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Abstract

Since the emergence of yellow fever in the Americas and the devastating 1918 influenza

pandemic, biologists and clinicians have been drawn to human infecting viruses to under-

stand their mechanisms of infection better and develop effective therapeutics against them.

However, the complex molecular and cellular processes that these viruses use to infect and

multiply in human cells have been a source of great concern for the scientific community

since the discovery of the first human infecting virus. Viral disease outbreaks, such as the

recent COVID-19 pandemic caused by a novel coronavirus, have claimed millions of lives

and caused significant economic damage worldwide. In this study, we investigated the

mechanisms of host-virus interaction and the molecular machinery involved in the patho-

genesis of some common human viruses. We also performed a phylogenetic analysis of

viral proteins involved in host-virus interaction to understand the changes in the sequence

organization of these proteins during evolution for various strains of viruses to gain insights

into the viral origin’s evolutionary perspectives.

Introduction

Since the first virus was discovered in 1898 [1], humans have been curious about this microor-

ganism that causes viral diseases in plants, animals and humans. The recent outbreak of the

COVID-19 pandemic has galvanized human efforts to understand the intricate mechanisms

that allow viruses to infect their hosts. The first step in this course of infection that helps

viruses invade the host environment is host-virus interaction. Anti-viral drugs and vaccines

have been the primary combat tools to cure and safeguard humans from disease-causing

viruses.

Advances in biological sciences have increased our understanding of the mechanism by

which these viruses infect their hosts and cause disease. However, we are still facing severe
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limitations in eradicating the possible threats caused by the viruses. The recent COVID-19

pandemic has raised serious questions about the status of therapeutic intervention for viral dis-

eases. [2–7]. Viruses with a relatively minimal amount of molecular machinery compared to

other evolved organisms have killed millions of people and caused millions of dollars of eco-

nomic loss all over the globe. So far, more than 5 million people have died due to COVID-

related complications caused by the SARS-COV-2 [8–12].

Here, we investigated the progress made in understanding human viruses and their mode

of interaction. In addition, we performed a phylogenetic analysis of the viral proteins that are

involved in host-virus interaction. While searching for relevant literature about the phyloge-

netic analysis of viral proteins that play a crucial role in host-virus interaction, we came across

several studies and reviews [13–16] that elaborate on the evolutionary aspects of the viral

genomes. Thus, the spectrum of studies is broad and precise for looking for relevant informa-

tion about viral evolution. Therefore, we summarize the evolutionary aspects of the most fre-

quent human viruses using phylogenetic analysis of their viral proteins, which have

pathogenic significance.

Materials and methods

Literature survey

We performed an extensive literature survey to understand the mechanism of virion interactions

with the host cells and how far we have reached our current understanding of the host-virus

mechanism. For the literature survey, the PubMed (https://pubmed.ncbi.nlm.nih.gov/) repository

was searched with specific search-strings such as “human viruses," “host-virus interaction,” and

“host-virus interaction mechanism,” etc. Then, viruses were selected for the analysis based on

results retrieved from the literature survey and the extent of viral disease prevalence in humans.

Table 1 summarises these viruses and the different types and diseases they cause.

Selection of viral proteins

The basis for selecting viral proteins was their role in host-pathogen interactions. Those pro-

teins involved in host receptor interaction, cell binding, and membrane fusion were selected

for sequence and phylogenetic analysis.

Sequence and phylogenetic analysis

Here, we dwell on the phylogeny of these viral proteins to bring forward aspects of evolution-

ary changes that these viruses follow and change their genomic blueprints to make new and

more potential viral proteins. First, FASTA sequences of major proteins involved in viral path-

ogenesis were downloaded from the Uniport (https://www.uniprot.org/) database. Then, the

multiple sequence alignment was performed using MAFFT (https://www.ebi.ac.uk/Tools/msa/

mafft/). We chose the default parameters set by the MAFFT, which uses the BLOSAM62 scor-

ing matrix for protein sequences and with a gap penalty of 1.53. Alignments retrieved from

MAFFT in FASTA format were further processed using JalView (https://www.jalview.org/).

MAFFT applies the neighbor-joining method for phylogenetic tree construction for the given

alignments. The data for phylogenetic trees obtained from MAFFT was used to generate circu-

lar cladograms using iTOL (https://itol.embl.de/).

Results and discussion

For the first time, the existence of viruses was noticed by Russian biologist Dmitry Ivanovsky

in 1892 as “non-bacterial pathogens,” as he described them, which were later identified as
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Tobacco mosaic viruses. This plant virus infects the tobacco leaves, hence the name, and was

given in 1898 by Martinus Beijerinck. Since this milestone, discovering viruses has been a cen-

ter of attraction for biologists worldwide working on these microscopic pathogens. However,

human viruses were discovered later when their discovery was fuelled by yellow fever, Influ-

enza outbreaks, etc., [17–19]. Therefore, it may be helpful to briefly discuss the basic biology of

viruses before discussing their infection mechanism [20–23].

Table 1. An overview of the human viruses, their mode of transmission, pathogenesis, genome and viral proteins.

S.

No.

Virus Genus/Family Transmission Pathology Viral Genome Viral Proteins

1. Influenza A Virus Alphainfluenzavirus/

Orthomyxoviridae

Respiratory Flu Negative Sense

Single Stranded

RNA

PB1, PB1-F2, PB2, PA, PA-X, HA,

NP, NA, M1, M2, NS1, NEP

2. Influenza B Virus Betainfluenzavirus/

Orthomyxoviridae

Respiratory Flu Negative Sense

Single Stranded

RNA

PB1, PB1-F2, PB2, PA, PA-X, HA,

NP, NA, M1, M2, NS1, NEP

3. Hepatitis A Virus Hepatovirus/

Picornaviridae

Faecal-oral Hepatitis Positive Sense

Single Stranded

RNA

VP1, VP2, VP3, 2B, 2C, 3A, 3B

4. Hepatitis B Virus Orthohepadnavirus/

Hepadnaviridae

Sexual Contact, Blood Hepatitis Partially Double

Stranded DNA

S-HBsAg, M-HBsAg, L-HBsAg,

DNA Polymerase, HBx

5. Hepatitis C Virus Hepacivirus/ Flaviviridae Sexual Contact, Blood Hepatitis Positive Sense

Single Stranded

RNA

C, E1, E2, NS1, NS2, NS3, NS4A,

NS4B, NS5A, NS5B

7. Human

Immunodeficiency

Virus

Lentivirus/ Retroviridae Sexual Contact, Blood AIDS Positive Sense

Single Stranded

RNA

MA, CA, SP1, NC, SP2, P6, RT,

RNase H, IN, PR, gp120, gp41

8. Human Papillomavirus Alphapapillomavirus/

Papillomaviridae

Sexual Contact Skin Warts, Genital

Warts, Cancer

Small Double

Stranded

Circular DNA

E1, E2, E3, E4, E5, E6, E7, L1, L2

9. SARS-CoV Betacoronavirus/

Coronaviridae

Respiratory, Contact SARS Positive Sense

Single Stranded

RNA

S, E, M, N, NSP1, NSP2, NSP3,

NSP4, NSP5, NSP6, NSP7, NSP9,

NSP10, NSP11, NSP12, NSP13,

10. MERS-CoV Betacoronavirus/

Coronaviridae

Respiratory Respiratory Illness Positive Sense

Single Stranded

RNA

S, E, M, N, AP, AP4A, AP4B, AP5,

PLPro, 3CLPro

11. SARS-CoV-2 Betacoronavirus/

Coronaviridae

Respiratory Respiratory, COVID-

19

Positive Sense

Single Stranded

RNA

S, E, M, N, NSP1-16

12. Ebola virus Ebolavirus/ Filoviridae Zoonosis, Contact,

Blood

Hemorrhagic fever Single Stranded

RNA

L, GP1, GP2, NP, VP40, VP35,

VP30, VP24

13. Zika virus Flavivirus/ Flaviviridae Zoonosis, Mosquito

Bite, Sexual Contact,

Blood

Fever, Joint Pain, Body

Rashes

Positive Sense

Single Stranded

RNA

C, pr, prM, M, E, NSP1, NSP2A,

NS2B, NS3, NSP4A, NSP4B

14. Nipah virus Henipavirus/

Paramyxoviridae

Zoonosis, Animal Bite,

Contact

Encephalitis Single Stranded

RNA

F, G, M, P, N, L

15. Dengue virus Flavivirus/ Flaviviridae Zoonosis, Mosquito

Bite

Haemorrhagic Fever Positive Sense

Single Stranded

RNA

C, prM), E, NS1, NS2A, NS2B,

NS3, NS4A, NS4B, NS5

16. Chikungunya virus Alphavirus/ Togaviridae Zoonosis, Mosquito

Bite

Haemorrhagic Fever,

Joint Pain, Body

Rashes

Positive Sense

Single Stranded

RNA

C, E1, E2, NSP1, NSP2, NSP3,

NSP4

17. Rabies virus Lyssavirus/ Rhabdoviridae Zoonosis, Animal Bite

(Mainly Dogs)

Fatal Encephalitis Negative Sense

Single Stranded

RNA

N, P, M, G, L

https://doi.org/10.1371/journal.pone.0261497.t001
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Viruses are called organisms “on the edge of life” because they can only replicate and grow

within a host cell [24, 25]. As a result, they rely entirely on a host body for survival. Viruses are

submicroscopic particles known as virions that contain RNA or DNA as their genetic material,

encapsulated in a capsid made up of capsid proteins and sometimes an outer lipid layer. The

viral genome size ranges from a few kilobytes expressing only two proteins to several mega-

bytes expressing up to 2500 proteins (See Fig 1 for the typical representation of enveloped

virus).

A virus reaches its host by various means [26–29]. The most notable of these is through a

vector (dengue and chikungunya viruses), via infected fecal matter (gastritis), and through the

blood and internal fluids of the infected person (HIV/HPV) or air via nasal/cough droplets or

aerosols (Influenza or SARS viruses). It takes a virus to pass through six primary stages of

infection to reach a host cell, grow and disseminate. These six stages are attachment, fusion,

penetration, uncoating, replication, assembly, and release [30, 31]. Fig 2 shows the initial steps

of retrovirus host-interaction, elucidating how a virus interacts with the host and subsequently

replicates and forms new virion particles released in the host body, searching for new target

Fig 1. Graphical representation of a typical enveloped virus (center) showing spike projections, capsid and viral

genome along with the typical diagrams of human viruses (outer circle).

https://doi.org/10.1371/journal.pone.0261497.g001
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cells [32]. Therefore, it will be beneficial to briefly overview the known human viruses to

develop a sense of the subject before dwelling on how viruses interact with their host and their

mechanism to reach their hosts and grow themselves successfully. Table 1 gives an overview of

human viruses and their disease.

An overview of human viruses and their pathogenesis

Around 219 human viruses have been identified as causing diseases in humans ranging from

mild to fatal [17, 22, 33–35]. This section provides an overview of these viruses and the diseases

they cause in humans. This information is intended to lay the groundwork for subsequent sub-

sections that will discuss the mode of interaction of these viruses with humans and changes in

the mode of action and machinery involved in the interaction over time. Table 1 lists the most

complex human viruses that cause the most lethal diseases in humans (Fig 1 shows a typical

representation of human viruses discussed in this section).

Influenza virus. Enveloped viruses, which are known for causing seasonal flu pandemics

and epidemics, contain ssRNA as their genetic material [36]. Influenza viruses are classified

into four types: influenza A, B, C, and the newly discovered type D [37]. Influenza viruses A

and B are responsible for most flu cases worldwide. The difference between two surface glyco-

proteins, hemagglutinin (H1 to H18) and neuraminidase, further divides influenza A virus

into subtypes (N1 to N11). Out of 198 possible combinations of Influenza A subtypes, only 138

are found in nature. Following the devastating spread of the Spanish flu in 1918, the H1N1

Influenza A virus caused a pandemic in 2009, killing between 151,700 and 575,400 people

worldwide. Furthermore, the annual death toll from seasonal influenza is estimated to be

between 290,000 and 645,000 people worldwide [38]. The genome of the Influenza A virus

contains eight negative sense segments of ssRNA.

Fig 2. Diagrammatic representation of host-virus interaction, cell entry, replication, budding and release of the

newly formed virus.

https://doi.org/10.1371/journal.pone.0261497.g002
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In total, 11 proteins are encoded by eight genes, in addition to surface glycoproteins and

structural proteins. Hemagglutinin and neuraminidase are two proteins required by the virus

for survival and replication. The Influenza A virus, in particular, uses its hemagglutinin glyco-

protein to attach to the host cell. The HA1 and HA2 subdomains aid receptor binding and cell

fusion, respectively [39]. The hemagglutinin HA1 monomer’s receptor binding site mediates

virus anchoring by attaching to the sialic acid residues of the glycoconjugates present on the

host cell surface. The process is then aided by neuraminidase, which assists hemagglutinin in

scanning the host cell surface and locating the appropriately isolated receptor [40]. The suc-

cessful binding and fusion of the virion particle to the host cell leads to the more important

and intricate viral infection process, including the transport of the viral genome to the host cell

nucleus. Discussing all the processes in detail is beyond the scope of this review. Readers may

refer to these articles to better understand the underlying mechanisms [41–44].

Influenza A virus is genetically diversified due to the two main viral proteins, hemaggluti-

nin and neuraminidase [45]. These two genes, as observed, have higher mean substitution

rates, which are 5.34E−03 for hemagglutinin and 5.21E−03 for neuraminidase [46]. The recep-

tor-binding site of hemagglutinin of the H1N1 strain of influenza A virus is found on the

upper distal tip of the receptor-binding domain, which comprises amino acids 111 to 265 [47,

48]. Mutations at the receptor-binding site of the HA1 domain of hemagglutinin broadly affect

its specificity and efficiency [49]. Tumpey et al., [50] have demonstrated the effects of amino

acid substitutions in the HA1 domain of 1918 Influenza A virus strain, where changes resulted

in the switching of binding specificity from human alpha-2,6 receptors to alpha-2,3 sialic acid

receptors of the birds. It further resulted in the abolished transmission from air droplets. Vac-

cine development against Influenza A virus mainly targets the HA1 domain binding site to

check the process of receptor binding and membrane fusion [51, 52]. As mentioned, neur-

aminidase also plays a significant role in viral infection, besides budding, releasing, and dis-

seminating newly formed viral particles in the infected cells [53]. It plays a crucial role in

helping the virus target cells by cleaving the sialic acids from the respiratory tract epithelial

cells [54]. Neuraminidase is also known for regulating the activity of hemagglutinin. It helps to

remove the oligosaccharides clouding the receptor binding site by cleaving the neuraminic

acid residues of those oligosaccharides [55]. Some known neuraminidase inhibitors such as

zanamivir, oseltamivir, and peramivir have been developed for Influenza infections that

restrict its activity [56].

Hepatitis virus. A group of liver infecting viruses causing viral hepatitis and hepatocellu-

lar carcinoma consists mainly of five genetically varying (apparently unrelated) viruses: hepati-

tis A, B, C, D, and E. Of these, hepatitis B viruses contain partially double-stranded DNA in

their genomes, while others have single-stranded RNA (ssRNA) as their genetic material [57–

59]. Among the types of hepatitis virus type, A and C are of great significance due to their asso-

ciation with chronic liver infection and liver cancer. The Hepatitis B viral genome is enclosed

inside an outer lipid envelope and an icosahedral core, which surrounds the genome and

includes a DNA polymerase required for virus replication inside the host body. Encoding of

four overlapping ORFs is an exciting feature of the virus. The S ORF’s surface envelope pro-

teins encoded by HBsAg are responsible for virus binding to the host cell. ORF C of the viral

genome encodes HBcAg, a structural protein involved in capsid formation and replication

that contributes to the viral infection. Another significant non-structural HBx protein is

involved in viral infection.

The ssRNA containing the hepatitis C virus causes hepatitis C, hence its name, and is also

associated with hepatocellular carcinoma. This virus is found with a relatively small molecular

machinery with two glycoproteins E1 and E2, embedded in the outer lipid membrane that also

help in viral binding and cell entry [60]. Surface glycoproteins E1 and E2 are formed due to
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the cleavage of a precursor polyprotein [61, 62]. E1 and E2 are found in a non-covalent hetero-

dimeric form on the virus surface, determining factors mediating the virus entry and pathoge-

nicity [62]. Besides, the genetic material is enclosed inside an icosahedral capsid [63]. The viral

genome encodes a single polyprotein that further breaks to produce 10 different polypeptides

that play a significant role in viral replication and assembly [64].

Hepatitis B virus surface antigen HBsAg plays a significant role in initiating the viral infec-

tion and developing antibodies against HBsAg have successfully prevented the Hepatitis B

virus infection (Wasley et al. Another protein other than HBsAg besides its role in viral infec-

tion and proliferation is HBx which has been extensively studied for its association with Hepa-

titis B virus-mediated liver cancers [65]. HBx proteins are relatively more highly expressed in

hepatocellular carcinomas than other viral proteins [66]. HBx proteins promote hepatocarci-

nogenesis by meddling with various cellular processes and pathways such as p53 inhibition

[67], dysregulating centrosome formation [68], inhibiting apoptosis by activating the p38/

MAPK pathway and increasing the expression of the surviving antiapoptotic protein [69], dis-

mantling DNA repair process [70], and by activating Jak1/STAT signaling pathway [71], etc.

Human immunodeficiency virus. Although two types of the human immunodeficiency

virus (HIV) are known, HIV1 and HIV2, the lesser infectivity and low transmission of HIV2

are confined to only West African land [72]. Since HIV1 is more virulent and highly transmit-

table, it is ubiquitously known as HIV rather than HIV1. HIV can attack the host immune

cells and sabotage the host immune system to evade the immune response. It mainly targets

the immune system’s cellular machinery, such as CD4+ T cells, dendritic cells, and other mac-

rophages [73]. Unlike sudden pandemic outbreaks of viral infections such as the recent coro-

navirus pandemic, HIV has been causing a pandemic-like situation since its first emergence in

1981 and has killed an estimated 25 million people worldwide. HIV is a retrovirus with a dif-

ferent virion structure. The HIV genome contains two copies of ssRNAs enveloped inside a

conically shaped capsid made of p24 proteins. The genome encodes nine genes that produce

the molecular machinery needed to spread the virus inside the host cell.

The capsid also contains the enzymes such as reverse transcriptase, ribonuclease, integrase,

and proteases, etc., needed for the replication and progression of viral particles. Envelope gly-

coproteins GP120 and GP41 also play a significant role in virus structure assembly. GP120 is

an essential target for HIV vaccine development as it anchors the virus to human CD4 cells

[74]. The most essential and foremost step towards HIV infection, which is completed in vari-

ous intricate cellular processes, is the attachment of virion particles to the target cell, which is

achieved by various nonspecific processes [75]. Where the viral envelope comes near the host

cell via interaction either with α4β7 integrin [76] or dendritic cell-specific intercellular adhe-

sion molecular 3-grabbing non-integrin (DC-SIGN) [77, 78]. Getting closer to the target cell

surface facilitates the viral binding with the receptor CD4 protein via its interaction with the

heterodimeric complex of GP41 and GP120 glycoproteins where GP120 is involved in receptor

binding and also plays a significant role in host immune response evasion because of its vari-

able loops found on the glycoprotein surface [75]. Other essential processes follow the success-

ful receptor binding for a viral infection, such as cofactor binding, membrane fusion, viral

entry, replication, release, etc.

Human papillomavirus. Due to its ubiquitous and frequent infection, human papilloma-

virus (HPV) is a grave concern for humankind. HPVs are commonly associated with genital

infections that result in genital warts and, in some cases, precancerous lesions [79–81]. Unsafe

sexual interactions are the most common cause of HPV transmission. HPVs are also known to

contribute to and increase the risk of various cancers in humans, primarily cervical and oro-

pharyngeal cancers [82–84].
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The genome of HPV is made of a small circular dsDNA [85]. Two main culprit oncopro-

teins, namely E6 and E7, help the virus evade the immune system and proliferation and ulti-

mately survive the virus and role in tumorigenesis of cervical cancers [86, 87]. These

oncoproteins can inactivate tumor suppressor proteins p53 and pRb [88], where E6 is associ-

ated with the inactivation of p53, whereas E7 inactivates pRb. E6 and E7 have also been found

to activate WnT signaling pathways in the cancers induced by HPV infection [89]. E6 and E7

oncoproteins dysregulate the proliferation and apoptosis in HeLa cells [90], which are well-

known cell lines for studying cervical cancers. These viral oncoproteins have been broadly

studied as potential hallmarks of cervical cancer therapy [91].

Human coronavirus. The recent outbreak of the COVID-19 pandemic from Wuhan

province of China has shackled the world, causing severe damage to the world population and

economy, which is still persistent and threatening the nations despite the fast development of

various vaccines claiming to be up to>90% efficacy against the virus [92–94]. Human corona-

virus has been linked to mild to severe respiratory tract infections in humans. Among other

types of coronaviruses that infect birds and other mammals, SARS-CoV, MERS-CoV, and the

novel SARS-CoV-2 have been a severe threat to human beings. Besides, HCoV-NL63 and

HCoV-HKU1 have been evident in humans before the emergence of these three newfound

human coronaviruses. As discussed, SARS-CoV-2 is responsible for the worst pandemics in

human history, killing nearly 2.4 million people globally. The genome of the human coronavi-

rus is made up of ssRNA that encodes various structural and non-structural genes. Envelope

protein (E), membrane protein (M), and spike protein (S) embedded in lipid bilayers aid the

virus in host entry and assimilation [94]. S protein is responsible for virus binding and cell

entry into a host body. In addition, it interacts with human ACE2 receptors to allow the virion

interaction with the host cell. Due to its significant role in host-virus interaction, spike protein

has been widely studied for drug/vaccine development for COVID-19 treatment.

Ebola virus. The ssRNA genome of the Ebola virus encodes seven genes essential for the

survival and growth of the virus [95]. Furthermore, among all the structural (seven) and non-

structural proteins (three), two glycoproteins, Gp1 and Gp2 are responsible for infection by

helping the virus in host cell binding and cell entry [96, 97]. Thus, the Ebola virus is well

equipped with proteins capable of blocking the host cells’ interferon immune system, eventu-

ally leading to a successful viral infection that is often lethal [96].

Zika virus. The ssRNA genome of the Zika virus is found enclosed in an icosahedral cap-

sid. The genome encodes three structural and seven non-structural proteins in the form of an

un-cleaved polyprotein, which further breaks down its components [98]. Flavivirus glycopro-

tein encapsulates the virus and binds the virion to the endosomal host cell membrane [99].

Nipah virus. The ssRNA genome of the Nipah virus is found enveloped inside a lipid

bilayer. It produces six proteins that help the virus infect the host and replicate. Two glycopro-

teins, namely fusion glycoprotein (F) and attachment glycoprotein (G), are responsible for

host cell binding and entry inside the host cell [100]. In addition, the glycoproteins interact

with ephrin B2 and B3 of a human host cell for viral binding [101]. Besides, matrix protein

(M), phosphoprotein (P), nucleocapsid (N), and a long polymerase (L) are also essential

molecular machinery that helps the virus to increase [102].

Dengue virus. The ssRNA Dengue virus genome encodes a large precursor polyprotein

which is comprised of three structural proteins, namely capsid protein (C), membrane protein

(prM), and an envelope protein (E). It also contains seven non-structural proteins: NS1,

NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [103, 104]. E protein of the dengue virus is essential

for its attachment to the host cell [105] by interacting with heparan sulfate receptors highly

susceptible to viral infections [106].
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Chikungunya virus. The chikungunya virus contains an encapsulated RNA genome with

two open reading frames that encode two precursor polyproteins, one structural polyprotein

(which cleaves into one capsid (C) protein, and two glycoproteins E1 and E2), and one non-

structural polyprotein [107]. Glycoprotein E2 plays a significant role in viral attachment and

entry to the host cell by interacting with the host cell receptors [108].

Rabies virus. The RNA genome found enveloped inside a nucleocapsid made of nucleo-

proteins of the rabies virus encodes five essential structural proteins which help the virus in

host attachment and proliferation, mainly targeting the muscular and nerve cells. Other than

nucleoprotein (N), phosphoprotein (P), matrix protein (M), L protein, and glycoprotein (G)

are essential structural proteins [109, 110]. The spike formed by the trimeric G protein helps

the virus anchor to the host cell receptors [111].

Phylogenetic analysis of the viral proteins involved in host-virus

interaction

In the previous sections, we have discussed the structural and genomic features of various

human viruses while focusing on the viral proteins that are involved in host attachment, bind-

ing, membrane fusion, and cell entry help the virus infect a host cell and replicate to infect

more and more adjacent cells in the host environment. As we know, these proteins are among

the most promising targets for therapeutic interventions. In addition, these proteins have also

been studied thoroughly for their variability in different viral strains and isolates.

As discussed, the influenza A virus has two main viral proteins that help infect the host cells

and evade the immune system counteracting it. These proteins, hemagglutinin and neuramini-

dase, have undergone various changes that have given rise to different genotypes of influenza

viruses. Fig 3 shows multiple sequence alignments (MSAs) and phylogenetic trees of hemag-

glutinin and neuraminidase taken from seven different Influenza A H1N1 subtype strains.

These strains were selected randomly based on periodic and geographical distribution, includ-

ing the viral host variability since we also selected two strains from Duck and Swine. The MSA

of the hemagglutinin HA1 subdomain (Fig 3A) shows an overall conserved sequence; however,

there are visible non-conserved amino acid positions distributed in the receptor-binding area

of the HA1 subdomain. The phylogenetic tree for the HA1 subdomain (Fig 3C) shows three

strains, i.e., USSR/90/1977, Brazil/11/1978, and India/6263/1980, which have very close evolu-

tionary relationships with very minimal branch lengths. The other four strains on the phyloge-

netic tree show that the Brevig Mission/1/1918 strain shares the same tree branches with the

Duck/Alberta/35/1976 strain with a branch length difference of ~0.059. The Korea/01/2009

strain of H1N1 virus shares nodes with the New Jersey/11/1976 strain isolated from swine.

The MSA of functional residues contains the region of neuraminidase (Fig 3B). It shows rel-

atively highly conserved positions where USSR/90/1977, Brazil/11/1978, and India/6263/1980

strains show 97% sequence identity, indicating their origin from the same ancestor during the

evolutionary process. However, similar trends are observed on the phylogenetic tree for neur-

aminidase (Fig 3D), with relatively higher branch lengths depicting a vast evolutionary time

scale. Protein X (HBx) of the Hepatitis B virus is known for its role in virus-induced hepatocar-

cinogenesis and has been widely studied as a potential biomarker.

The MSA of HBx protein (Fig 4A) from various genotypes (Table 2) of Hepatitis B virus

shows highly conserved regions except for a few amino acid positions that are non-conserved

among all the sequences. In addition, sequences from A1, A2, A3, C, D, and E genotypes share

common amino acid substitutions that constitute non-conserved regions. A similar pattern is

also observed on the phylogenetic tree (Fig 4B) for these genotypes of the Hepatitis B virus,

indicating a common ancestor for these genotypes of the virus. Genotypes B1 and B2 share the
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bifurcated branch node with these six genotypes, with branch length differences of around

0.019. Genotypes F1, F2, and H, share common nodes, while G is the most distant on the evo-

lutionary tree with a branch length of 0.148. The E1 and E2 glycoproteins of the Hepatitis C

Fig 3. Phylogenetic profile of viral proteins from H1N1 Influenza A virus. Multiple Sequence Alignment of HA1 subdomain (A) of the hemagglutinin

and active/binding site region of neuraminidase. (B) from different strains of the H1N1 Influenza A virus. (C) Phylogenetic tree of HA1 subdomain. (D)

Phylogenetic tree of neuraminidase.

https://doi.org/10.1371/journal.pone.0261497.g003
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virus are significant for its survival and growth and are potential targets for vaccine develop-

ment. However, the MSA of both these glycoproteins (Fig 4C and 4E) from various genotypes

of Hepatitis C virus (Table 2) shows non-conserved positions spread across the sequences,

including few stretches are conserved between all the genotypes. Similar patterns are observed

on the phylogenetic trees (Fig 4D and 4F). The branch lengths between the parent and child

nodes are relatively high, depicting a common ancestry but a higher divergence and substitu-

tion rate among the sequences.

Fig 5 shows the MSA and phylogenetic tree of GP160 glycoprotein (Surface protein GP160

and transmembrane subunit GP41) from various isolates of HIV subtypes. It is established

Fig 4. Phylogenetic profile of viral proteins from Hepatitis B and Hepatitis C virus. (A) Multiple sequence alignment of Protein X from Hepatitis B.

(B) Phylogenetic tree of Protein X. (C) Multiple sequence alignment of E1 glycoprotein along with phylogenetic tree (D). (E) Multiple sequence

alignment of E2 glycoprotein with the phylogenetic tree (F).

https://doi.org/10.1371/journal.pone.0261497.g004

PLOS ONE Host-virus interaction mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0261497 December 16, 2021 11 / 22

https://doi.org/10.1371/journal.pone.0261497.g004
https://doi.org/10.1371/journal.pone.0261497


Table 2. Viral Protein selected for phylogenetic analysis along with the details of virus subtype/genotype and strain/isolate.

S.

No.

Protein Domain/Region Virus Subtype/ Genotype Strain/Isolate UNIPROT ID

1. Hemagglutinin HA1 Subdomain Influenza A H1N1 Brevig Mission/1/1918 Q9WFX3 (Hemagglutinin)

Q9IGQ6 (Neuraminidase)

2. Neuraminidase Active/Binding Site

Residues Containing

Swine/New Jersey/11/

1976

P03455 (Hemagglutinin)

Q9IGQ0 (Neuraminidase)

Duck/Alberta/35/1976 P26562 (Hemagglutinin)

Q9IGQ1 (Neuraminidase)

USSR/90/1977 P03453 (Hemagglutinin) P03469

(Neuraminidase)

Brazil/11/1978 A4GBX7 (Hemagglutinin)

A4GBY0 (Neuraminidase)

India/6263/1980 A4GCJ7 (Hemagglutinin)

A4GCK0 (Neuraminidase)

Korea/01/2009 C5MQE6 (Hemagglutinin)

C5MQP8 (Neuraminidase)

3. Protein X Complete Hepatitis B A1 South Africa/84/2001 Q91C38

A2 Japan/Nishioka/1983 P69714

A3 Cameroon/CMR711/

1994

Q4R1S1

B1 Japan/Ry30/2002 P0C678

B2 Indonesia/pIDW420/

1988

P20975

C Vietnam/3270/2000 Q9E6S8

D France/alpha1/1989 P24026

E Cote d’Ivoire/ABI-129/

2003

Q80IU8

F1 El Salvador/1116Sal/

1997

Q8JMY3

F2 Argentina/sa16/2000 Q99HR6

G IG29227/2000 Q9IBI5

H United States/

LAS2523/2002

Q8JMY5

4. E1 Glycoprotein Hepatitis C 1a Isolate-1 P26664

5. E2 Glycoprotein 1b BK P26663

1c India Q913D4

2a HC-J6 P26660

2b HC-J8 P26661

2c BEBE1 Q68749

3a K3A Q81495

3b Tr-Kj Q81487

4a ED43 O39929

5a EUH1480 O39928

6a EUHK2 O39927

(Continued)
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that the structural and functional variability in viral proteins, especially those involved in host

receptor binding, is a significant hurdle in vaccine development. Despite decades’ efforts, there

is no effective vaccine against HIV yet. The contributing factor to this is the variation in the

structural and functional features of the HIV viral proteins. The MSA of GP160 surface protein

(Fig 5A) taken from various isolates of HIV (Table 2) shows highly variable regions in the

sequences. Besides, sequence lengths also significantly vary among the subjects. A similar pat-

tern is observed for the GP41 transmembrane subunit (Fig 5C); however, the conserved

regions are comparatively higher in the GP41 subunit. Higher differences in the branch

lengths of the tip nodes from the root and internal nodes on the phylogenetic trees (Fig 5B and

5D) indicate a high rate of amino acid substitutions among various subtypes of HIV. Phyloge-

netic analysis of E6 and E7 oncoproteins, responsible for virus-associated cervical cancers,

from the human papillomavirus, shows a high divergence among HPV types 16, 31, 33, 35, 52,

58, and 67. In addition, amino acid substitution resulting in non-conserved regions is high in

oncoproteins (Fig 6A and 6B). The phylogenetic tree (Fig 6C and 6D) also shows higher

Table 2. (Continued)

S.

No.

Protein Domain/Region Virus Subtype/ Genotype Strain/Isolate UNIPROT ID

6. GP160 GP160 Surface Protein Human

Immunodeficiency Virus

A MAL P04583

GP41 Transmembrane

Region

B ARV2/SF2 P03378

C 92BR025 O12164

D ELI P04581

F1 93BR020 O89292

F2 MP255 Q9QBZ4

G 92NG083 O41803

H 90CF056 O70902

J SE9173 Q9WC69

K 96CM-MP535 Q9QBY2

7. E6 Oncoprotein Complete Human Papillomavirus 16 - P03126(E6) P03129(E7)

8. E7 Oncoprotein Complete 31 P17386(E6) P17387(E7)

33 P06427(E6) P06429(E7)

35 P27228(E6) P27230(E7)

52 P36814(E6) P36831(E7)

58 P26555(E6) P26557(E7)

67 F8S5Y6(E6) F8S5U7(E7)

9. Spike

Glycoprotein

Receptor Binding Domain Coronavirus Bat coronavirus

HKU3

Q3LZX1

Bovine coronavirus 98TXSF-110-ENT Q91A26

Human Coronavirus

HKU1

N1 Q5MQD0

Human Coronavirus

HKU1

N2 Q14EB0

Human Coronavirus

HKU1

N5 Q0ZME7

Human Coronavirus

HCoV-OC43

P36334

MERS-CoV United Kingdom/

H123990006/2012

K9N5Q8

SARS-CoV P59594

SARS-CoV-2 P0DTC2

https://doi.org/10.1371/journal.pone.0261497.t002
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divergence among various HPV subtypes. The spike glycoprotein of the coronavirus is respon-

sible for interaction with the host receptor through its receptor-binding domain. The phyloge-

netic analysis of various coronavirus strains isolated from humans (Table 2) and other

organisms (bat coronavirus and bovine coronavirus) shows regions with higher sequence vari-

ation in the receptor-binding domain of the spike glycoprotein of the coronavirus.

It is also noticeable that the sequence lengths of the receptor-binding domains vary signifi-

cantly between various strains. Fig 7A shows MSA of the receptor-binding domain of Spike

proteins depicting highly non-conserved regions. A spike protein is a potential target for vac-

cine development, and higher sequence variability might be a hurdle in the effectiveness of the

vaccines under development or developed so far (Table 1). The divergence between various

strains for Spike protein is very high, as observed on the phylogenetic tree (Fig 7B).

Fig 5. Phylogenetic profile of GP160 glycoprotein from HIV. (A) Multiple sequence alignment and (B) phylogenetic

tree of surface protein region GP160. (C) Multiple sequence alignment and (D) phylogenetic tree of transmembrane

region GP41.

https://doi.org/10.1371/journal.pone.0261497.g005
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Despite this, the propensity of non-conserved regions between SARS-CoV and the novel

coronavirus SARS-CoV-2 is very high, even though they share an evolutionary origin (Fig 7B).

A higher rate of amino acid substitutions indicates frequently originating viral strains that are

more likely to evade immune response with a higher tendency to infect host cells. It happened

in the case of the novel coronavirus UK strain, which is more lethal and highly contaminable

Fig 6. Phylogenetic profile of E6 and E7 oncoproteins from HPV. (A) Multiple sequence alignment of E6. (B)

Multiple sequence alignment of E7. (C) Phylogenetic tree of E6 and (D) E7 oncoproteins.

https://doi.org/10.1371/journal.pone.0261497.g006

Fig 7. Phylogenetic profile of receptor binding domain of the spike glycoprotein of the coronavirus. (A) Multiple sequence alignment and (B) phylogenetic tree

of the receptor-binding domain.

https://doi.org/10.1371/journal.pone.0261497.g007
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than previously known strains. Viruses tend to evolve and change their genetic makeup to

evade host immune responses.

We have witnessed a remarkable change in the novel coronavirus and the origin of new

viral strains that are more powerful than their progenitors. The purpose of phylogenetic analy-

sis of significant viral proteins across strains and isolates was to understand how many changes

these viruses have gone through so far. As discussed above, most of these viruses show signifi-

cant changes in their host-interacting viral proteins since their discovery to current times. We

also observed evolutionary changes in viral proteins taken from strains and isolates from vari-

ous geographical regions.

Conclusion

We investigated the host-virus interaction mechanisms of common human viruses and ran

phylogenetic analyses of the viral proteins involved in host cell surface binding. As we have

seen, viruses are well-equipped with essential molecular machinery that allows them to infect

humans, replicate, and survive in the host environment. Extensive studies on the host-virus

interaction mechanism have resulted in significant advances in discovering effective therapeu-

tics for various viral diseases over the last few decades (Influenza vaccines, hepatitis vaccines,

rabies vaccines, and recent vaccine development against novel coronavirus). However, in the

case of some viruses, medical science is still facing challenges in the development of vaccines.

The reason for this appears to be the genomic changes that these viruses go through to infil-

trate the host immune response and ensure their survival. Proteins involved in host-virus

interaction have significant variations in their sequence structure, as revealed by phylogenetic

analysis. The majority of these variations are found in regions that contain host receptor bind-

ing motifs. The frequency and prevalence of genomic variations are a barrier to vaccine devel-

opment. As a result, a thorough understanding of virus interaction mechanisms and genomic

variations may aid in developing vaccines with higher efficacy against a wide range of viral

strains.
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