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Regulatory long non-coding RNAs of hepatic
stellate cells in liver fibrosis (Review)
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Abstract. Liver fibrosis (LF) is a continuous wound healing
process caused by numerous chronic hepatic diseases and
poses a major threat to human health. Activation of hepatic
stellate cells (HSCs) is a critical event in the development of
hepatic fibrosis. Long non-coding RNAs (IncRNAs) that are
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involved in HSC activation, participate in the development
of LF and are likely to be therapeutic targets for LF. In the
present review, the cellular signaling pathways of LF with
respect to HSCs were discussed. In particular, this present
review highlighted the current knowledge on the role of
IncRNAs in activating or inhibiting LF, revealing IncRNAs
that are likely to be biomarkers or therapeutic targets for
LF. Additional studies should be performed to elucidate the
potential of IncRNAs in the diagnosis and prognosis of LF
and to provide novel therapeutic approaches for the rever-
sion of LF.
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1. Introduction

Liver fibrosis (LF) results from impaired wound healing
caused by acute or chronic exposure to detrimental factors,
including alcohol, viral diseases, drugs, cholestasis, toxins and
metabolic disorders (1,2). Slight or transient fibrosis is neces-
sary for wound healing and maintenance of tissue architecture
integrity (3). Fibrosis is a reversible process that may be halted
by removing the harmful stimulus (4,5). However, severe or
advanced fibrosis is characterized by abnormal connective
tissue hyperplasia and extracellular matrix (ECM) protein
deposition (6), leading to liver structural destruction and even
organ failure (7). The accumulation of ECM proteins results
in the distortion of hepatic architecture due to scar formation,
along with the appearance of regenerating hepatocyte nodules,
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which define cirrhosis (8). Cirrhosis is characterized by
hepatocellular dysfunction, portal hypertension, hepatocellular
carcinoma (HCC) and eventual liver failure (9,10).

Liver fibrogenesis is initiated by hepatic stellate cells (HSCs).
Under specific conditions, quiescent HSCs are transformed
into myofibroblasts (MFs) to generate ECM proteins, tissue
inhibitors of metalloproteinases (TIMPs) and matrix metal-
loproteinases (MMPs) (11-14). HSC activation involves a
systemic and complex pathological process involving multiple
cytokines and multiple cellular signaling pathways (15).

The healthy liver has a strong regenerative potential due
to the unlimited proliferative potential of cholangiocytes and
hepatocytes (HCs). Hepatic stem/progenitor cells (HpSCs) are
positioned within the canals of Hering (16). These cells are quies-
cent in the healthy liver but may be activated in response to liver
injury by proliferating and differentiating towards cholangiocytes
and HCs (17). In injured tissue, activated HSCs, macrophages
and MFs produce a variety of signals through signaling path-
ways including the Wnt and Notch pathways to drive HpSC
proliferation and differentiation (18). HpSCs are also able to
activate stellate cells through signaling pathways, including the
Hedgehog (Hh) pathway, resulting in the release of various types
of matrix components during liver regeneration (19).

Studies have confirmed that fibrosis is regulated through the
expression of various genes (20). As key regulators of multiple
biological processes, long non-coding RNAs (IncRNAs),
commonly defined as RNAs longer than 200 nucleotides
without any protein-coding capacity, have attracted much
research interest (21). Although the classification system of
IncRNAs is currently incomplete, they are generally divided
into two broad types according to their position relative to
protein-coding genes: i) Intergenic IncRNAs and ii) coding
gene-overlapping IncRNAs (22). IncRNAs regulate gene
expression and protein synthesis through multiple mecha-
nisms (23) and are considered to include ~30,000 different
transcripts, accounting for a large portion of the non-coding
transcriptome in humans (24). Unlike mRNAs, most IncRNAs
are expressed at low levels, cell type-specific, associated with
a high number of coding genes (24) and are present at specific
positions within the nucleus (25). IncRNAs are essential in
the regulation of cell migration, apoptosis, differentiation and
proliferation processes (26,27). Various IncRNAs have been
confirmed to be involved in multiple diseases and certain
IncRNAs have been identified as disease biomarkers (28).
In addition, recent studies have revealed that IncRNAs are
linked to the complex pathophysiological changes observed
in LF. Although numerous IncRNAs have been identified and
proposed as promising targets for anti-fibrosis therapies, the
underlying mechanisms of the functions of IncRNAs in LF
have remained elusive.

In the present review, the role of IncRNAs in modulating
cellular signaling pathways in LF was explored. The potential
utility of IncRNAs as non-invasive biomarkers and novel
therapeutic targets for LF was also proposed.

2. Transforming growth factor-f (TGF-f)/Smad signaling
and IncRNAs

TGF-p is generally considered the core driving factor behind
LF (29-31). Mammals have three types of TGF-f3 (81,52 and $3).

TGF-p1 acts as an important regulator of fibrogenesis, notably
in inflammation-induced LF (32). TGF-p1 binding to TGF-§
receptor (TGFBR)I and TGFPRII triggers the phosphoryla-
tion of downstream Smad proteins (particularly Smad3) and
contributes to the transcription of type I and type III collagen
mRNAs (33,34). TGF-p1 increases TIMP expression and
decreases MMP levels, thereby inhibiting ECM degradation.
In addition, TGF-f1 induces MF production by promoting
epithelial-mesenchymal transition (EMT). TGF-f}1 promotes
matrix formation through Smad3-dependent as well as
Smad3-independent mechanisms (35).

IncRNA-activated by TGF-f (IncRNA-ATB) is an impor-
tant regulator of the TGF-f/Smad signaling pathway. Studies
have reported that IncRNA-ATB, Smad2 and TGFBRII share
a common microRNA (miRNA) response element (MRE)
for miRNA (miR)-425-5p. IncRNA-ATB was indicated to
induce the expression of Smad2 and TGF-fRII by inhibiting
the expression of endogenous miR-425-5p in hepatitis C virus
(HCV)-induced hepatic fibrosis in a study on hepatic stellate
LX-2 cells treated with hepatoblastoma HepG2 cells carrying
the HCV core protein. Consequently, IncRNA-ATB caused
hepatic fibrosis by enhancing collagen I synthesis and stimu-
lating HSCs through competitive binding to miR-425-5p (36).

LF-associated IncRNA1 (Inc-LFAR1) was indicated to
facilitate the interaction between Smad2/3 and TGFPRI and
promote Smad2/3 phosphorylation in carbon tetrachloride
(CCly)/bile duct ligation (BDL)-induced LF. In addition,
Inc-LFARI1 is able to directly bind to Smad2/3. On this basis,
the TGFp1/Smad2/3/Inc-LFARI signaling pathway creates
an active feedback loop that enhances Smad2/3 functions in
hepatic fibrosis (37).

HOXA distal transcript antisense RNA (HOTTIP) has
been implicated in liver fibrogenesis (38). Li er al (39) deter-
mined that HOTTIP was upregulated in mice with hepatic
fibrosis and that inhibition of HOTTIP by adenoviral delivery
of short hairpin RNA-HOTTIP markedly reduced LF (39).
miR-148a participates in the initiation and progression of
HCC in the presence of LF and HOTTIP inhibits miR-148a
expression (40). miR-148a may regulate TGFRRI/TGFRRII,
subsequently decreasing their expression levels, in human
and mouse HSCs. Collectively, these results suggest that
HOTTIP may promote LF by downregulating miR-148a and
upregulating TGFPRI and TGFBRII.

H19 is a maternally inherited gene (41) and is overex-
pressed in human hepatic fibrosis specimens, as well in the
livers of mice with CCl,/BDL-induced fibrosis (42). H19 func-
tions as a competing endogenous RNA (ceRNA) by sponging
miR-148a and maintaining the expression levels of ubig-
uitin-specific protease 4 (USP4), a key miR-148a target that
stabilizes TGFPRI and promotes TGF-f3 signalling (43). The
H19/miR-148a/USP4 axis activates hepatic fibrosis through
the TGF-f pathway, indicating that H19 may be a therapeutic
target for fibrosis (44).

The IncRNA Gm5091 significantly negatively regulates
HSCs in mice with alcoholic hepatic fibrosis (AHF) (45).
Zhou et al (45) reported that Gm5091 downregulates cell
migration, collagen I expression and HSC activation marker
expression, including Desmin and a-smooth muscle actin.
In addition, data based on a bioinformatic analysis revealed
that the Gm5091 sequence contains binding sites for miR-24,
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miR-23b and miR-27b. Full-length Gm5091 decreases
the expression levels of miR-27b/23b/24 (45). In addition,
miR-27, miR-24 and miR-23 are positive regulators of HSC
proliferation and differentiation, as they activate TGF-f3
and Smad4 in mice with LF (46,47). As a ceRNA, Gm5091
sponges miR-27b/23b/24, which alleviates liver injury and the
progression of AHF in mice by inhibiting HSC activation.

Nuclear paraspeckle assembly transcript 1 (NEAT1) is
critical for the formation of paraspeckles (48) and hence to
the initiation of tumors. It is highly expressed in activated
HSCs and liver tissue of mice with CCl,-induced LF. In
human fibrotic liver samples, upregulated expression levels of
NEAT! are positively correlated with fibrosis markers (49). In
a mouse model of CCl,-induced fibrosis, NEAT1 overexpres-
sion promoted HSC activation in vivo, and similar results were
obtained in vitro (50). A previous study suggested that miR-122
inhibits HSC activation and the expression of fibrosis-associ-
ated genes induced by TGF-f (51). Stimulated expression of
Kruppel-like factor 6 (KLF6), an immediate-early gene in LF,
induces the expression of TGFPRI and TGFBRII in activated
HSCs (52). Furthermore, miR-122 targets NEAT1 as well as
KLF6 (53). Collectively, these results suggest that NEAT1
competitively binds to miR-122 and regulates KLLF6 expression
in hepatic fibrosis, indicating that the NEAT1/miR-122/KLF6
axis promotes HSC activation.

The IncRNA ENSMUST00000158992 (SCARNA10) is
upregulated in liver tissues of fibrotic mice as well as in the
serum and liver tissue of humans with advanced LF (54). Several
studies have indicated that SCARNAIO is a positive regulator
of LF, as it induces HC apoptosis and HSC activation (55,56).
Mechanistically, SCARNA10 functions as a mediator of LF by
inhibiting the binding of polycomb repressive complex 2 to the
promoters of genes involved in the TGF-f§ pathway, thereby
promoting the transcription of these genes.

3. Hh signaling and IncRNAs

The Hh signaling pathway is a morphogenic pathway that
has multiple roles in cell proliferation, apoptosis, migra-
tion and differentiation. It was first reported in Drosophila
by Niisslein-Volhard and Wieschaus (57) in 1980. The Hh
pathway comprises Glioblastoma (GLI) family transcription
factors (GLI1, GLI2, GLI3), Smoothened (SMO), sonic Hh
and Patched 1 (PTCH1) (58) and is driven by PTCH receptors
that are activated by Hh ligands, which abolish the inhibi-
tory effect of PTCHI1 on SMO. In turn, SMO transduces Hh
signals to regulate gene expression via GLI transcription
factors (59,60). Normal adult HCs generally do not produce
Hh ligands but hepatic synthesis of Hh ligands is increased
in liver injury (61). In addition, several resident liver cells,
including HCs, HSCs, cholangiocytes, macrophages, natural
killer T cells and liver sinusoidal endothelial cells, are able
to produce Hh ligands (62,63). Stimuli that contribute to liver
regeneration/remodeling promote the expression of Hh ligands
in the liver. HSCs become highly activated by Hh ligands,
which enhances their fibrogenic and proliferative capa-
bilities (64-66). Activation of the Hh pathway is influenced
by liver regeneration, hepatic accumulation of inflammatory
cells, liver fibrogenesis and vascular remodelling (67). In addi-
tion, the Hh pathway activity is positively associated with the

fibrosis stage (68). Data from Sicklick et al (69) indicate that
inactivation of Hh signaling in HSCs inhibits HSC activation
in vitro. Approaches that may block the Hh pathway may not
only reduce HSC activation and fibrosis but also prevent the
accumulation of hepatic progenitor cells (70). Furthermore,
EMT is a key event in HSC activation and is regulated by the
Hh pathway (71,72).

Plasmacytoma variant translocation 1 (PVT1) promotes
HSC activation through the Hh pathway and EMT process (73).
PTCHI is a negative modulator of Hh signalling (58). PVT1
knockdown increases the expression of PTCHI. Inhibition of
PTCHI during liver fibrogenesis results in PTCH1 methylation,
whereas silencing of PTCHI1 expression promotes activation
of the Hh pathway in CCl,-induced LF (74). Furthermore,
PVTI inhibits miR-152 through a post-transcriptional mecha-
nism, while miR-152 promotes hypomethylation of PTCHI1
by suppressing its direct target DNA methyltransferase 1 (75).
Demethylation of PTCH1 by miR-152 modulates the effect
of PVTI inhibition on PTCHI levels and treatment with a
miR-152 antagonist abolishes these changes. Therefore, PVT1
inhibits PTCHI1 through competitive binding with miR-152
and promotes EMT in hepatic fibrosis.

The IncRNA-maternally expressed gene 3 (MEG3) was
indicated to be downregulated in hepatic fibrosis in vitro and
in vivo, and its overexpression alleviates fibrogenesis (76,77).
Previous studies have reported that MEG3 suppresses hepatic
fibrosis via p53 (78). In particular, overexpression of MEG3
inhibits HSC activation by promoting the EMT process (79).
In addition, deletion of the SMO binding site in MEG3 fails
to block the effects of MEG3 on the EMT process and GLI3
in mice treated with CCl, (76). miR-212 is significantly down-
regulated in MEG3-overexpressing cells and is able to target
PTCHI. Furthermore, MEG3 induces Hh pathway activation
by sponging miR-212, promoting PTCHI1 expression and
decreasing SMO expression.

4. Wnt/p-catenin signaling and IncRNAs

Wnat signaling modulates cellular apoptosis, proliferation and
differentiation. Wnt proteins are 350-400 amino acids long
with a conserved cysteine-rich binding domain containing
23-24 cysteine residues (80). Of note, two cell surface receptor
families participate in the reception and transduction of
Whnt signals: The low-density lipoprotein receptor-related
protein (LRP) family and members of the Frizzled (Fz) gene
family (81). When Wnt binds to its receptor, either Fz or a
complex formed by Fz and LRP5/6, a signal is transduced to the
cytoplasmic phosphoprotein disheveled (82). Mammals have
three types of Dsh proteins (Dsh-3, Dsh-2 and Dsh-1) (83). Wnt
signaling is divided into three independent pathways according
to the affected Dsh protein: The canonical ‘Wnt/B-catenin’
pathway, the “Wnt/polarity’ pathway (also called the ‘planar
cell polarity’ pathway) and the ‘Wnt/Ca**’ pathway (84-86).
In these three pathways, Dsh is a key transducer of the
Wat signal.

B-catenin is a major component of the canonical Wnt
pathway (87-89). B-catenin forms a subunit of the cadherin
protein complex (90). Previous studies have indicated that
B-catenin is involved in fibrotic diseases (91,92). In the
absence of Wnt, B-catenin is targeted for degradation by a
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multiprotein degradation complex. Wnt signaling antagonizes
the degradation complex, leading to f-catenin accumulation
and target gene activation (93).

The Wnt pathway has dual modulatory effects on
HSCs (94). Depending on the specific conditions, Wnt may
either activate or inhibit B-catenin. Abnormal activation of
Wnt/p-catenin signaling aggravates fibrogenesis. Small inter-
fering RNA-mediated (3-catenin knockdown suppresses cell
proliferation and decreases the expression levels of collagen
I and III, resulting in HSC apoptosis in vitro (95). PRI-724 is
a selective inhibitor of the cAMP-response element-binding
protein-binding protein (CBP)/f-catenin interaction, acti-
vation of HSCs by PRI-724 has been indicated to reduce
hepatic fibrogenesis in mice (96). Activation of the canonical
Wnt/B-catenin pathway is necessary to sustain the quiescence
of HSCs in vitro (97). Roof plate-specific spondin proteins,
which stimulate the Wnt pathway, have been reported to
inhibit HSC activation, thereby compromising dickkopf WNT
signaling pathway inhibitor 1 signaling (98). Non-canonical
Wnt pathway signaling activates HSCs, as supported by the
observation that overexpression of Wnt5a was activated in rat
HSCs, indicating that cellular signaling involving phospho-
protein dishevelled occurs (99). On the other hand, a natural
Whnt5a inhibitor inhibited HSC activation by inducing the
expression of secreted Fz-related protein 5 (100).

IncRNA-ATB activates EMT and promotes tumor metas-
tasis (101), and its expression is positively correlated with
liver cirrhosis in patients with HCC (102). Evidence indicates
that IncRNA-ATB competitively binds to miR-200 family
members (103). Furthermore, 3-catenin was reported to be
regulated by miR-200a (104,105). Collectively, these results
suggest that IncRNA-ATB upregulates f-catenin expression
by inhibiting miR-200a, resulting in collagen I synthesis and
HSC activation in HCV-associated fibrosis in humans (106).

Long intergenic non-coding RNA-p21 (lincRNA-p21)
inhibits Wnt/p-catenin signaling, which mediates the effects
of salvianolic acid B (Sal B) on HSC activation. The inhibi-
tory effects of Sal B on Wnt/p3-catenin signaling are abolished
by lincRNA-p21 suppression. lincRNA-p21 regulated by
miR-17-5p is an inhibitor of miR-17-5p. Collectively, these
results indicate that lincRNA-p21 inhibits HSC activation
through the miR-17-5p/Wnt/f-catenin axis (107).

Small nuclear RNA host gene 7 (SNHG7) has been
reported to be an oncogene in various cancer types.
Yu et al (108) reported that the expression levels of SNHG7
are upregulated in the liver tissue of CCl, mice and that
silencing of SNHG?7 inhibits HSCs. Furthermore, SNHG7 is
able to regulate miR-378a-3p. Downregulation of miR-378a-3p
reduces the effects of SNHG7 loss on HSC activation (109).
SNHG7 enhances Wnt/pB-catenin signaling, leading to LF,
characterized by a decline in the phosphorylated f-catenin
level and enhancement of T cell factor activity (110).
SNHG7-mediated activation of the Wnt/B-catenin pathway is
regulated by miR-378a-regulated disheveled segment polarity
protein 2 (DVL2). Therefore, miR-378a-3p is a regulator of
DVL2. DVL2 inhibition abolishes SNHG7-induced HSC acti-
vation. Collectively, these results indicate that SNHG?7 inhibits
miR-378a-3p and moderates its effects on DVL2, leading to
enhanced Wnt/p-catenin signaling and thereby promoting
hepatic fibrosis.

5. NF-kB signaling and IncRNAs

The NF-«B pathway has a crucial role in innate and adaptive
immunity. NF-kB is a eukaryotic transcription factor that exists
in almost all cell types and is involved in various liver patholo-
gies (111). The survival and activation of HSCs and hepatic
MFs is modulated by NF-kB (112). In 1986, NF-kB was discov-
ered to regulate immunoglobulin « light chain expression in B
cells (113). NF-xB dimers are sequestered in the cytoplasm by
inhibitor of NF-kB proteins in most resting cells (114). NF-xB
activation is associated with at least 2 signal transduction routes
named the canonical and non-canonical pathways (115).

NF-«B regulates LF mainly by modulating physiological
responses in HSCs (116). Activation of NF-kB in HCs confers
protection by limiting apoptosis and facilitating regeneration
through stimulation of HC proliferation (117). NF-«xB is activated
in Kupffer cells during liver injury, which further induces HSC
activation and liver fibrogenesis (118,119). Further studies have
indicated that NF-kB agonists, including captopril, thalidomide,
silymarin and sulfasalazine, enhance hepatic MF apoptosis and
antifibrotic activities in normal liver tissue (120-122). In addition,
HSCs are direct in vivo targets of regulators that activate NF-«B,
including lipopolysaccharide (LPS) (123). However, prolonged
accumulation of NF-«B in liver cells promotes chronic inflam-
mation and HSC transdifferentiation into scar-forming hepatic
MFs (124,125). By contrast, inhibition of NF-xB in Kupffer
cells alleviates hepatic fibrosis (126).

In fibrotic livers and activated HSCs, the IncRNA
taurine upregulated gene 1 (TUGI1) is highly expressed,
unlike in normal HCs. miR-29b has been confirmed as a
TUGI-targeting miRNA (127). Previous research has demon-
strated that miR-29b inhibits HSC activation and ameliorates
CCl,/BDL-induced LF, as well as human advanced hepatic
fibrosis (128). Treatment with a miR-29b mimic eliminates
the effects of TUGI overexpression on cellular physiological
responses and inactivation of Janus kinase/STAT and NF-«kB
signaling in LPS-pretreated H9c2 cells (127). miR-29b
downregulates fibrogenic genes associated with the NF-kB
and TGF-f3 pathways in HSCs (129,130). Murine miR-29b
suppresses the expression of collagen in HSCs and is down-
regulated in activated HSCs in a manner dependent on NF-kB
and TGF-f signalling (131). Thus, TUGI is a positive regulator
of profibrogenic gene expression in HSCs, as it downregulates
miR-29b in HSCs (132).

6. Notch signaling and IncRNAs

The Notch signaling pathway is an elementary and highly
conserved pathway associated with liver development, physi-
ology and pathophysiology (133,134). Early studies based on
C. elegans and Drosophila genetic models identified a gene
locus that was correlated with the phenotype of a mutant fly
with a wing indentation (18,135). This locus was indicated to
participate in cell fate processes during Drosophila embryo-
genesis and was later named Notch. The Notch pathway
consists of receptors (Notch1-Notch4), ligands (d-like 1,3 and
4, as well as Jagged 1 and 2), transcriptional complex compo-
nents and downstream genes, including hairy-enhancer of
split (Hes)-related with YRPW motif (Hey) and Hes (136,137).
Notch signaling promotes LF by regulating the inflammatory
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Table I. IncRNAs regulating the signaling pathways in LF.

IncRNA Experiment type Signaling pathway Function (Refs.)
IncRNA-ATB In vitro TGF-p/Smad signaling Promoting HSC activation (33)
Inc-LFARI1 In vitro and in vivo TGF-p/Smad signaling, Promoting HSC activation (34)
Notch signaling
HOTTIP In vitro and in vivo TGF-p/Smad signaling Promoting HSC activation (36)
HI19 In vitro and in vivo TGF-B/Smad signaling Promoting HSC activation (39)
IncRNA Gm5091 In vitro and in vivo TGF-p/Smad signaling Inhibiting HSC activation (42)
NEAT1 In vitro and in vivo TGF-p/Smad signaling Promoting HSC activation 47
PVTI1 In vitro and in vivo Hedgehog signaling Promoting HSC activation (66)
MEG3 In vitro and in vivo Hedgehog signaling Inhibiting HSC activation ©7)
IncRNA-ATB In vitro Whnt/f-catenin signaling Promoting HSC activation 94)
lincRNA-p21 In vitro Whnt/p3-catenin signaling Inhibiting HSC activation 95)
SNHG7 In vitro and in vivo Whnt/(3-catenin signaling Promoting HSC activation (96)
TUGI1 In vitro and in vivo NF-«B signaling Promoting HSC activation (110)

LF, liver fibrosis; HOTTIP, HOXA distal transcript antisense RNA; HSC, hepatocellular carcinoma; Inc-LFAR1, LF-associated IncRNA1;
lincRNA-p21, long intergenic non-coding RNA-p21; Inc/IncRNA, long non-coding RNA; IncRNA-ATB, IncRNA-activated by TGF-f;
MEGS3, maternally expressed gene 3; NEAT1, encoding nuclear paraspeckle assembly transcript 1; PVT1, plasmacytoma variant transloca-
tion 1; SNHG7, small nuclear RNA host gene 7; TGF-f3, transforming growth factor-f; TUG1, taurine upregulated gene 1.
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Figure 1. Regulation of the signaling pathways in LF by IncRNAs. In
response to LF, the expression of a cohort of IncRNAs is modulated.
IncRNAs are implicated in the process of LF by targeting components of the
signaling pathway. Normal arrows represent aggravation of LF. T-bar arrows
represent alleviation of LF. LF, liver fibrosis; HOTTIP, HOXA distal tran-
script antisense RNA; lincRNA-p21, long intergenic non-coding RNA-p21;
Inc/IncRNA, long non-coding RNA; Inc-LFARI, LF-associated IncRNAI;
IncRNA-ATB, IncRNA-activated by TGF-f; NEAT1, nuclear paraspeckle
assembly transcript 1; MEG3, maternally expressed gene 3; PVT1, plasma-
cytoma variant translocation 1; SNHG7, small nuclear RNA host gene 7;
TGF-f, transforming growth factor-f; TUGI, taurine upregulated gene 1.

response and the function of macrophages (138,139).
Xie et al (140) reported that Notch-Hh crosstalk influences
the pathogenesis of cirrhosis by regulating MFs/HSCs through
EMT in vitro and in vivo. In a mouse model of liver steatosis
and LF, sustained Notch activation induces hepatic fibrosis
in the presence of high lipid levels and inhibition of Notch

signaling or a reduction in liver fat content may ameliorate
hepatic fibrosis (141,142).

In mouse models of liver fibrogenesis, the protein and
mRNA levels of Notch2, Notch3, Hesl and Hey?2 are increased
in Inc-LFARI1-overexpressing HSCs, while downregulation of
Inc-LFARI reverses these effects (37). Hes is considered the
prototype Notch target gene and encodes a basic helix-loop-helix
inhibitory transcription factor involved in the self-renewal of
target cells by inhibiting differentiation (143,144). Furthermore,
lentivirus-mediated knockdown of Inc-LFARI reduced the
expression levels of Hey2, Notch2 and Notch3. Hesl inhibits
CCl,/BDL-induced expression of these genes; therefore,
Inc-LFAR1 may activate HSCs and subsequently accelerate LF
through modulation of Notch signaling.

7. Other signaling pathways

Further signaling pathways are involved in LF. Homeobox
transcript antisense RNA (HOTAIR) expression is upregu-
lated in HSCs during LF. HOTAIR modulates PTEN levels
and contributes to the activation of the ERK and AKT path-
ways through miR-29b (145). In addition, the IncRNA growth
arrest-specific transcript 5 inhibits LF by targeting miR-23a
through the PTEN/PI3K/Akt signaling pathway in a rat model
of CCl,-induced hepatic fibrosis (146). Future research is
expected to focus increasingly on the association of IncRNAs
with LF.

8. Conclusion

Regeneration of damaged mature liver tissue is driven by
multiple signaling pathways, including the TGF-f/Smad, Hh,
Wnt, NF-kB and Notch pathways. A summary is provided
in Table I and Fig. 1. The complex but delicate networks
interconnecting these molecular signals regulate cellular
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proliferation, differentiation and apoptosis and thus the
pathological process of fibrosis. Due to the development of
high-throughput sequencing technologies, numerous IncRNAs
have been identified. These IncRNAs may act on oncogenes or
tumor suppressors and certain IncRNAs have been well char-
acterized and proven to be associated with LF. In the present
review, these signals and intracellular events were summarized
that independently or cooperatively drive HSC activation. The
roles and possible mechanisms of action of selected IncRNAs
in LF were also reviewed. The potential utility of IncRNAs
as therapeutic agents and biomarkers is promising, although
the exact mechanisms of action behind most IncRNAs remain
elusive. Given the numerous potential therapeutic anti-fibrosis
strategies targeting factors that promote fibrosis, combination
therapies including these IncRNAs may produce improved
clinical outcomes. However, additional functions and regula-
tory mechanisms of action of these IncRNAs require further
study prior to their use as clinically applicable biomolecules.
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