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Abstract: Intensive artificial and natural selection have shaped substantial variation among European
horse breeds. Whereas most equine selection signature studies employ divergent genetic population
structures in order to derive specific inter-breed targets of selection, we screened a total of 1476 horses
originating from 12 breeds for the loss of genetic diversity by runs of homozygosity (ROH) utilizing a
670,000 single nucleotide polymorphism (SNP) genotyping array. Overlapping homozygous regions
(ROH islands) indicating signatures of selection were identified by breed and similarities/dissimilarities
between populations were evaluated. In the entire dataset, 180 ROH islands were identified, whilst 100
islands were breed specific, all other overlapped in 36 genomic regions with at least one ROH island
of another breed. Furthermore, two ROH hot spots were determined at horse chromosome 3 (ECA3)
and ECA11. Besides the confirmation of previously documented target genes involved in selection
for coat color (MC1R, STX17, ASIP), body size (LCORL/NCAPG, ZFAT, LASP1, HMGA2), racing
ability (PPARGC1A), behavioral traits (GRIN2B, NTM/OPCML) and gait patterns (DMRT3), several
putative target genes related to embryonic morphogenesis (HOXB), energy metabolism (IGFBP-1,
IGFBP-3), hair follicle morphogenesis (KRT25, KRT27, INTU) and autophagy (RALB) were highlighted.
Furthermore, genes were pinpointed which might be involved in environmental adaptation of specific
habitats (UVSSA, STXBP4, COX11, HLF, MMD).

Keywords: ROH island; selection signature; body size; coat color; autophagy; altitude adaptation;
embryonic morphogenesis
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1. Introduction

The scientific interest in the identification of selection signatures in horses successively rose with
the enhancement of whole-genome sequencing and analysis methods. A milestone in equine genetics
is the population study of Gu et al. [1] that concentrated on the identification of selection targets in
thoroughbreds using microsatellite markers. With the availability of cost extensive high throughput
single nucleotide polymorphism (SNP) data, several studies were conducted to scan the genome of
numerous horse populations for genetic diversity [2,3], and for selection signatures [4–7]. Furthermore,
the capability of archaeogenomics to isolate and analyze ancient DNA enabled the comparison of
the ancient equine genome with modern breeds, which highlighted the genomic changes during the
domestication process [8,9]. Most of these studies employ methods which ascertain the loss of diversity
in order to capture breed divergent patterns of molecular variation, among them FST statistics being
the most popular [10,11]. In other livestock species, authors investigated selection signatures based on
common shared runs of homozygosity (ROH islands) [12–15]. To date, several studies applying this
approach on horses were published [16–21]. To our knowledge, one of the first equine studies scanning
the genome for runs of homozygosity (ROH) in order to detect selection signatures was performed by
Metzger et al. [16] using the next generation sequencing data of 10 horses (three horses originating
from primitive breeds and seven horses originating from modern breeds). Grilz-Seger et al. [17,18] and
Velie et al. [19] investigated ROH island patterns within single breeds using genotype information of the
670k SNP genotyping array. A comparison of overlapping homozygous regions between three different
breeds with a small population size using 670k SNP data was performed by Grilz-Seger et al. [20],
whilst Nolte et al. [21] investigated four German sport horse breeds based upon 50k SNP data. In this
study, we investigated a highly diverse breed panel of 12 European and Near-Eastern horse breeds,
comprising in total 1476 horses, for potential signatures of selection utilizing the 670kSNP genotyping
array (Table 1). The horses were selected to represent a North–South gradient ranging from Great
Britain over Central and South-Eastern Europe to the Near East (Figure 1).
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Table 1. Characterization of breeds, population history, sample location and number of sampled
horses (N).

Breed/Classification Gene Pool Region of
Origin/Sample Origin Population Notes and Census

Exmoor Pony
small sized, multipurpose

working horse
Native English breed British Isles/UK Closed stud book since 1921, ca.

2.000 animals [2]

Selle Francais
Riding horse

French Trotter,
Thoroughbred, Arabian France/FRA Stud book founded 1958; ca. 12.700

breeding animals [22]

French Trotter
harness racing (trot)

Anglo Norman,
Standardbred France/FRA

Stud book closed since 1937, allows
Standardbred; 15.500 breeding

animals [23]

Lipizzan
riding, driving

Old-Spanish and
Oriental breeds

Austro—Hungarian/Lipizzan
Stud farms AT, SLK,

HUN, HR

Founded 1580, closed studbook since
1880; ca. 2.000 breeding animals in

European state stud farms [24]

Noriker
heavy working draught horse Native Austrian breed Austria/AT Very old breed, closed stud book since

1880; ca. 4.000 breeding animals [25]

Haflinger
light draught horse,

multipurpose

Derived from local and
Galizian mares, and

influenced by Arabian,
Gidran, Noriker

Austria/AT
Founded 1898, closed studbook since

1928; ca. 6.000 breeding animals in
Austria [26]

Posavina
small draught horse, heavy

working

Native Croatian breed,
influenced by Ardenner,
Bosnian Mountain Horse

Croatia/SLO Closed studbook since 1994; ca. 600
breeding animals in Slovenia [27]

Gidran
multipurpose riding horse

Arabian, English
Thoroughbred,

Old-Spanish

Stud farms Mezöhegyes,
Radautz (Austro -

Hungarian empire)/HUN

Closed studbook since 1860,
introgression of some Arabian and

Thoroughbred horses; ca. 250
breeding animals in Hungary [28]

Shagya Arabian
endurance and multipurpose

riding horse

Original Arabians from
Syria, influence by

Russian founder mares

Stud farms Babolna,
Mezöhegyes, Radautz
(Austro - Hungarian

empire)/SLK

Closed studbook since 1830, Purebred
Arabians allowed; ca. 2.000 breeding

animals [29]

Bosnian Mountain Horse
small multipurpose

working horse

Native breed of the
Balkan Peninsula,

influenced by Arabian

Bosnia and
Herzegovina/BIH, SLO

Purebred, very old breed; 114
registered animals in the International

Association of Bosnian Mountain
Horse Breeders [30]

Purebred Arabian
endurance and multipurpose

riding horse
Original Arabian Egypt, Near East/FRA Purebred, very old breed; worldwide

Akhal Teke
Endurance horse Native Middle East Turkmenistan/RUS Purebred, stud book closed 1941; ca.

3.500 breeding animals [2]

The main objective of this study was to determine levels of autozygosity, with a special focus
on overlapping homozygous regions (ROH islands) within and between breeds, in order to identify
breed-specific signatures of selection. Furthermore, we conducted a gene ontology (GO) and enrichment
analysis and compared and discussed resulting gene ontologies within our breed panel.

2. Materials and Methods

2.1. Sampling

The sample comprised 1476 horses from ten European and two Near Eastern horse breeds, whereas
the single breeds belonged to different phenotype categories: two heavy draught horse breeds (Noriker,
n = 174, Posavina, n = 28), two small sized autochthonous breeds (Exmoor Pony, n = 104, Bosnian
Mountain Horse, n = 23), two Arabian breeds (Purebred Arabian, n = 155, Shagya Arabian, n = 32),
three Warmblooded breeds (Selle Francais, n = 294, Lipizzan, n = 377, Gidran, n = 20), one racing
breed (French Trotter, n = 156), one small to medium sized multipurpose working breed (Haflinger,
n = 78) and the Akhal Teke (n = 35) (Table 1). Three of the sampled breeds can be considered as very
old (Noriker, Bosnian Mountain Horse and Exmoor Pony) and are kept under semi-feral conditions on
a long term.



Genes 2019, 10, 491 4 of 23

The majority of the horses (Haflinger, Noriker, Lipizzan, Posavina, Bosnian Mountain Horse,
Gidran and Shagya Arabian) were selected in order to represent the genealogical population structure
(sire lines and mare families) of the respective breeds based on pedigree information. For Akhal Teke,
French Trotter and Selle Francais, the horses were chosen to be unrelated within two generations.
In the Exmoor Pony sample only horses with four generation long pedigrees were included and
closely related individuals (full sibs) were excluded. For Lipizzan, Noriker, Posavina and Bosnian
Mountain Horse SNP data were available from previous studies [17,18,20]. The samples for Lipizzan,
Shagya Arabian, Akhal Teke, Haflinger and Noriker were discussed and approved by the institutional
Commission for Ethics and Animal Welfare, University of Veterinary Medicine, Vienna, protocol
number: ETK-06/05/2015. The hair samples of Bosnian Mountain, Posavina and Gidran horses were
collected during routine procedures for studbook registration by the Institute for Breeding and Health
Care of Horses of the Veterinary Faculty, Ljubljana. The samples of Selle Francais, Purebred Arabian
and French Trotter horses were collected in accordance with generalized scheme of preferences (GSP)
guidelines and national legislation and the Exmoor Pony samples were approved by the Ethics
Committee for Animal Experiments in Uppsala, Sweden (Number: C 121/14).

2.2. SNP Genotyping

The SNP genotypes of the 1476 horses were derived using the Affymetrix Axiom™ Equine
genotyping array [3]. The chromosomal position of the SNPs was determined based on EquCab2
reference genome [31]. We did not consider SNPs positioned on the sex chromosomes (X: 28 017 SNPs
and Y: 1 SNP) and SNPs without known chromosomal position (30,864 SNPs). SNPs with more than
10% missing genotypes were excluded. This resulted in a total of 611,914 SNPs that passed quality
control and were used for further genetic analyses.

2.3. Population Stratification and ROH Analysis

In order to illustrate the population structure, we applied a principal component analysis
(PCA) based upon the genetic relationship matrix (G) with pairwise identities by state (IBS) between
horses as provided by PLINK v.1.7 [32]. The PCA scatter plot was performed using the R-platform
(www.r-project.org).

ROH segments were determined with an overlapping window approach implemented in PLINK
v1.7 [32] based on the following settings: minimum SNP density was set to one SNP per 50 kb, with
a maximum gap length of 100 kb. The final segments were called runs of homozygosity (ROH) if
the minimum length of the homozygous segment was greater than 500 kb and constituted more than
80 homozygous SNPs, whilst one heterozygote and two missing genotypes were permitted within
each segment.

The distribution of ROH segments across the genome was visualized using the R-package
detectROHs (www.r-project.org). Putative ROH islands were determined based on overlapping
homozygous regions, shared by more than 50% of studied horses within each breed [12]. ROH islands
which occurred only in one single breed were defined as “breed-specific” or “private”. Resulting ROH
islands were checked for overlaps between breeds, whereas no threshold for the minimal overlapping
length size was applied.

Further statistical analyses, graphical representations and data preparation were performed
using the software package SAS v.9.1 [33]. In order to provide a general overview, we plotted all
chromosomes and illustrated length and position of ROH islands with boxes and pinpointed location
of genes as vertical lines with either: (a) known functions, (b) associated with phenotypes in horses, (c)
highlighted in selection signature studies, (d) with singular occurrence in ROH islands, and (e) genes,
highlighted by GO analysis.

www.r-project.org
www.r-project.org
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2.4. Gene Ontology Analysis

The equine Ensembl database EquCab2 was used to identify genes located in ROH islands,
available at www.ensembl.org. For the determination of gene ontology (GO) terms and KEGG
(Kyoto Encyclopaedia of Genes and Genomes) pathways of identified annotated genes, the open source
database for annotation, visualization and integrated discovery (DAVID) v6.8 package [34] was used.
For the GO analysis the equine annotation file as background and a significance threshold of p < 0.05,
correcting for multiple testing applying Bonferroni-Holm test, were chosen.

3. Results

3.1. Population Stratification

The population structure of the studied horse breeds was ascertained with a PCA scatter plot
as shown in Figure 2. Based upon the genetic pairwise identity-by-state (IBS) distance the first
principal component 1 (PC1), accounting for 36% of the total variance, divided the 12 breeds into two
main groups: (a) draught horse and Pony breeds (Noriker, Haflinger, Posavina and Exmoor Pony)
and (b) performing and oriental breeds (Purebred Arabians, Shagya Arabians, Akhal Teke, Gidran,
Selle Francais, French Trotter, Lipizzan and Bosnian Mountain Horse). Principal component 2 (PC2),
accounting for 3% of the total variance, clearly separated the Lipizzan horses from the other breeds and
simultaneously provided a fine-scale population structure of the oriental breeds (Purebred Arabian,
Shagya Arabian, Gidran and Akhal Teke) by dividing them from the French Trotter and Selle Francais,
whilst the latter two showed a high level of genetic relatedness. Visualization of PC1 versus PC3
(accounting for 1% of the total variance) illustrated the genetic relationship between the breeds and
highlighted that the draught horse breeds gradually overlap along PC1 in direction from heavy to
lighter type and geographically from North to South (Noriker, Haflinger, Posavina), whilst the Bosnian
Mountain Horse built the hub to the oriental breed cluster. Compared to PC2, Exmoor Pony built a
distinct cluster on PC3, whilst the Lipizzan horses were allocated next to Purebred Arabian and Shagya
Arabian. Furthermore, it can be noticed that the draught horses were clearly divided along small to
bigger size (Posavina, Haflinger, Noriker).Genes 2019, 10, 491 6 of 22 
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Figure 2. Principal component analysis (PCA) scatterplot illustrating the population stratification of
1,476 horses originating from 12 breeds. On the left visualization of PC1 versus PC2, together explaining
39% of genetic variance, and on the right visualization of PC1 versus PC3 together explaining 37% of
variation, are presented. (AKT = Akhal Teke, BMH = Bosnian Mountain Horse, EXP = Exmoor Pony,
FT = French Trotter, GID = Gidran, HAF = Haflinger, LIP = Lipizzan, NOR = Noriker, POS = Posavina,
PAR = Purebred Arabian, SF = Selle Francais and SHA = Shagya Arabian).

www.ensembl.org
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3.2. ROH Island Pattern and Distribution

Mean genome length covered by runs of homozygosity (SROH) ranged on population level from
192.7 Mb to 506.1 Mb (Table 2). The highest values were assigned to the Exmoor Pony (506.1 Mb),
the Arabian group (Purebred Arabian—368.1 Mb, Shagya Arabian—355.1 Mb, Gidran—321.9 Mb) and
the French Trotter (352.8 Mb).

Table 2. Mean genome length covered by runs of homozygosity SROH values (in Mb), total length
of overlapping homozygous regions (ROH islands) (in Mb), number of ROH islands and number of
annotated genes within ROH islands per breed and number of private ROH islands per breed.

Breed SROH Mb Sum ROH
Islands Mb n ROH Islands n Genes in

ROH Islands
n Private ROH
Islands

Exmoor Pony 506.1 24.5 33 171
28 on
ECA1,2,3,4,6,16,18,19,
22,23,28,30

French Trotter 352.8 20.5 22 156 14 on
ECA2,4,6,7,8,9,15,23

Selle Francais 297.1 2.1 5 8 1 on ECA1

Lipizzan 297.0 1.9 5 23 1 on ECA14

Noriker 215.5 5.0 5 50 1 on ECA11

Posavina 192.7 2.2 5 16 1 on ECA28

Haflinger 279.7 4.9 5 60 -

Gidran 321.9 19.2 30 143
18 on
ECA2,3,4,6,9,14,17,
22,25,27,28

Purebred
Arabian 368.1 15.5 19 141 5 on ECA2,4,5,14,22

Shagya Arabian 355.1 22.4 32 242
23 on
ECA1,2,6,8,9,11,15,16,
18,19, 23,25

Akhal Teke 246.1 4.8 9 90 4 on ECA1,11,19

Bosnian
Mountain Horse 296.3 4.2 10 35 4 on ECA3,6,11,23

Medium SROH levels around 290 Mb were found in the Lipizzan, Selle Francais, Haflinger and
Bosnian Mountain Horse, followed by the Akhal Teke (246.1 Mb) and Noriker (215.5 Mb). The lowest
values were identified in the Posavina (192.7 Mb). The highest number and total length of overlapping
homozygous regions were expressed by Exmoor Pony (33 islands, 24.5 Mb) followed by Shagya
Arabian (32 islands, 22.4 Mb), Gidran (30 islands, 19.2 Mb) and French Trotter (22 islands, 20.5 Mb)
(Table 2). Low numbers of ROH islands were detected in Lipizzan (5 islands, 1.9 Mb), Selle Francais
(five islands, 2.1 Mb) and Posavina (five islands, 2.2 Mb) (Table 2, Supplementary File 1). In general,
the total ROH island length per breed was consistent with its mean SROH, except for the Lipizzan
and Selle Francais, where the length of five overlapping homozygous regions comprised 1.9 Mb,
respectively 2.1 Mb in contrast to a medium SROH of 297 Mb (Table 2).

From a total of 180 identified ROH islands 100 were private for a specific breed (Table 2), whilst
all other islands overlapped in 36 genomic regions and were shared by at least two breeds (Table 3).
High numbers of private ROH islands were present in Exmoor Pony (28 out of 33), Shagya Arabian
(23 out of 32), Gidran (18 out of 30) and in French Trotter (14 out 22) (Table 3). Low numbers of breed
specific ROH islands were determined in Lipizzan, Noriker, Posavina and Selle Francais where one
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out of five homozygous regions was solely found within the respective breed. Within Haflinger no
private islands were detected, as all islands overlapped with homozygous regions of other breeds.

Table 3. Overlaps of runs of homozygosity (ROH) islands (begin and end in Mb) between breeds and
annotated genes.

Chr. Begin End Breed Shared ROH
Islands

Annotated Genes within
ROH Islands

1 148,443.474 148,516.796 Akhal Teke, Bosnian
Mountain Horse EIF2AK4

3 34,386.385 34,732.351 Akhal Teke, Haflinger KLHDC4, SLC7A5, CA5A,
BANP

3 36,047.262 36,548.306 Gidran, Haflinger,
Purebred Arabian

CDK10, SPATA2L, ZNF276,
VPS9D1, FANCA, SPIRE2,
TCF25, DBNDD1, GAS8,
MC1R, DEF8

3 37,179.496 38,127.255 Gidran, Haflinger,
Purebred Arabian

MANBA, NFKB1, SLC39A8,
BANK1

3 105,767.304 105,832.553 Exmoor Pony, Noriker NCAPG, DCAF16

3 118,669.793 118,769.903
Lipizzan, Shagya
Arabian, Purebred
Arabian

UVSSA, MAEA

3 118,809.979 118,893.880
Lipizzan, Shagya
Arabian, Purebred
Arabian

CTBP1

3 118,659.800 119,479.623 Shagya Arabian,
Purebred Arabian

UVSSA, MAEA, CTBP1,
SPON2, FGFRL1, IDUA,
SLC26A1, DGKQ, TMEM175,
GAK, CPLX1, PCGF3,
SLC49A3, MYL5, ATP5ME,
PDE6B, PIGG

4 15,163.634 15,817.917 Akhal Teke, French
Trotter

NUDCD3, NPC1L1, DDX56,
TMED4, OGDH, ZMIZ2,
H2AFV, MYO1G, CCM2,
TBRG4, RAMO3

4 50,883.038 50,904.590 Gidran, Shagya Arabian HDAC9

4 52,692.165 52,840.002 Gidran, French Trotter ABCB5

6 29,424.361 30,040.425 Bosnian Mountain Horse,
Posavina, Selle Francais ERC1, RAD52, WNK1, NINJ2

6 41,240.508 41,843.164 Gidran, French Trotter GRIN2B

6 81,156.975 81,795.964 Exmoor Pony, Gidran HMGA2, LLPH, IRAK3

7 39,587.420 41,127.737 French Trotter, Purebred
Arabian, Shagya Arabian NTM, OPCML

7 48,157.328 48,930.905 French Trotter, Haflinger
ACP5, ELOF1, CNN1, ECSIT,
ZNF653, PRKCSH, RGL3,
EPOR, SWSAP1

7 50,167.155 50,932.454 French Trotter, Purebred
Arabian ZNF699
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Table 3. Cont.

Chr. Begin End Breed Shared ROH
Islands

Annotated Genes within
ROH Islands

9 31,329.939 32,034.084 Purebred Arabian,
Shagya Arabian PCMTD1, PXDNL

9 44,411.007 44,562.960
Purebred Arabian,
Shagya Arabian, Exmoor
Pony, (Haflinger)

KCNS2

9 75,054.137 75,434.658 Noriker, Posavina ZFAT

11 21,801.064 21,938.218 Purebred Arabian,
Shagya Arabian

KRT28, KRT27, KRT26,
KRT25, KRT24

11 21,966.387 22,416.682 Akhal-Teke, Purebred
Arabian, Shagya Arabian

SMARCE1, CCR7, TNS4,
GFBP4, TOP2A, RARA,
CDC6, WIPF2, RAPGEFL1,
CASC3, MSL1, NR1D1,
THRA

11 24,285.730 24,816.254 Noriker, Posavina,
Gidran, Lipizzan

HOXB1, HOXB2, HOXB3,
HOXB5, HOXB6, HOXB7,
HOXB8, HOXB13, TTLL6

11 24,793.573 24,822.752
Noriker, Posavina,
Bosnian Mountain
Horse, Haflinger, Gidran

CALCOCO2

11 26,117.473 27,008.802 Gidran, Purebred
Arabian

ACSF2, CHAD, RSAD1,
MYCABPAP, EPN3,
SPATA20, CACNA1G,
ABCC3, ANKRD40, LUC7L3,
ANKRD40CL, WFIKKN2,
TOB1, SPAG9, NME1-NME2,
MBTD1, UTP18

11 27,363.048 28,118.531 Gidran, Purebred
Arabian CA10

11 29,747.581 30,078.455 Bosnian Mountain Horse,
Exmoor Pony, Noriker, STXBP4, COX11, HLF, MMD

11 30,690.860 30,774.494
Bosnian Mountain
Horse, Haflinger,
Lipizzan, Noriker

ANKFN1

11 31,062.702 31,250.934
Lipizzan, Noriker,
Purebred Arabian,
Shagya Arabian

C11H17orf67

11 31,062.702 31,810.316
Purebred Arabian,
Shagya Arabian,
Lipizzan

C11H17orf67, DGKE, COIL,
SCPEP1, AKAP1, MSI2

15 79,489.871 79,964.006 French Trotter, Shagya
Arabian -

18 10,733.279 11,116.742 Bosnian Mountain
Horse, Purebred Arabian INHBB, RALB, EPB41L5

18 49,323.427 49,940.945
French Trotter, Gidran,
Selle Francais, Shagya
Arabian

SSB, METTL5, UBR3,
MYO3B

19 50,554.541 50,890.075 Gidran, Purebred
Arabian CBLB, ALCAM

23 54,975.635 54,984.719 French Trotter, Gidran FGD3

25 6,409.342 6,812.785 Lipizzan, Gidran NR4A3, STX17, ERP44, INVS
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The Exmoor Pony exhibited no common homozygous region with Akhal Teke and the performing
breeds. The ROH islands of the Bosnian Mountain Horse did not match with those of the Shagya
Arabians and those of the performance breeds, and the French Trotter had no common island with
Lipizzan, draught horse breeds, Exmoor Pony and Bosnian Mountain Horse. A summary for all ROH
islands per breed is presented in Supplementary File 1 and Supplementary File 2.

The ROH islands were unequally distributed across the genome. Nine chromosomes were ROH
island cold spots. Among all breeds no ROH islands were located on the following chromosomes:
ECA10, ECA12, ECA13, ECA20, ECA21, ECA24, ECA26, ECA29 and ECA31.

ECA11 can be characterized as a ROH island hot spot (Figure 3), as all breeds except French Trotter
and Selle Francais had at least one up to five ROH islands located in this region (ECA11: 20–37 Mb).
Six islands were breed-specific in: Akhal Teke, Noriker, Shagya Arabian and Bosnian Mountain
Horse. The overlapping homozygous regions (Table 3) can be assigned into four different groups: a)
the orientalized group, including Akhal Teke, Purebred Arabian, Shagya Arabian from 21.8 Mb to
22.4 Mb, and Purebred Arabian and Gidran from 26.1 Mb to 28.1 Mb, b) breeds originating from the
geographical region of the former Austro-Hungarian empire at position 24.2–24.8 Mb, c) autochthonous
breeds (Bosnian Mountain Horse, Exmoor Pony and Noriker) with an overlapping homozygous region
between 29.7 Mb and 30.1 Mb, d) mixed group including Noriker, Bosnian Mountain Horse, Exmoor
Pony, Haflinger, Shagya Arabian, Purebred Arabian and Lipizzan horses with overlapping ROH
islands from 30.6 Mb to 31.8 Mb (Figure 3).
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The ROH islands of the Arabian breeds overlapped in a genomic region where several members of
the KRT complex are located (Table 2). The gene LASP1 (LIM and SH3 protein 1), associated with body
size [35], was found in a 235 kb long private ROH island of the Noriker, which harbored nine additional
genes. A gene group with fundamental impact on embryonic morphogenesis is the homeobox B
(HOXB) cluster [36]. This gene cluster was present in up to 1.2 Mb long ROH islands on ECA11 in
Noriker, Posavina, Lipizzan and Gidran (Figure 3). The autochthonous breeds (Exmoor Pony, Bosnian
Mountain Horse and Noriker) shared a common homozygous region harboring the genes STXBP4
(syntaxin-binding protein 4), COX11 (cytochrome c oxidase copper chaperone COX11), HLF (HLF
transcription factor), and MMD (monocyte to macrophage differentiation associated). The islands of
the Exmoor Pony and the Noriker exceeded in length up to the gene ANKFN1 (ankyrin repeat and
fibronectin type III domain containing 1), which was also present in the ROH islands of Lipizzan,
Bosnian Mountain Horses and Haflinger (Figure 3). The Arabian breeds and the Lipizzan overlapped
in a region containing among six annotated genes, the genes SCPEP1 (serine carboxypeptidase 1),
AKAP1 (A-kinase anchoring protein 1) and MSI2 (musashi RNA binding protein 2).
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A second ROH island hot spot was identified on ECA3 in several genomic regions around the
genes KLHDC4 (Kelch domain containing 4), MC1R (melanocortin 1 receptor), BANK1 (B cell scaffold
protein with ankyrin repeats 1) and UVSSA (UV stimulated scaffold protein A) for breeds derived
or influenced by the oriental gene pool (Purebred Arabian, Shagya Arabian, Haflinger and Akhal
Teke) (Figure 4). The longest island covered the gene MC1R and reached up to 2.2 Mb length in the
Haflinger sample (Figure 4). The Arabian breeds exhibited an ROH island at the UVSSA locus. Around
the LCORL/NCAPG locus (ligand dependent nuclear receptor corepressor like/non-SMC condensin I
complex subunit G), which was associated with body size [35], another homozygous region was shared
by the Exmoor Pony and the Noriker horse. Within the Gidran sample, a private island containing
PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), a gene undergone
positive selection in Thoroughbreds [1], was detected.
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ROH islands on ECA4 (Supplementary File 2) and ECA7 (Figure 5) were ROH island hot spots
predominantly for the oriental group (Purebred Arabian, Shagya Arabian, Gidran and Akhal Teke)
and the two performing breeds Selle Francais and French Trotter. The longest homozygous region
was found in the French Trotter on ECA7, where four ROH islands were located between 39.6 Mb and
52.5 Mb, comprising together a length of 10.1 Mb which is comparable to 50% of the total length of
ROH islands in this breed (Figure 5). Within the same region the Purebred Arabian, Shagya Arabian,
Selle Francais and Haflinger overlapped with up to two (Purebred Arabian) shorter ROH islands.
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The Selle Francais had, although characterized by a medium genome-wide SROH of 297 Mb,
only five ROH islands in total. The island on ECA7 completely overlapped with the French Trotter
specific island at the identical position but not in frequency, as only a small fragment exceeded the
50% threshold (Supplementary File 3). A homozygous region at position 39.5–41.1 Mb was also
present in the Purebred and Shagya Arabian and harbored the genes NTM (neurotrimin) and OPCML
(opioid-binding protein/cell adhesion molecule). Out of 22 ROH islands 14 were private within the
French Trotter. Among them was an island on ECA23, which harbored the gene DMRT3 (doublesex
and mab-3 related transcription factor 3) (Supplementary File 2). A mutation in DMRT3 is responsible
for the ability to perform alternate gaits [37]. This gene/island was only detected for the French Trotter
within the entire sample.

The autochthonous breeds (Exmoor Pony, Noriker, Posavina and Bosnian Mountain Horse) shared
three overlapping ROH islands located on three different chromosomes. Besides the aforementioned
island on ECA3 containing the gene NCAPG (shared by Noriker and Exmoor Pony) (Figure 4), and the
island on ECA11 harboring the genes STXBP4, COX11, HLF, and MMD (shared by Noriker, Exmoor
Pony and Bosnian Mountain Horse) (Figure 3), another common island on ECA9 was identified
(Supplementary File 2). This island at position 75.0–75.4 Mb contains the gene ZFAT (zinc finger and
AT-hook domain) and it was present in the Noriker and Posavina sample (Table 3).

The high genetic distance of the Exmoor Pony to the other breeds was also evident in the ROH
island pattern, where 28 from 33 islands were solely detected within this breed (Table 2). ECA22 was
an ROH island hot spot for this British Pony breed covering eight islands between 24.5 Mb and 46.9 Mb,
which comprised together a length of 4.7 Mb (Figure 6). The island between 24.5 Mb and 25.5 Mb
harbored among 14 other annotated genes, the gene ASIP (agouti-signaling-protein) responsible for
bay coat color [38].
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Beside the aforementioned chromosomes ECA3, ECA4, ECA7, ECA9, and ECA11, ROH islands
overlapped in genomic regions on seven further chromosomes (ECA1, ECA6, ECA15, ECA18, ECA19,
ECA23, ECA25). Akhal Teke and Bosnian Mountain Horse shared one homozygous region on ECA1 at
position 148.4 Mb - 148.1 Mb enclosing one single gene (EIF2AK4, eukaryotic translation initiation
factor 2 alpha kinase 4). On ECA6 the Posavina, the Bosnian Mountain Horse and the Selle Francais
shared an island containing the genes ERC1 (ELKS/RAB6-interacting/CAST family member 1), RAD52
(RAD52 homolog), WNK1 (WNK lysine deficient protein kinase 1) and NINJ2 (ninjurin 2) (Figure 7).
The gene GRIN2B (glutamate ionotropic receptor NMDA type subunit 2B) was located in an island of
the French Trotter and the Gidran. On the same chromosome the Exmoor Pony exhibited together
with the Gidran a ROH island, harboring the genes HMGA2 (high mobility group AT-hook 2), LLPH
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(LLP homolog, long-term synaptic facilitation factor), IRAK3 (interleukin 1 receptor associated kinase
3) and HELB (DNA helicase B) (Figure 7).
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On ECA18 the French Trotter, Selle Francais, Gidran and Shagya Arabian shared a ROH island at
position 49.3 Mb - 49.4 Mb containing the genes SSB (small RNA binding exonuclease protection factor
La), METTL5 (methyltransferase like 5), UBR3 (ubiquitin protein ligase E3 component n-recognin 3),
and MYO3B (myosin IIIB). Furthermore, the genes RALB (Ras-like G-protein) and INHBB (Inhibin
subunit beta B) were identified in a shared homozygous region of the Bosnian Mountain Horse and
Purebred Arabian (Figure 8).
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3.3. Genotype Frequencies of Genes Involved in Coat Color and Body Size

In six breeds of the dataset, coat color represents an explicit breeding objective. In the Gidran
and Haflinger, chestnut coat color is fixed. The desired color for the Exmoor Pony is brown combined
with mealy areas around the eyes, muzzle, elbow and flanks. Lipizzan horses have been selected
for their gray color for 150 years and the frequency of gray phenotypes reaches up to 98% [18] and
the breeding program of the Noriker horse is based upon the selection for six different coat colors
(bay, black, chestnut, leopard, roan and tobiano).

We identified a ROH island containing MC1R, responsible for chestnut coat color, in the Gidran
(1.1 Mb length), Haflinger (2.2 Mb length) and the Purebred Arabian (2.1 Mb length) samples. Genotype
data for MC1R was available and is summarized for each breed in Supplementary File 4. All breeds with
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a high frequency of chestnut coat color had an additional ROH island on ECA3 (Figure 4), which was
scalariform structured. The core ROH island harbored the genes NFKB1 (Nuclear factor NF-kappa-B
p105 subunit), SLC39A8 (solute carrier family 39 member 8) and BANK1 and was embedded in an
up to 2.1 Mb long ROH island in Purebred Arabians. Highest frequencies (95%) for this core island
were observed in the Gidran. In the Gidran sample (100% homozygous T/T on MC1R) an additional
ROH island on ECA25 was identified, harboring the STX17 gene responsible for gray coat color. This
homozygous region was 403.5 kb long and contained the genes STX17, NR4A3, ERP44 and INVS.
Purebred and Shagya Arabian had a ROH island on ECA3 containing the genes MAEA (macrophage
erythroblast attacher) () and UVSSA (Figure 4), which plays an important role in the nucleotide excision
repair (NER) pathway responsible for the reparation of DNA damage caused by UV radiation [39].
From a previous study [18] we know, that the Lipizzan had an ROH island around UVSSA, which is
too small to be detected with a 500 kb window. We extracted the four available SNPs within the UVSSA
gene for the entire sample and revealed for two non-synonymous SNPs (AX-103191894 in intron 7 and
AX-104669126 in intron 6 ) distinct genotype distributions between the breeds, corresponding with the
geographical dispersion area of origin (Supplementary File 5).

Within the Exmoor Pony we further identified an ROH island on ECA22 containing among 14
annotated genes, the gene ASIP (agouti signaling protein) and an island on ECA1 harboring the genes
OCA2 and HERC2 (Supplementary File 2). OCA2/HERC2 were associated with eye pigmentation (blue,
green, hazel eyes), lighter skin pigmentation, blond and red hair in humans [40].

The genome-wide ROH island scan revealed several loci (LCORL/NCAPG, ZFAT, LASP1 and
HMGA2) associated with body size [35] and height at withers, back and croup length (ZFAT) [41]. Body
size associated loci were embedded in islands of the draught horse breeds Noriker (LCORL/NCAPG,
ZFAT and LASP1), Posavina (ZFAT) and in the Exmoor Pony (LCORL/NCAPG and HMGA2).
Interestingly also in Gidran a 639 kb long ROH island containing HMGA2 together with the genes
LLPH and IRAK3 was identified. Three out of the four SNPs associated with body size according to
Makvandi-Nejad et al. [35] are available on the applied genotyping array. From a previous study [17]
we know that the majority of Noriker horses are homozygous for the “Big”-alleles of the SNPs near
LCORL/NCAPG, ZFAT and LASP1 and that the Posavina horse shifts to the “small” allele of the
LCORL/NCAPG gene. We extracted the three size associated SNPs for the Exmoor Pony and the Bosnian
Mountain Horse, a breed that is known to be selected for a height at withers around 135 cm on a long
term. The majority of Bosnian Mountain Horses (57–87%) were homozygous for the “small” alleles
in all three loci (Supplementary File 6). The Exmoor Pony was monomorphic for the “small” allele
near the LCORL/NCAPG gene and 92% of horses were also homozygous for the “small” allele near
ZFAT. Deviation from Hardy-Weinberg equilibrium was observed for the ZFAT locus in Exmoor Pony
(p > 0.014) and revealed on-going selection towards small body size.

3.4. Gene Ontology and Enrichment Analysis

From the 91 breed specific GO terms and six KEGG pathways determined, 14 GO terms remained
significant after correction for multiple testing in Noriker, Lipizzan, Posavina, Gidran, Shagya Arabian,
Purebred Arabian, and French Trotter. A detailed description of enrichment analysis for each breed is
given in Supplementary File 7. Several GO terms were shared by more than one breed (Table 4). High
significance levels (Bonferroni adjusted p-value<0.05) were reached for the GO terms anterior/posterior
pattern specification (GO:0009952), embryonic skeletal system morphogenesis (GO:0048704) and
sequence-specific DNA binding (GO:0043565), mainly based upon the HOXB-cluster in the breeds
Gidran, Lipizzan, Posavina and Noriker. For Purebred and Shagya Arabian, several members of the
KRT-complex retained the term intermediate filament (GO:0005882) (Table 4).
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Table 4. Gene Ontology terms and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways,
which were shared by two or more breeds (BH p-value = Bonferroni adjusted p-value).

GO Biological Process Breeds Sharing Term p-value Genes BH p-Value

GO:0009952~anterior/
posterior pattern

specification

Lipizzan/Posavina/Gidran 0.000
HOXB3, HOXB1,
HOXB2, HOXB7,

HOXB8, HOXB5, HOXB6 < = 0.001

Noriker 0.000
HOXB3, HOXB1, PCGF2,

HOXB2, HOXB7,
HOXB8, HOXB5, HOXB6

GO:0021570~rhombomere
4 development

Lipizzan/Posavina/Noriker/
Gidran 0.003 HOXB1, HOXB2 0.06–0.99

GO:0021612~facial nerve
structural organization

Lipizzan/Posavina/Noriker/
Gidran 0.011 HOXB1, HOXB2 0.18–0.98

GO:0048704~embryonic
skeletal system
morphogenesis

Lipizzan/Posavina/Gidran 0.000
HOXB3, HOXB1,
HOXB2, HOXB7,

HOXB8, HOXB5, HOXB6 <0.001

Noriker 0.000
HOXB3, HOXB1, PCGF2,

HOXB2, HOXB7,
HOXB8, HOXB5, HOXB6

GO:0071222~cellular
response to

lipopolysaccharide

Akhal Teke 0.034 IL6, NR1D1, RARA
0.99

Purebred Arabian 0.011 NR1D1, NFKB1, RARA,
SPON2

GO Cellular component Breeds sharing term p-value Genes BH p-value

GO:0005654~nucleoplasm Akhal Teke 0.010

COASY, CDC6,
HSD17B1, BBX, ACLY,

BANP, CNP, STAT3,
SMARCE1, ZMIZ2,

DNAJC7, ATP6V0A1,
TOP2A

0.36–0.57

Noriker 0.010

CWC25, MRPL10,
HOXB7, PSMB3, SNF8,

PNPO, HOXB13, KPNB1,
PIP4K2B

GO:0005882~intermediate
filament

Shagya Arabian 0.002 KRT26, KRT25, KRT28,
KRT27, KRT24 <0.001–0.02

Purebred Arabian 0.000
KRT26, KRT25, KRT28,
KRT27, KRT12, KRT20,

KRT23, KRT24

GO Molecular function Breeds sharing term p-value Genes BH p-value

GO:0003700~transcription
factor activity,

sequence-specific DNA
binding

Gidran 0.033
HOXB2, HOXB7,

HOXB8, HOXB6, NFKB1,
CBFA2T3, TCF25, FOXP2 0.11–0.99

Lipizzan/Posavina 0.007 HOXB2, HOXB7,
HOXB8, HOXB6

Noriker 0.012 HOXB2, HOXB7,
HOXB8, HOXB6, ZFAT

GO:0005198~structural
molecule activity

Shagya Arabian 0.032 KRT26, KRT25, KRT28,
KRT27, EPB41, KRT24 0.02–0.99

Purebred Arabian 0.000
KRT26, KRT25, KRT28,
KRT27, KRT12, KRT20,

KRT23, KRT24

GO:0015299~solute:proton
antiporter activity

Purebred
Arabian/Gidran 0.044 SLC9B1, SLC9B2 0.99

GO:0043565~sequence-specific
DNA binding

Gidran 0.019

HOXB1, HOXB2,
HOXB7, HOXB6,

HOXB13, PPARGC1A,
FOXP2

0.007–0.92

Lipizzan/Posavina/Noriker 0.000
HOXB1, HOXB2,
HOXB7, HOXB6,

HOXB13
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Two breed specific annotation clusters were significantly enriched after correcting for multiple
testing (p < 0.05) within the French Trotter (GO:0005178, integrin binding, based upon ICAM1, ICAM4,
ICAM5 and ICAM3) and the Purebred Arabian (GO:0005198, structural molecule activity, based upon
KRT-complex) (Supplementary File 7).

4. Discussion

Due to its huge economic impact and its global genetic introgression into a wide range of
contemporary horse breeds, the English Thoroughbred has been in the focus of genomic publications
for the last decades [1,42–45]. For a range of Middle European horse breeds, the Arabian horse
represented an equivalent source of genetic improvement, which in a historical context preceded
the refinement by the Thoroughbred. For nine of the analysed breeds in this study (Purebred
Arabian, Shagya Arabian, Akhal Teke, Lipizzan, Bosnian Mountain Horse, Posavina, Haflinger,
Noriker, and Exmoor Pony) the absence of introgression of the English Thoroughbred is historically
documented. Hence, we only identified few ROH islands in genomic regions that were targets of
positive selection in the English Thoroughbred [1].

ECA3 and ECA11 were common ROH island hotspots in nearly all breeds of our dataset, except
for French Trotter and Selle Francais, harboring genes involved in coat color (ECA3: MC1R), size (ECA3:
LCORL/NCAPG, ECA11: LASP1), NER pathway (ECA3: UVSSA), embryonic skeletal morphogenesis
(ECA11: HOXB-cluster) and coat texture (ECA11: KRT-complex). Recently, Gurgul et al. [7] identified
ECA11 as a major selection signature hotspot in six Polish horse breeds with a similar type composition
(two draught horse breeds, two autochthonous/primitive breeds, one oriental and one Warmblood
horse breed). The authors focused on diversifying selection signatures by grouping the breeds into
different major horse type categories (light, primitive and draught type). Based upon this grouping
they detected a strong signal between draught and primitive breeds on ECA11 within the LASP1 locus
associated with body size [35], a region which overlapped with a ROH island (23.2–23.4 Mb) detected
in the Noriker sample.

Nolte et al. [21] identified selection signatures on ECA11 for the HOXB-cluster in four German sport
horse breeds (Hannoveraner, Holsteiner, Oldenburger and Trakehner). The HOXB-cluster was present
in ROH islands of Lipizzan, Noriker, Posavina and Gidran horses, and was significantly highlighted
by the GO terms embryonic skeletal morphogenesis and anterior/posterior pattern specification in all
four breeds. HOX genes play a fundamental role for morphological diversity in animals and for the
control of axial morphology along the anterior-posterior body axis [36]. On the same chromosome
an up to 1.3 Mb long ROH island was detected in the Arabian breeds and the Achal Teke (slightly
under the threshold) containing several members of the KRT complex (KRT 12, 20, 23-28), which were
also pinpointed by GO analysis revealing the terms hair follicle morphogenesis and intermediate
filament. Keratin proteins represent a major part of the protective matrix of the skin, hair and horn
in mammals [46], and KRT25 and SP6 were associated with curly coat in Bashkir Curly Horses and
Missouri Foxtrotters by Thomer et al. [47]. A variant (KRT25:p.R89H) in the KRT25 gene was found to
be responsible for the curly phenotype in North-American and French horses [48]. The keratin driven
GO term intermediate filament was also documented in the aforementioned study by Nolte et al. [21].

Coat color, one of the major documented targets of selection during the domestication
process [49,50], represents a central breeding objective in five of the investigated breeds (Lipizzan,
Haflinger, Gidran, Exmoor Pony and Noriker). We found an up to 2.5 Mb long homozygous region
on ECA3 in Gidran, Haflinger and Purebred Arabian horses around the MC1R locus responsible for
chestnut coat color [51]. A haplotype around MC1R was previously reported by McCue et al. [4] and
Petersen et al. [5]. The investigated breeds with high frequencies of chestnut phenotype harbored
two additional islands on ECA3, in which among others the genes NFKB1, SLC39A8, BANK1, UVSSA
and MAEA are located. In two linked non-synonymous intronic SNPs of the UVSSA gene oriental
breeds exhibited convergent minor allelic and genotype frequencies. Interestingly, the Lipizzan where
the majority of the gene pool originates from Spanish Horses [52] clustered to the Oriental group.
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A mutation in the UVSSA gene has been found to be causative for the autosomal recessive disorder
UV-sensitive syndrome in humans and together with USP7 it mediates the transcription-coupled
nucleotide excision repair [39]. The SLC39A8 gene encodes a transmembrane protein that acts as a
transporter of several cations, including zinc. Zinc is essential for various cellular functions and zinc
deficiency causes a broad range of disorders in humans and animals, such as growth retardation,
immune dysfunctions, diarrhea, and skin diseases [53]. A mutation in BANK1 was associated with the
autoimmune disorder systemic lupus erythematous in humans [54]. Finally, the gene NFKB1, a member
of the NF-kB transcription factor family, regulates a large number of genes involved in inflammation,
cell cycle and cell survival. The NF-kB signaling pathway is important for the maintenance of immune
homeostasis in epithelial tissues, especially in the regulation of homeostasis and inflammation in
skin [55]. Our study revealed very high frequencies (up to 95%) of chestnut horses harboring NFKB1,
SLC39A8, BANK1 and UVSSA in ROH islands, and indicated evidence that these genes may be
involved in the reported higher susceptibility of chestnut horses for skin disorders [56]. Additionally,
we identified within the Gidran sample an ROH island containing the STX17 haplotype, responsible
for gray coat color [57]. This island was nearly identical in length with the ROH island of Lipizzan
horses, containing the genes NR4A3, STX17, ERP44 and INVS [18]. The gray haplotype in non-gray
horses was firstly reported by Pielberg et al. [57,58] and predominantly found in Oriental horses. All
these findings support a connection between the gray locus and the Oriental horse gene pool.

In Exmoor Ponies we identified a ROH island on ECA22 containing the ASIP gene responsible
for bay coat color [38] and one island on ECA1 harboring the genes OCA2 and HERC2. In humans
several SNPs in the OCA2 and HERC2 genes were associated with eye, skin, and hair pigmentation [40].
Fernández et al. [59] found evidence that OCA2 has an effect on skin color intensity in red strain
of Iberian pigs. OCA2 and HERC2 were suggested as candidate genes for the leopard spotting
pattern [60] and for the equine “Tiger-eye” phenotype by Kowalski and Bellone [61] but could not be
confirmed [62]. To our knowledge, no investigation on the influence of OCA2/HERC2 on the mealy
phenotype, as exhibited by the Exmoor Pony, has been conducted. Mealy coat color in the Exmoor
breed was recently proposed to be linked to the EDN3 locus in a study focusing on harness trotting
traits [63]. As a homozygous region around EDN3 was also found in non-mealy Hungarian Lipizzan
subpopulation [18], we suggest further research including phenotypic data. We did not identify ROH
islands around the KITLG gene on ECA28 which was previously reported to undergo selection in
several horse breeds [8,16]. From the various functions of KITLG, also known as mast cell growth
factor, which is involved in processes affecting melanogenesis, haematopoiesis and gametogenesis,
melanogenesis has been in the focus of scientific research in equine genetics [16,64–66].

As already mentioned, most of our samples were not influenced by the English Thoroughbred
gene pool. Nevertheless, the genes STXBP4 and COX11, which were undergoing positive selection
in Thoroughbreds [1] and were also listed among other 123 genes exposed to selection during
domestication process [8], were present in ROH islands of the Bosnian Mountain Horse, Exmoor Pony
and Noriker. Other Thoroughbred related genomic regions were identified in the Anglo-Arabian
Gidran breed. The gene PPARGC1A, a candidate gene for physical performance in Thoroughbreds [1]
was located in a 444 kb long ROH island of the Gidran. PPARGC1A encodes PGC-1α, which is a
transcriptional co-activator that regulates genes involved in energy metabolism and mitochondrial
biogenesis through expression of nuclear signaling proteins [67]. The overrepresentation of genes
involved in transcription was underlined in four GO terms (transcription factor complex, nucleus,
sequence-specific DNA binding, DNA-binding transcription factor activity). Additionally, seven ROH
island on ECA4 were identified within the Gidran sample, three islands directly overlapped with one
of the genes CDK6, HDAC9, and FOXP2. Pilegaard et al. [68] reported that endurance exercise induces
transient transcriptional activation of the PGC-1α in human skeletal muscle, and Eivers et al. [69]
postulated a PGC-1α exercise induced role of HDAC9 in the myogenesis of horses.

In general, ECA4 and ECA7 were ROH island hotspots in the performing and oriental breeds,
which shared homozygous segments in six genomic regions and partially overlapped with ROH
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islands found in Hannoveraner, Holsteiner, Oldenburger and Trakehner [21]. The authors pinpointed
selection signatures for IGFBP-1, 3 and 4. IGFBP-1 and IGFBP-3, which were located in ROH islands of
the French Trotter, were highlighted by the GO terms IGF I binding (GO:00312994) and IGF II binding
(GO:0031995).

For the French Trotter, which genealogically has been influenced by the Standardbred and therefore
simultaneously by the Thoroughbred founder gene pool, a closer link to Thoroughbred specific selection
signatures was not observed. Due to the specification on differing locomotion patterns (trot and pace),
selection favored different genomic regions on a long term. We identified in the French Trotter a
ROH island on ECA23 containing the DMRT3 gene. A mutation in DMRT3 is causative for ambling
locomotion pattern and favorable effect on harness racing performance in horses [37]. Single SNPs in
DMRT3 were also associated with age-dependent trotting ability by Ricard et al. [70].

ECA7 was a ROH island hotspot within the French Trotter, which exhibited four ROH islands
between 39.6 Mb and 52.5 Mb, comprising together a length of 10.1 Mb. Petersen et al. [5] reported
extended haplotypes for Standardbred on ECA7. The homozygous region of the French Trotter
overlapped at position 39.5–41.1 Mb with islands of Shagya and Purebred Arabians, in which among
others the genes NTM and OPCML are located. These genes, associated with intelligence and cognitive
functions in humans [71,72], and hypothesized to modulate temperament in horses were highlighted
by Gurgul et al. [7] focusing on signals of diversifying selection between light versus draught horses.
Additionally, the authors found high linkage disequilibrium (LD) in the chromosomal area between
40.1 Mb and 52.2 Mb in Arabian and Malopolski horse, which corresponded with the extended ROH
island of the French Trotter at 39.6 Mb and 52.5 Mb [7]. Avila et al. [73] also proposed that NTM might
influence temperament of pleasure horses. We identified a further gene on ECA6, which might be
involved in behavioral traits. The gene GRINB2, located in the ROH islands of French Trotter and
Gidran, is involved in enhanced learning ability in mice [74] and it was associated with career earnings
in the Swedish Coldblooded Trotter, and further proposed to affect learnability in horses [75].

Body size and height of withers are important breeding objectives and are well investigated.
Makvandi-Nejad et al. [35] associated four loci (LCORL/NCAPG, ZFAT, LASP1 and HGMA2) with
body size in horses. Signer-Hasler et al. [41] further identified SNPs in the ZFAT gene, which were
associated with height at withers. Selection signatures around NCAPG on ECA3 and LASP1 on ECA11
were identified by Petersen et al. [5] in pony and draught horse breeds and by Gurgul et al. [7] in
primitive (Huzul and Konik) and draught horse breeds. Our results were in concordance with these
findings and we identified ROH islands for size associated loci in draught horse breeds (Noriker
(LCORL/NCAPG, ZFAT and LASP1) and Posavina (ZFAT)) and Exmoor Pony (LCORL/NCAPG and
HMGA2). Interestingly also the Gidran, a multipurpose riding horse, exhibited a 636 kb long island on
ECA 6 containing HMGA2.

Three breeds in our study (Noriker, Bosnian Mountain Horse and Exmoor Pony) can be considered
as very old autochthonous breeds, adapted to semi-feral rearing conditions on a long term. The
Noriker and the Bosnian Mountain Horse originate from the Alpine/Dinaric region, an environment
characterized by high altitude, difficult terrain, cold temperature and deprivation of nutrition, especially
in winter. High altitude exposes animals to permanent oxidative stress and results in adaption of the
blood, cardiovascular, pulmonary and muscle systems. In all three breeds, we identified a common
ROH island on ECA11 containing the genes STXBP4, COX11, HLF and MMD (additional TMEM100
and PCTP in Exmoor Ponies). All these genes were highlighted in a study investigating adaptation
to high altitude in the Andean Horse [76]. Environmental conditions and different performance
disciplines can affect similar physiological mechanisms. Three further genes (METTL5, UBR3 and
MYO3B) highlighted in the high-altitude study of Hendrickson [76] were also present in ROH islands
on ECA18 for the breeds French Trotter, Gidran, Selle Francais and Shagya Arabian. Autophagy,
a strategy to cope with starvation, is in the focus of human genetic research [77,78]. Within the
Bosnian Mountain Horse and the Purebred Arabians, we identified an ROH island containing the
genes RALB and INHBB. Bodemann et al. [79] described RALB (Ras-like G-protein) as a regulatory
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switch to promote autophagosome biogenesis. We found three ROH islands in Purebred and Shagya
Arabians pinpointing the genes LAPTM4B and IDUA. LAPTM4B (Lysosomal protein transmembrane 4
beta) promotes autophagosome and lysosome fusion [80]. Finally, the gene CALCOCO2, involved in
selective autophagy [81], was present in ROH islands of Posavina, Gidran, Bosnian Mountain Horse,
Haflinger and Noriker, whereas for the latter additionally the genes OSBPL, PIP4K2B were highlighted
in the GO term autophagosome. The accumulation of genes involved in autophagy in breeds, which
are known to be selected for low-input and extensive rearing systems, needs further investigations
including phenotypic data.

Within the Exmoor Pony, no autophagy related genes were highlighted. A well-known
evolutionary adaption in mammalians, generally known as island or Foster’s rule, is the decrease of
body size due to limited space and nutrition [82]. Among the investigated horse breeds the Exmoor
Pony exhibits the smallest body size at an average height at withers of 120 cm. This characteristic was
also pinpointed by the genotype results for size associated loci. Additionally, the 662 kb long ROH
island on ECA6 in Exmoor Pony at position 81.12-81.80 Mb harboring the genes HMGA2, LLPH, IRAK3
and HELB supports these considerations. Norton et al. [83] identified ancestral haplotypes between
ECA6:81.16-81.58 associated with height and baseline insulin values in Welsh ponies and supposed
HMGA2 and IRAK3 as candidate genes involved in the equine metabolic syndrome.

Summarizing the results of our study, we found genes located within ROH islands and shared by
more than 50% of a breed, for coat color in Purebred Arabian, Haflinger, Gidran (MC1R), in Lipizzan
and Gidran (STX17) and in Exmoor Pony (ASIP) and additionally for coat quality (KRT-complex)
in Purebred Arabian and Shagya Arabian. Size associated loci were pinpointed in draught horses
(Noriker (LCORL/NCAPG, ZFAT and LASP1), Posavina (ZFAT)), Exmoor Pony (LCORL/NCAPG and
HMGA2) and Gidran (HMGA2). Within Gidran and French Trotter selection for behavioral traits was
indicated by GRINB2 and NTM/OPCML. Selection targets for racing performance, exercise and gait
pattern was shown for French Trotter (DMRT3, IGFBP-1 and IGFBP-3) and for Gidran (PPARGC1A),
whereas conformation breeding was pinpointed by the HOXB-cluster in four breeds (Lipizzan, Noriker,
Posavina and Gidran). Several genes related to organism response to oxidative stress were embedded
in ROH islands for the autochthonous breeds Bosnian Mountain Horse, Noriker and Exmoor Pony
(COX11, STXBP4, HLF and MMD) and in the oriental and performing breeds (SSB, METTL5, UBR3
and MYO3B). Finally, genes involved in autophagy were underlined for Purebred Arabian, Gidran,
Bosnian Mountain Horse and Noriker (CALCOCO2, RALB and LAPTM4B).

5. Conclusions

This study highlighted several genes which were located in regions putatively undergoing artificial
and/or natural selection. Many of these genes were causative or associated with traits which are part
of breeding objectives in the respective breeds. Besides artificial selection, the post-domestication
process has not prevented natural influences. Our study revealed several genes involved in adaption
to high altitude and genes which may play a role in the adaption to a lack of nutrition in horses.
To validate the presented putative areas of selection, we suggest further investigation including
phenotype information. According to the methodical point of view, we demonstrated that ROH island
analysis offers the possibility to identify common targets of selection in divergent breeds. Therefore,
this approach provides a wider perspective and an enhanced insight into the complexity of biological
processes and physiological functions of equines.
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File 4 S4: Genotype distribution for the MC1R locus in the twelve studied breeds, Suppl. File 5 S5: Genotype
and minor/major allele frequencies of the SNP AX-103191894 in intron 7 of the UVSSA gene, Suppl. File 6 S6:
Genotype frequencies of SNPs at the loci LCORL/NCAPG, ZFAT and LASP1 for the breeds Bosnian Mountain
Horse and Exmoor Pony, Suppl. File 7 S7: Gene Ontology and enrichment analysis.
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