.01), and 
CD4 + memory resting T cells (P = 0.05) are indicators 
of favorable prognosis, while M2 Macrophages (P = 0.05) 
are indicators of unfavorable prognosis. The correlation 

between abundance ratios of the four immune cells and 
clinical characteristics reveals that CD8 + T cells, Plasma 
cells, and resting CD4 + T memory cells decreased with 
the increase of stage T, clinical stage, and tumor grade, 
while M2 Macrophages is the opposite (Supplementary 
Fig. 1).

Identifying immune‑related genes and enrichment 
analysis
Cox proportional hazards regression was established 
based on the four survival-related immune cells. 
Risk scores = Plasma cells*( -7.76) + CD8 + T cells *( 
-3.26) + resting CD4 + T memory cells *( -4.42) + M2 
Macrophages * 1.08. According to the risk score, the sam-
ples were divided into high-risk and low-risk groups. We 
analyzed the immune-related genes related to the risk 
score level and obtained 412 immune-related differential 
genes (Supplementary Fig.  2A). Using the DAVID web-
site, GO/KEGG enrichment performed the analysis of 
412 immune-related differential genes. The supplemen-
tary Fig. 2B-E shows the top 12 enrichment results. The 
results showed that the differential genes were mainly 
located in T cell receptor complex and extracellular exo-
some, significantly involved in complement activation, 
inflammatory response, antigen binding, transmembrane 
signaling receptor activity, and were mainly enriched 
in the chemokine signaling pathway, natural killer cell-
mediated cytotoxicity, Jak-STAT signaling pathway. In 
conclusion, 412 immune-related gene proteins are mainly 
involved in various signaling pathways and the regulation 
of immune responses, cell proliferation and apoptosis, 
closely connecting various immune cells, stromal cells 
and tumor cells in the tumor microenvironment.

Protein–protein interaction network construction and hub 
genes screening
To probe into the interrelationship between immune-
related genes and get hub genes, we performed PPI and 
module analysis to obtain 30 hub genes. Supplement 
Table  2  shows the full names and primary functions of 
30 hub genes, meanwhile Cytoscape analysis was used 
to get the first two most important modules (Fig. 2A-B). 
The functional analysis of genes involved in this module 
was analyzed using DAVID. Module 1 is mainly related 
to HIV and lung cancer. It is primarily concentrated in 
immune cell activation and chemotaxis, and cell pro-
liferation (Table 1). Module 2 is mainly related to HCC, 
HBV infection, lung cancer and is primarily enriched in 
the proliferation and differentiation of immune cells and 
apoptosis (Table 1). Both are closely related to cancer and 
immune signaling pathways, such as the chemokine sign-
aling pathway, Jak-STAT signaling pathway, TNF signal-
ing pathway.
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Fig. 1  The relationship between the abundance ratios of immune cells and overall survival. A Differences in the expression of 22 immune cells in 
adjacent normal HCC and HCC tissue. B The abundance ratio of immune cells in the 127 samples. C The relationship between the abundance ratios 
of various immune cells. D–G The survival analysis for the abundance ratios of the four immune cells
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Fig. 2  The top two modules and survival analyses of the hub genes. A Two modules in MCODE. Redder indicates that the higher the number of 
interactions with other proteins, the smaller the greener the number. B-J The nine genes are significantly related to survival. Red represents high 
gene expression, and blue represents low gene expression
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Relationship between clinical characteristics and hub 
genes
Through Kaplan–Meier survival, we analyzed 30 hub 
genes, and obtained 9 immune-related genes with prog-
nostic significance (P < 0.05), Including CCL5, CCR7, 
CD79B, CD247, CXCL1, CXCL5, CXCR3, LTBP1, 
S100A9, TNFRSF11B (Fig. 2B-J). Table 2 shows the cor-
relation analysis between these nine prognostic-related 
hub genes and their clinical characteristics. CCR7 and 
CD79B have a significant positive correlation with stage 
(I/II/III/IV) and stage T, and LTBP1 has a significant neg-
ative correlation with stage.

Establishment and verification of IRGs signature
9 hub genes were tested for their prognostic significance 
to perform univariate COX analysis and included hub 
genes with P < 0.1 into the multivariate COX analysis 
(Table 3). To get the best model, these 9 genes were ana-
lyzed using the Cox proportional hazards model method 
of R package "survival". Finally, 3 immune-related genes 

were used to construct Cox proportional hazards model 
as follows: Riskscore = C​D79​B*(​-0.​00158) +​ ​TNF​RSF​11B​
*0.​0000946 + S100A9*0.000025.

Table 1  GO and KEGG pathway enrichment analysis of the top 2 modules

Modules Description P.adjust Count

Module 1

  BP terms positive regulation of ERK1 and ERK2 cascade 1.34E-05 6

chemotaxis 2.89E-27 17

regulation of cell proliferation 7.86E-07 7

positive regulation of JNK cascade 0.00598 3

  KEGG pathway Chemokine signaling pathway 3.09E-27 21

TNF signaling pathway 0.00733 4

Module 2

  BP terms positive regulation of cell proliferation 2.78E-06 8

G-protein coupled receptor signaling pathway 1.91E-04 8

negative regulation of apoptotic process 0.00367 5

  KEGG pathway T cell receptor signaling pathway 0.00207 4

Jak-STAT signaling pathway 0.00593 4

  MF terms hormone activity 4.66E-13 9

Table 2  The correlation between the 24 hub genes and clinical characteristics

Gene
Cor(P-value)

Age Gender Grade Stage(I/II/III/IV) T stage

CCR7 0.994(0.323) 0.789(0.435) 1.741(0.086) 2.263(0.026) 2.223(0.029)

CXCL1 0.52(0.604) -0.359(0.720) -1.719(0.093) -1.153(0.257) -1.13(0.267)

CXCR3 0.952(0.343) 0.352(0.726) -0.322(0.749) 0.476(0.636) 0.408(0.685)

CXCL5 0.92(0.360) -0.986(0.326) -1.501(0.141) -1.339(0.190) -1.351(0.187)

TNFRSF11B 0.172(0.864) -0.79(0.431) -0.507(0.614) -0.297(0.769) -0.341(0.735)

CD247 0.634(0.527) 1.032(0.308) -0.099(0.921) 0.808(0.422) 0.713(0.478)

S100A9 0.588(0.558) -0.251(0.803) -0.194(0.846) 0.393(0.695) 0.338(0.736)

LTBP1 -0.675(0.502) 1.013(0.316) -0.917(0.363) -2.286(0.029) -1.666(0.104)

CD79B 1.312(0.193) 0.422(0.675) 0.53(0.597) 2.251(0.027) 2.197(0.031)

Table 3  Univariate and multivariate analysis of 9 hub genes with 
OS

Gene Univariate analysis Multivariate analysis

P value Hazard ratio P value Hazard ratio

CD79B 0.025 0.804(0.664–0.974) 0.030* 0.803(0.659–0.979)

CXCL1 0.675 0.998(0.992–1.005)

CD247 0.059 0.754(0.562–1.011) 0.738 0.938(0.654–1.363)

CXCL5 0.259 1.005(0.996–1.012)

TNFRSF11B 0.018 1.011(0.994–1.028) 0.027* 1.008(0.991–1.025)

LTBP1 0.427 1.020(0.971–1.071)

S100A9 0.006 1.000(1.000–1.000) 0.003* 1.001(0.999–1.001)

CCR7 0.057 0.793(0.624–1.007) 0.814 0.959(0.679–1.355)

CXCR3 0.220 0.917(0.799–1.053)
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Further, the risk scores of 127 HCC patients are sorted 
and divided into high-risk(n = 64) and low-risk(n = 63) 
groups according to the median risk score. Through K-M 
analysis, the higher the risk score of patients, the worse the 
prognosis (P < 0.001, Fig. 3A). We plotted not only the ROC 
curves of our IRGs signature, but also the ROC curves of 
other previously published IRGs signatures (Liu’s signature 
[13] and Dai’s signature [24]), which have been published 
previously (Fig. 3B-D). Interestingly, the 1-year, 3-year and 
5-year AUC of our IRGs signature was significantly higher 
than Liu’s signature and Dai’s signature in the training 
cohort. These prove the excellent value of the IRGs we con-
structed in predicting the prognosis of HCC patients.

External validation of the IRGs signature
External verification was performed on 243 HCC 
patients in the ICGC database and 115 HCC patients 
in the GSE76427. Sorted based on risk scores, patients 
were divided into high-risk (n = 121 in ICGC, n = 57 in 
GSE76427) and low-risk groups (n = 122 in ICGC, n = 58 
in GSE76427) with the median risk score as the cut-off 
value. K-M analysis showed that patients in high-risk 
groups had a worse prognosis. (Fig. 3E, G). The ROC curve 
analysis was performed, and the results showed that the 
AUC values ​​of 1, 3, and 5 years were 0.663, 0.608, and 0.635 
respectively, and 0.609, 0.703 and 0.575 in the GSE76427 
respectively (Fig. 3F, H). This proves that the IRGs signa-
ture has a strong predictive ability.

Identifying DEGs between high‑risk and low‑risk groups 
and Enrichment Analysis
Through differential expression analysis between low-
risk and high-risk groups, we obtained 2371 DEGs 
(Fig.  4A). Interestingly, GO analysis results showed that 
the changes in the biological process (Fig.  4B) were sig-
nificantly enriched in immune response, particularly in 
the B cell receptor signaling pathway, T cell co-stimulation 
and granulocyte–macrophage colony-stimulating factor 
production. The cellular component which has changes 
(Fig.  4C) was mainly enriched in the extracellular region, 
plasma membrane, extracellular exosome. KEGG path-
way (Fig.  4D) was mainly enriched in natural killer cell-
mediated cytotoxicity, T cell receptor signaling pathway, 
Jak-STAT signaling pathway. These results suggest that our 
IRGs signature regulates the immune response primarily 
by participating in stimulation or activation of T cell and B 
cell, as well as the polarization of macrophages.

The degree of immune infiltration between low‑risk 
and high‑risk groups
The RNA sequencing data of HCC samples were ana-
lyzed by the ssGSEA method and got the abundance 
levels of 29 immune-related cells and types in 127 
HCC samples. Patients in the low-risk group had a 
higher degree of immune cell infiltration (Fig.  5A). 
Meanwhile, we calculate the stromal score (SS), 
immune score (IS) and estimate score (ES) by using 
the ESTIMATE algorithm. The result has shown 
that the SS, IS, and ES of the low-risk group was 
significantly higher than that of the high-risk group 
(P < 0.05) (Fig. 5A-B). Immune cell correlation analy-
sis showed that as the risk score increased, plasma 
cells and CD8 + T cells gradually decreased, and con-
versely M2 cells and M0 cells gradually increased 
(p < 0.05) (Fig. 5C-F).

Establishment of a risk‑nomogram for predicting survival 
in HCC patients
Combined with other univariate and multivariate COX 
analyses of significant and important clinical features 
(P < 0.1), such as AFP level, hepatitis, tumor status and 
other factors that help in the disease detection, we have 
established a convenient and clinically adaptable risk 
nomogram to predict the survival probability of HCC 
patients in the training cohort of TCGA and the vali-
dation cohort of GSE76427. By calculating the sum of 
the scores corresponding to the corresponding levels of 
each factor in the nomogram, the higher the total score, 
the worse the patient’s 1-year, 3-year, and 5-year OS 
rate (Fig. 6A, C).

To verify the validity of this nomogram, we calculated 
the C-statistic discriminatory index and the calibration 
plot of the prediction models in the training cohort and 
the validation cohort. Figure  6D shows the calibration 
plot for predicting the 1-year, 3-year and 5-year OS 
rates, with an accompanying C-statistic discrimina-
tory index value of 0.739 and 0.668, demonstrating the 
good predictive ability and effectiveness of our nomo-
grams. This proves that the IRGs signature combines 
clinical characteristics such as AFP levels and hepatitis 
to further enhance clinical value and predictive power 
(Table 4). In addition, according to the DCA curve, the 
nomogram showed exceptional performance in the 
training cohort (Fig. 6B).

(See figure on next page.)
Fig. 3  IRGs signature accurately predicts survival of HCC patients. The Kaplan–Meier curve of the overall survival between the high-risk and low-risk 
groups was stratified by the median risk score in TCGA (A), GSE76427 (E) and ICGC (G). 1-year, 3-year, 5-year ROC analysis of the predictive efficiency 
of the IRGs signature (B), Liu’s signature (C) and Dai’s signature (D) on overall survival based on risk score in TCGA. 1-year, 3-year, 5-year ROC analysis 
of the predictive efficiency of the IRGs signature on overall survival based on risk score in GSE76427 (F) and ICGC (H)
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Fig. 3  (See legend on previous page.)
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Effects of M2 macrophage levels on HCC cell migration
We used PMA, IL-4 and IL-13 to induce M2 mac-
rophage formation (Fig.  7A). First, the M0 mac-
rophage markers CD11b and CD14 were detected by 
qPCR. Then, the expression of M2 macrophage marker 
CD206 and CD163 was significantly up-regulated 
compared to M0 macrophages by qPCR (P < 0.05) 
(Fig.  7D). Figure  7B shows morphological changes in 
THP-1, M0 and M2 cells. We then probe into whether 
M2 macrophages affected HCC cell migration levels. 
After co-culture with M2 macrophages, we observed 
a significant increase in the ability of MHCC-97H to 
migrate, and the pseudopod of MHCC-97H cells has 
increased significantly in morphology (Fig.  7C). It is 
proved that M2 macrophages increase the malignancy 
of HCC.

IRGs identified as key factors of tumor microenvironment 
in HCC
To determine the essential value of CD79B, S100A9, 
TNARSF11B in the immune infiltration of HCC. Com-
pared with three normal HCC cell lines, in HCC cell 
lines co-cultured with M2 macrophages, the expression 
of CD79B and TNFRSF11B was significantly down-reg-
ulated, while the expression of S100A9 was up-regulated 
considerably (Fig. 7E-G).

Discussion
The liver receives blood from the hepatic artery and por-
tal vein and has a rich blood supply [25]. Therefore, the 
liver will be exposed to intestinal-derived microorgan-
isms and food-derived harmless antigens at a high level 
for a long time, giving the liver a unique immune privilege 

Fig. 4  Enrichment analysis of DEGs. A The volcano shows DEGs between low-risk and high-risk groups. B-D Represent the enrichment analysis 
results of DEGs involved in IRGs signature, namely biological processes, cellular components, molecular functions, and KEGG
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Fig. 5  The degree of immune infiltration between low-risk and high-risk groups. A Differences in 29 immune-related gene sets between the 
high-risk and low-risk groups. Using ESTIMATE algorithm to calculate the SS, IS, ES. B The violin plots of SS, IS, ES. C-F Spearman’s correlation analysis 
of immune cells and IRGs signature risk scores
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[7]. Despite a major histocompatibility complex (MHC) 
mismatch, the liver can accept allogeneic transplanta-
tion by inducing immune tolerance [26, 27]. However, the 
survival rate and activity of hepatitis viruses, bacteria and 

tumors in the immunosuppressive microenvironment 
are higher, leading to persistent infections and rapid 
cancer progression. Various components of the immune 
microenvironment regulate the occurrence and progress 

Fig. 6  Construction of nomograms in the training cohort and the validation cohort. Construction of nomograms in the training cohort of TCGA (A) 
and the validation cohort of GSE76427 (C). B DCA curves show the clinical utility of the nomogram models other models for the 3-year OS. (D) The 
calibration plots for predicting the 1-year, 3-year and 5-year OS rates, with an accompanying C-statistic discriminatory index value

Table 4  Univariate and multivariate analysis of IRGs signature and clinical characteristics with OS

Gene Univariate analysis Multivariate analysis

P value Hazard ratio P value Hazard ratio

BMI 0.037 0.693(0.491–0.979) 0.095 0.718(0.412–1.062)

Age 0.941 0.985(0.670–1.450)

Gender 0.524 1.228(0.652–2.312) 0.088 1.790(0.922–3.518)

Grade 0.933 1.013(0.754–1.360)

Stage 0.014 1.452(1.080–1.952)

Stage T 0.008 1.493(1.110–2.008) 0.064 1.36(0.98–1.89)

IRGs risk score 0.002 2.602(1.437–4.709) 0.022 2.15(1.12–4.13)

Tumor status 0.081 1.652(0.939–2.906) 0.017 2.48(1.18–5.24)

Family cancer history 0.671 1.130(0.642–1.998)

AFP  < 0.001 2.619(1.489–4.607) 0.012 2.24(1.20–4.21)

Hepatitis B/C 0.088 0.614(0.351–1.075) 0.035 0.73(0.37–1.42)
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of HCC [28–30]. In recent years, immunotherapy has 
made great breakthroughs in tumor treatment, including 
HCC [31, 32]. Considering the close connection between 

the immune microenvironment in tumorigenesis and 
immunotherapy [33]. This article hopes to provide guid-
ance for the prediction of prognosis of HCC patients and 

Fig. 7  Polarization of THP1 cells and co-culture experiment. A Schematic model co-culture system. B The morphological differences in THP1, M0, 
and M2 cells under a light field. C Comparison of the MHCC-97H migration using transwell compartments. D Detect M0 and M2 macrophage 
markers by qPCR to determine the polarization state of macrophages. E–G The expression of IRGs signature genes in the co-culture group and 
three normal HCC cell lines were detected by qPCR. * P < 0.05, **P < 0.01, *** P < 0.001
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probe into potential immunotherapy targets for HCC by 
screening immune cell and gene targets closely related to 
immune infiltration and clinical characteristics.

The interaction of various components in TIME leads 
to complex functions of the body. Consequently, under-
standing the relationship between immune infiltration 
and patient prognosis is an urgent goal. This study first 
explored the relationship between M2 macrophages, 
plasma cells, resting CD4 + T memory cells, CD8 + T 
cells immune cells and the survival of HCC patients. 
CD4 + T cells and CD8 + T cells can activate the immune 
system to kill tumor cells, a research hotspot in tumor 
immunotherapy [34, 35]. CD8 + T cells can differenti-
ate into effector cytotoxic T lymphocytes (CTLs), which 
have two main ways to kill tumor cells: granular exocy-
tosis and Fas ligand (FasL)-mediated apoptosis induction 
[36] (Fig.  8). Most effector cells can return to a resting 
state and form memory cells [37]. CD4 + T memory 
cells are essential for adaptive immunity [38] and can be 
divided into central memory T cell (TCM) and effector 

memory T cell (TEM) [39]. When re-infected, TEM can 
release IFN-γ, IL-4 and other cytokines and chemokine 
receptors in a short period to quickly perform immune 
functions. TCM can maintain immune memory while 
expressing IL-2 and dividing rapidly. In the peripheral 
blood of patients with advanced cancer, the proportion 
of TCM cells decreases, showing a state of T cell exhaus-
tion [40]. Our research suggests that patients with low 
levels of resting CD4 + T memory cells and CD8 + T cells 
have a shorter overall survival period, consistent with the 
theory of T cell exhaustion. Following antigen exposure 
and T cell licensing, B cells can secrete IL-2, IL-4, IFN-
γ, TNF-α and other cytokines to enhance T cell toxicity 
[41]. It usually differentiate into potent antibody-secret-
ing plasma cells, which are essential for humoral immu-
nity [42] (Fig.  8). A large amount of evidence indicates 
that the high expression of plasma cell-related genes is 
related to the excellent prognosis of various tumors [43, 
44]. Tumor-associated macrophages (TAMs) are mac-
rophages that infiltrate around tumor cells. They are 

Fig. 8  schematic overview. Schematic overview of functional interactions between B cells, PC, T cells and macrophages in the tumor 
microenvironment. B cells can enhance T cell responses by producing IL-2, IL-4 and other cytokines. Meanwhile, it can be differentiated into 
PC, which produces antibodies against tumor-associated antigens and triggers antibody-dependent cellular cytotoxicity (ADCC) responses. It 
also supports tumor-associated macrophages (TAMs) to take up tumor antigens and polarize M1 type to exert phagocytosis. Tumor induces 
the formation of M2 macrophages, which can increase the expression of tumor cells S100A9, further enhance M2 polarization and recruit M2 
macrophages. It can also reduce the expression of TNFRSF11B and enhance the migration ability of tumors. Meanwhile, it can reduce the expression 
of CD79B, a component of the BCR complex, and weaken the immune function of B cells
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mainly divided into classically activated macrophages 
(M1) and alternately activated macrophages (M2). 
The overall appearance of the M2 macrophage pheno-
type promotes immune evasion of tumor cells [45]. The 
mutual transformation of M1 and M2 macrophages reg-
ulates tumorigenesis [46]. Evidence shows that TAMs 
play an essential role in the development, invasion, drug 
resistance, immune escape and angiogenesis of HCC 
[47]. Consistent with previous studies, our study shows 
that the enrichment of M2 macrophages in HCC indi-
cates a poor prognosis, and the enrichment of plasma 
cells is an indicator of a favorable prognosis. Overall, the 
four survival-related immune cells identified in this study 
are significant in immune infiltration and immunother-
apy of HCC, confirming the significance of related gene 
analysis based on immune cells.

We have identified 30 hub genes, nine of which are 
related to patient prognosis. Finally, with univariate 
and multivariate COX regression, we screened 3 Hub 
genes as an IRGs signature for HCC patients, including 
S100A9, CD79B, and TNFRSF11B. Previous studies have 
linked these three genes to tumor development, but the 
regulatory effect of the HCC immune microenvironment 
is still unclear. CD79B, as one of the main components 
of the B-cell antigen receptor complex (BCR), is mainly 
responsible for transducing antigen-recognition signals 
to the inside of the cell, expressed on almost all B cell 
surfaces [48, 49]. BCR signaling primarily affects key 
functions such as immune synapse formation, antigen 
affinity, cell migration, etc., and is critical for the matu-
ration and maintenance of B cells [50]. The downregula-
tion of CD79B in the tumor immune microenvironment 
may lead to abnormal BCR signaling, affecting B cell 
activity and leading to immunosuppression. S100A9 is 
a secretory protein in the inflammatory microenviron-
ment that is significantly up-regulated in TAMs and is 
mainly expressed in neutrophils and circulating mono-
cytes [51, 52] and is related to poor differentiation of 
HCC, vascular infiltration, invasion and metastasis [53]. 
Interestingly, M2 macrophages have been reported to 
secrete more S100A9, enhancing the stem cell-like prop-
erties of HCC cells through the AGE/NF-κB axis signal-
ing pathway [54]. TNFRSF11B is able to bind and inhibit 
TRAIL (TNF-related apoptosis-inducing ligand) to exert 
anti-apoptotic effects, suggesting that it may provide a 
survival advantage for cells [55]. It is also controversial 
in the study of HCC [56, 57]. Studies have shown that 
in highly aggressive liver cancer cells, the expression of 
TNFRSF11B is often lower than that of low aggressive 
liver cancer cells [58]. The same point of view is that the 
down-regulation of TNFRSF11B expression can promote 
HCC bone metastasis in  vivo [59]. However, there is 
also evidence that the high expression of TNFRSF11B is 

an important reason for the high metastatic potential of 
HCC cells [60]. Hence, we need to study the mechanisms 
of the three genes further to help develop new HCC 
treatment strategies.

We have established a new IRGs signature with 
S100A9, CD79B, and TNFRSF11B. Compared to other 
previously published IRGs signatures (Liu’s signature 
[13] and Dai’s signature [24]), our IRGs signature has 
higher accuracy, and our signature has been successfully 
verified in the GSE76427 and ICGC databases (Fig. 3). To 
explore the regulatory role of our IRGs signature, the 127 
patients in TCGA were sorted according to the risk score 
and divided into high-risk(n = 64) and low-risk(n = 63) 
groups. Interestingly, GO analysis results the DEGs were 
significantly enriched in the B cell receptor signaling 
pathway and T cell co-stimulation, particularly in granu-
locyte–macrophage colony-stimulating factor produc-
tion (Fig. 4). And our IRGs signature risk score and M0/
M2 macrophages are significantly positively correlated 
(Fig. 5). This evidence suggests that our IRGs signature is 
closely related to macrophages.

In addition, immune cells and stromal cells are the two 
major non-tumor components in the tumor microenvi-
ronment. Identifying the right tumor immune subtypes 
can accurately guide the clinical treatment and prognosis 
of tumors. We got the abundance levels of 29 immune-
related cells between low-risk and high-risk groups 
(Fig. 5), and found that patients in the low-risk group had 
a higher degree of immune infiltration. Using ESTIMATE 
algorithm, we generated immune scores, stromal scores 
and purity of tumor cells for 127 HCC patients, which 
have been used to evaluate the immunological character-
istics of HCC [61]. Compared to the low-risk group, the 
immune scores and stromal scores were lower in high-
risk group. This suggests that the proportion of immune 
cells in the tumor microenvironment and tumor purity 
have an essential impact on the prognosis of HCC. This 
implies that our IRGs signature has important guiding 
implications for immunoclassification in HCC patients. 
For patients with higher risk scores, different immuno-
therapies combined with conventional treatments should 
be given priority, to improve the prognosis. Meanwhile, 
we combined a few selected clinicopathological charac-
teristics, such as BMI, AFP, tumor status, stage, etc., to 
establish a predictive nomogram model to evaluate the 
1-year, 3-year, and 5-year prognosis of HCC patients to 
achieve accurate prediction of survival. The calibration 
plots show that the model has a high prediction accuracy. 
This indicates that the new scoring system established in 
this study is of great help to the patients who need addi-
tional treatment or enhanced follow-up, and can better 
promote accurate prevention and personalized health 
management of patients.
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We found a significant positive correlation between 
IRGs signature risk scores and M0/M2 macrophages 
(Fig.  5E, F). To further explore the functions of the 
IRGs signature genes associated with M2 macrophages, 
we first co-cultured three HCC cell lines with M2 mac-
rophages, respectively. The results showed that the 
migration capacity of MHCC-97H was significantly 
enhanced, and the pseudopod of MHCC-97H cells has 
increased significantly in morphology after co-culture 
with M2 macrophages (Fig.  7C). This proves that M2 
macrophages cause changes in gene expression in HCC 
cells, leading to an increase in the malignancy of HCC. 
M2 macrophages may have released some macromo-
lecular substances through exosomes that regulate the 
expression of IRGs signature genes in the microenvi-
ronment, such as miR-200c, miR-203 [62]. Considering 
that IRGs signature genes play a key regulatory role in 
co-culture systems, we detected changes in the expres-
sion of IRGs signature genes in MHCC97H, Huh7 and 
LM3 cell lines through qPCR. The results showed that 
in the tumor microenvironment created by M2 mac-
rophages, the expression of CD79B in tumor cells was 
down-regulated, which may lead to abnormal BCR 
signaling. Consistent with previous studies [54], the 
expression of S100A9 in tumor cells was significantly 
increased after M2 macrophages were co-cultured, 
and the expression of TNFRSF11B was significantly 
reduced, which may increase the malignancy of tumor 
cells (Fig. 8). This implies that we constructed an IRGs 
signature that may regulate the "cross-talk" between 
immune cells and tumor cells.

Overall, we identified 4 immune cells related to survival 
and 9 immune-related genes related to the prognosis of 
HCC patients. These cells and genes can be considered 
as biomarkers for judging the prognosis of HCC, and 
may serve as important targets for HCC immunother-
apy. Highlighting the outcomes of our study, firstly, we 
screened 3 hub genes to establish an IRGs signature, and 
verified and evaluated the signature in the multiple data 
sets, demonstrating the reliability of the signature. Sec-
ondly, we have conducted a comprehensive and in-depth 
study on the correlation between IRGs signature and 
immune cells and immune checkpoints, which provides 
a potential direction for the research of HCC immuno-
therapy. And finally, we established a quantitatively cal-
culated nomogram, which is more conducive to clinical 
application. However, the limitation of this study is that 
the public data set lacks some key clinical pathology and 
neoadjuvant therapy related information of patients. 
Meanwhile, markers based on immune-related genes 
need to be applied in clinical patients to verify the pre-
dictability of their prognosis.
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