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Abstract. Liver fibrosis (LF) is a continuous wound healing 
process caused by numerous chronic hepatic diseases and 
poses a major threat to human health. Activation of hepatic 
stellate cells (HSCs) is a critical event in the development of 
hepatic fibrosis. Long non‑coding RNAs (lncRNAs) that are 

involved in HSC activation, participate in the development 
of LF and are likely to be therapeutic targets for LF. In the 
present review, the cellular signaling pathways of LF with 
respect to HSCs were discussed. In particular, this present 
review highlighted the current knowledge on the role of 
lncRNAs in activating or inhibiting LF, revealing lncRNAs 
that are likely to be biomarkers or therapeutic targets for 
LF. Additional studies should be performed to elucidate the 
potential of lncRNAs in the diagnosis and prognosis of LF 
and to provide novel therapeutic approaches for the rever‑
sion of LF.
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1. Introduction

Liver fibrosis (LF) results from impaired wound healing 
caused by acute or chronic exposure to detrimental factors, 
including alcohol, viral diseases, drugs, cholestasis, toxins and 
metabolic disorders (1,2). Slight or transient fibrosis is neces‑
sary for wound healing and maintenance of tissue architecture 
integrity (3). Fibrosis is a reversible process that may be halted 
by removing the harmful stimulus (4,5). However, severe or 
advanced fibrosis is characterized by abnormal connective 
tissue hyperplasia and extracellular matrix (ECM) protein 
deposition (6), leading to liver structural destruction and even 
organ failure (7). The accumulation of ECM proteins results 
in the distortion of hepatic architecture due to scar formation, 
along with the appearance of regenerating hepatocyte nodules, 
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which define cirrhosis (8). Cirrhosis is characterized by 
hepatocellular dysfunction, portal hypertension, hepatocellular 
carcinoma (HCC) and eventual liver failure (9,10).

Liver fibrogenesis is initiated by hepatic stellate cells (HSCs). 
Under specific conditions, quiescent HSCs are transformed 
into myofibroblasts (MFs) to generate ECM proteins, tissue 
inhibitors of metalloproteinases (TIMPs) and matrix metal‑
loproteinases (MMPs) (11‑14). HSC activation involves a 
systemic and complex pathological process involving multiple 
cytokines and multiple cellular signaling pathways (15).

The healthy liver has a strong regenerative potential due 
to the unlimited proliferative potential of cholangiocytes and 
hepatocytes (HCs). Hepatic stem/progenitor cells (HpSCs) are 
positioned within the canals of Hering (16). These cells are quies‑
cent in the healthy liver but may be activated in response to liver 
injury by proliferating and differentiating towards cholangiocytes 
and HCs (17). In injured tissue, activated HSCs, macrophages 
and MFs produce a variety of signals through signaling path‑
ways including the Wnt and Notch pathways to drive HpSC 
proliferation and differentiation (18). HpSCs are also able to 
activate stellate cells through signaling pathways, including the 
Hedgehog (Hh) pathway, resulting in the release of various types 
of matrix components during liver regeneration (19).

Studies have confirmed that fibrosis is regulated through the 
expression of various genes (20). As key regulators of multiple 
biological processes, long non‑coding RNAs (lncRNAs), 
commonly defined as RNAs longer than 200 nucleotides 
without any protein‑coding capacity, have attracted much 
research interest (21). Although the classification system of 
lncRNAs is currently incomplete, they are generally divided 
into two broad types according to their position relative to 
protein‑coding genes: i) Intergenic lncRNAs and ii) coding 
gene‑overlapping lncRNAs (22). lncRNAs regulate gene 
expression and protein synthesis through multiple mecha‑
nisms (23) and are considered to include ~30,000 different 
transcripts, accounting for a large portion of the non‑coding 
transcriptome in humans (24). Unlike mRNAs, most lncRNAs 
are expressed at low levels, cell type‑specific, associated with 
a high number of coding genes (24) and are present at specific 
positions within the nucleus (25). lncRNAs are essential in 
the regulation of cell migration, apoptosis, differentiation and 
proliferation processes (26,27). Various lncRNAs have been 
confirmed to be involved in multiple diseases and certain 
lncRNAs have been identified as disease biomarkers (28). 
In addition, recent studies have revealed that lncRNAs are 
linked to the complex pathophysiological changes observed 
in LF. Although numerous lncRNAs have been identified and 
proposed as promising targets for anti‑fibrosis therapies, the 
underlying mechanisms of the functions of lncRNAs in LF 
have remained elusive.

In the present review, the role of lncRNAs in modulating 
cellular signaling pathways in LF was explored. The potential 
utility of lncRNAs as non‑invasive biomarkers and novel 
therapeutic targets for LF was also proposed.

2. Transforming growth factor‑β (TGF‑β)/Smad signaling 
and lncRNAs

TGF‑β is generally considered the core driving factor behind 
LF (29‑31). Mammals have three types of TGF‑β (β1, β2 and β3). 

TGF‑β1 acts as an important regulator of fibrogenesis, notably 
in inflammation‑induced LF (32). TGF‑β1 binding to TGF‑β 
receptor (TGFβR)I and TGFβRII triggers the phosphoryla‑
tion of downstream Smad proteins (particularly Smad3) and 
contributes to the transcription of type I and type III collagen 
mRNAs (33,34). TGF‑β1 increases TIMP expression and 
decreases MMP levels, thereby inhibiting ECM degradation. 
In addition, TGF‑β1 induces MF production by promoting 
epithelial‑mesenchymal transition (EMT). TGF‑β1 promotes 
matrix formation through Smad3‑dependent as well as 
Smad3‑independent mechanisms (35).

lncRNA‑activated by TGF‑β (lncRNA‑ATB) is an impor‑
tant regulator of the TGF‑β/Smad signaling pathway. Studies 
have reported that lncRNA‑ATB, Smad2 and TGFβRII share 
a common microRNA (miRNA) response element (MRE) 
for miRNA (miR)‑425‑5p. lncRNA‑ATB was indicated to 
induce the expression of Smad2 and TGF‑βRII by inhibiting 
the expression of endogenous miR‑425‑5p in hepatitis C virus 
(HCV)‑induced hepatic fibrosis in a study on hepatic stellate 
LX‑2 cells treated with hepatoblastoma HepG2 cells carrying 
the HCV core protein. Consequently, lncRNA‑ATB caused 
hepatic fibrosis by enhancing collagen I synthesis and stimu‑
lating HSCs through competitive binding to miR‑425‑5p (36).

LF‑associated lncRNA1 (lnc‑LFAR1) was indicated to 
facilitate the interaction between Smad2/3 and TGFβRI and 
promote Smad2/3 phosphorylation in carbon tetrachloride 
(CCl4)/bile duct ligation (BDL)‑induced LF. In addition, 
lnc‑LFAR1 is able to directly bind to Smad2/3. On this basis, 
the TGFβ1/Smad2/3/lnc‑LFAR1 signaling pathway creates 
an active feedback loop that enhances Smad2/3 functions in 
hepatic fibrosis (37).

HOXA distal transcript antisense RNA (HOTTIP) has 
been implicated in liver fibrogenesis (38). Li et al (39) deter‑
mined that HOTTIP was upregulated in mice with hepatic 
fibrosis and that inhibition of HOTTIP by adenoviral delivery 
of short hairpin RNA‑HOTTIP markedly reduced LF (39). 
miR‑148a participates in the initiation and progression of 
HCC in the presence of LF and HOTTIP inhibits miR‑148a 
expression (40). miR‑148a may regulate TGFβRI/TGFβRII, 
subsequently decreasing their expression levels, in human 
and mouse HSCs. Collectively, these results suggest that 
HOTTIP may promote LF by downregulating miR‑148a and 
upregulating TGFβRI and TGFβRII.

H19 is a maternally inherited gene (41) and is overex‑
pressed in human hepatic fibrosis specimens, as well in the 
livers of mice with CCl4/BDL‑induced fibrosis (42). H19 func‑
tions as a competing endogenous RNA (ceRNA) by sponging 
miR‑148a and maintaining the expression levels of ubiq‑
uitin‑specific protease 4 (USP4), a key miR‑148a target that 
stabilizes TGFβRI and promotes TGF‑β signalling (43). The 
H19/miR‑148a/USP4 axis activates hepatic fibrosis through 
the TGF‑β pathway, indicating that H19 may be a therapeutic 
target for fibrosis (44).

The lncRNA Gm5091 significantly negatively regulates 
HSCs in mice with alcoholic hepatic fibrosis (AHF) (45). 
Zhou et al (45) reported that Gm5091 downregulates cell 
migration, collagen I expression and HSC activation marker 
expression, including Desmin and α‑smooth muscle actin. 
In addition, data based on a bioinformatic analysis revealed 
that the Gm5091 sequence contains binding sites for miR‑24, 
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miR‑23b and miR‑27b. Full‑length Gm5091 decreases 
the expression levels of miR‑27b/23b/24 (45). In addition, 
miR‑27, miR‑24 and miR‑23 are positive regulators of HSC 
proliferation and differentiation, as they activate TGF‑β 
and Smad4 in mice with LF (46,47). As a ceRNA, Gm5091 
sponges miR‑27b/23b/24, which alleviates liver injury and the 
progression of AHF in mice by inhibiting HSC activation.

Nuclear paraspeckle assembly transcript 1 (NEAT1) is 
critical for the formation of paraspeckles (48) and hence to 
the initiation of tumors. It is highly expressed in activated 
HSCs and liver tissue of mice with CCl4‑induced LF. In 
human fibrotic liver samples, upregulated expression levels of 
NEAT1 are positively correlated with fibrosis markers (49). In 
a mouse model of CCl4‑induced fibrosis, NEAT1 overexpres‑
sion promoted HSC activation in vivo, and similar results were 
obtained in vitro (50). A previous study suggested that miR‑122 
inhibits HSC activation and the expression of fibrosis‑associ‑
ated genes induced by TGF‑β (51). Stimulated expression of 
Kruppel‑like factor 6 (KLF6), an immediate‑early gene in LF, 
induces the expression of TGFβRI and TGFβRII in activated 
HSCs (52). Furthermore, miR‑122 targets NEAT1 as well as 
KLF6 (53). Collectively, these results suggest that NEAT1 
competitively binds to miR‑122 and regulates KLF6 expression 
in hepatic fibrosis, indicating that the NEAT1/miR‑122/KLF6 
axis promotes HSC activation.

The lncRNA ENSMUST00000158992 (SCARNA10) is 
upregulated in liver tissues of fibrotic mice as well as in the 
serum and liver tissue of humans with advanced LF (54). Several 
studies have indicated that SCARNA10 is a positive regulator 
of LF, as it induces HC apoptosis and HSC activation (55,56). 
Mechanistically, SCARNA10 functions as a mediator of LF by 
inhibiting the binding of polycomb repressive complex 2 to the 
promoters of genes involved in the TGF‑β pathway, thereby 
promoting the transcription of these genes.

3. Hh signaling and lncRNAs

The Hh signaling pathway is a morphogenic pathway that 
has multiple roles in cell proliferation, apoptosis, migra‑
tion and differentiation. It was first reported in Drosophila 
by Nüsslein‑Volhard and Wieschaus (57) in 1980. The Hh 
pathway comprises Glioblastoma (GLI) family transcription 
factors (GLI1, GLI2, GLI3), Smoothened (SMO), sonic Hh 
and Patched 1 (PTCH1) (58) and is driven by PTCH receptors 
that are activated by Hh ligands, which abolish the inhibi‑
tory effect of PTCH1 on SMO. In turn, SMO transduces Hh 
signals to regulate gene expression via GLI transcription 
factors (59,60). Normal adult HCs generally do not produce 
Hh ligands but hepatic synthesis of Hh ligands is increased 
in liver injury (61). In addition, several resident liver cells, 
including HCs, HSCs, cholangiocytes, macrophages, natural 
killer T cells and liver sinusoidal endothelial cells, are able 
to produce Hh ligands (62,63). Stimuli that contribute to liver 
regeneration/remodeling promote the expression of Hh ligands 
in the liver. HSCs become highly activated by Hh ligands, 
which enhances their fibrogenic and proliferative capa‑
bilities (64‑66). Activation of the Hh pathway is influenced 
by liver regeneration, hepatic accumulation of inflammatory 
cells, liver fibrogenesis and vascular remodelling (67). In addi‑
tion, the Hh pathway activity is positively associated with the 

fibrosis stage (68). Data from Sicklick et al (69) indicate that 
inactivation of Hh signaling in HSCs inhibits HSC activation 
in vitro. Approaches that may block the Hh pathway may not 
only reduce HSC activation and fibrosis but also prevent the 
accumulation of hepatic progenitor cells (70). Furthermore, 
EMT is a key event in HSC activation and is regulated by the 
Hh pathway (71,72).

Plasmacytoma variant translocation 1 (PVT1) promotes 
HSC activation through the Hh pathway and EMT process (73). 
PTCH1 is a negative modulator of Hh signalling (58). PVT1 
knockdown increases the expression of PTCH1. Inhibition of 
PTCH1 during liver fibrogenesis results in PTCH1 methylation, 
whereas silencing of PTCH1 expression promotes activation 
of the Hh pathway in CCl4‑induced LF (74). Furthermore, 
PVT1 inhibits miR‑152 through a post‑transcriptional mecha‑
nism, while miR‑152 promotes hypomethylation of PTCH1 
by suppressing its direct target DNA methyltransferase 1 (75). 
Demethylation of PTCH1 by miR‑152 modulates the effect 
of PVT1 inhibition on PTCH1 levels and treatment with a 
miR‑152 antagonist abolishes these changes. Therefore, PVT1 
inhibits PTCH1 through competitive binding with miR‑152 
and promotes EMT in hepatic fibrosis.

The lncRNA‑maternally expressed gene 3 (MEG3) was 
indicated to be downregulated in hepatic fibrosis in vitro and 
in vivo, and its overexpression alleviates fibrogenesis (76,77). 
Previous studies have reported that MEG3 suppresses hepatic 
fibrosis via p53 (78). In particular, overexpression of MEG3 
inhibits HSC activation by promoting the EMT process (79). 
In addition, deletion of the SMO binding site in MEG3 fails 
to block the effects of MEG3 on the EMT process and GLI3 
in mice treated with CCl4 (76). miR‑212 is significantly down‑
regulated in MEG3‑overexpressing cells and is able to target 
PTCH1. Furthermore, MEG3 induces Hh pathway activation 
by sponging miR‑212, promoting PTCH1 expression and 
decreasing SMO expression. 

4. Wnt/β‑catenin signaling and lncRNAs

Wnt signaling modulates cellular apoptosis, proliferation and 
differentiation. Wnt proteins are 350‑400 amino acids long 
with a conserved cysteine‑rich binding domain containing 
23‑24 cysteine residues (80). Of note, two cell surface receptor 
families participate in the reception and transduction of 
Wnt signals: The low‑density lipoprotein receptor‑related 
protein (LRP) family and members of the Frizzled (Fz) gene 
family (81). When Wnt binds to its receptor, either Fz or a 
complex formed by Fz and LRP5/6, a signal is transduced to the 
cytoplasmic phosphoprotein disheveled (82). Mammals have 
three types of Dsh proteins (Dsh‑3, Dsh‑2 and Dsh‑1) (83). Wnt 
signaling is divided into three independent pathways according 
to the affected Dsh protein: The canonical ‘Wnt/β‑catenin’ 
pathway, the ‘Wnt/polarity’ pathway (also called the ‘planar 
cell polarity’ pathway) and the ‘Wnt/Ca2+’ pathway (84‑86). 
In these three pathways, Dsh is a key transducer of the 
Wnt signal.

β‑catenin is a major component of the canonical Wnt 
pathway (87‑89). β‑catenin forms a subunit of the cadherin 
protein complex (90). Previous studies have indicated that 
β‑catenin is involved in fibrotic diseases (91,92). In the 
absence of Wnt, β‑catenin is targeted for degradation by a 
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multiprotein degradation complex. Wnt signaling antagonizes 
the degradation complex, leading to β‑catenin accumulation 
and target gene activation (93).

The Wnt pathway has dual modulatory effects on 
HSCs (94). Depending on the specific conditions, Wnt may 
either activate or inhibit β‑catenin. Abnormal activation of 
Wnt/β‑catenin signaling aggravates fibrogenesis. Small inter‑
fering RNA‑mediated β‑catenin knockdown suppresses cell 
proliferation and decreases the expression levels of collagen 
I and III, resulting in HSC apoptosis in vitro (95). PRI‑724 is 
a selective inhibitor of the cAMP‑response element‑binding 
protein‑binding protein (CBP)/β‑catenin interaction, acti‑
vation of HSCs by PRI‑724 has been indicated to reduce 
hepatic fibrogenesis in mice (96). Activation of the canonical 
Wnt/β‑catenin pathway is necessary to sustain the quiescence 
of HSCs in vitro (97). Roof plate‑specific spondin proteins, 
which stimulate the Wnt pathway, have been reported to 
inhibit HSC activation, thereby compromising dickkopf WNT 
signaling pathway inhibitor 1 signaling (98). Non‑canonical 
Wnt pathway signaling activates HSCs, as supported by the 
observation that overexpression of Wnt5a was activated in rat 
HSCs, indicating that cellular signaling involving phospho‑
protein dishevelled occurs (99). On the other hand, a natural 
Wnt5a inhibitor inhibited HSC activation by inducing the 
expression of secreted Fz‑related protein 5 (100).

lncRNA‑ATB activates EMT and promotes tumor metas‑
tasis (101), and its expression is positively correlated with 
liver cirrhosis in patients with HCC (102). Evidence indicates 
that lncRNA‑ATB competitively binds to miR‑200 family 
members (103). Furthermore, β‑catenin was reported to be 
regulated by miR‑200a (104,105). Collectively, these results 
suggest that lncRNA‑ATB upregulates β‑catenin expression 
by inhibiting miR‑200a, resulting in collagen Ι synthesis and 
HSC activation in HCV‑associated fibrosis in humans (106).

Long intergenic non‑coding RNA‑p21 (lincRNA‑p21) 
inhibits Wnt/β‑catenin signaling, which mediates the effects 
of salvianolic acid B (Sal B) on HSC activation. The inhibi‑
tory effects of Sal B on Wnt/β‑catenin signaling are abolished 
by lincRNA‑p21 suppression. lincRNA‑p21 regulated by 
miR‑17‑5p is an inhibitor of miR‑17‑5p. Collectively, these 
results indicate that lincRNA‑p21 inhibits HSC activation 
through the miR‑17‑5p/Wnt/β‑catenin axis (107).

Small nuclear RNA host gene 7 (SNHG7) has been 
reported to be an oncogene in various cancer types. 
Yu et al (108) reported that the expression levels of SNHG7 
are upregulated in the liver tissue of CCl4 mice and that 
silencing of SNHG7 inhibits HSCs. Furthermore, SNHG7 is 
able to regulate miR‑378a‑3p. Downregulation of miR‑378a‑3p 
reduces the effects of SNHG7 loss on HSC activation (109). 
SNHG7 enhances Wnt/β‑catenin signaling, leading to LF, 
characterized by a decline in the phosphorylated β‑catenin 
level and enhancement of T cell factor activity (110). 
SNHG7‑mediated activation of the Wnt/β‑catenin pathway is 
regulated by miR‑378a‑regulated disheveled segment polarity 
protein 2 (DVL2). Therefore, miR‑378a‑3p is a regulator of 
DVL2. DVL2 inhibition abolishes SNHG7‑induced HSC acti‑
vation. Collectively, these results indicate that SNHG7 inhibits 
miR‑378a‑3p and moderates its effects on DVL2, leading to 
enhanced Wnt/β‑catenin signaling and thereby promoting 
hepatic fibrosis.

5. NF‑κB signaling and lncRNAs

The NF‑κB pathway has a crucial role in innate and adaptive 
immunity. NF‑κB is a eukaryotic transcription factor that exists 
in almost all cell types and is involved in various liver patholo‑
gies (111). The survival and activation of HSCs and hepatic 
MFs is modulated by NF‑κB (112). In 1986, NF‑κB was discov‑
ered to regulate immunoglobulin κ light chain expression in B 
cells (113). NF‑κB dimers are sequestered in the cytoplasm by 
inhibitor of NF‑κB proteins in most resting cells (114). NF‑κB 
activation is associated with at least 2 signal transduction routes 
named the canonical and non‑canonical pathways (115).

NF‑κB regulates LF mainly by modulating physiological 
responses in HSCs (116). Activation of NF‑κB in HCs confers 
protection by limiting apoptosis and facilitating regeneration 
through stimulation of HC proliferation (117). NF‑κB is activated 
in Kupffer cells during liver injury, which further induces HSC 
activation and liver fibrogenesis (118,119). Further studies have 
indicated that NF‑κB agonists, including captopril, thalidomide, 
silymarin and sulfasalazine, enhance hepatic MF apoptosis and 
antifibrotic activities in normal liver tissue (120‑122). In addition, 
HSCs are direct in vivo targets of regulators that activate NF‑κB, 
including lipopolysaccharide (LPS) (123). However, prolonged 
accumulation of NF‑κB in liver cells promotes chronic inflam‑
mation and HSC transdifferentiation into scar‑forming hepatic 
MFs (124,125). By contrast, inhibition of NF‑κB in Kupffer 
cells alleviates hepatic fibrosis (126).

In fibrotic livers and activated HSCs, the lncRNA 
taurine upregulated gene 1 (TUG1) is highly expressed, 
unlike in normal HCs. miR‑29b has been confirmed as a 
TUG1‑targeting miRNA (127). Previous research has demon‑
strated that miR‑29b inhibits HSC activation and ameliorates 
CCl4/BDL‑induced LF, as well as human advanced hepatic 
fibrosis (128). Treatment with a miR‑29b mimic eliminates 
the effects of TUG1 overexpression on cellular physiological 
responses and inactivation of Janus kinase/STAT and NF‑κB 
signaling in LPS‑pretreated H9c2 cells (127). miR‑29b 
downregulates fibrogenic genes associated with the NF‑kB 
and TGF‑β pathways in HSCs (129,130). Murine miR‑29b 
suppresses the expression of collagen in HSCs and is down‑
regulated in activated HSCs in a manner dependent on NF‑kB 
and TGF‑β signalling (131). Thus, TUG1 is a positive regulator 
of profibrogenic gene expression in HSCs, as it downregulates 
miR‑29b in HSCs (132).

6. Notch signaling and lncRNAs

The Notch signaling pathway is an elementary and highly 
conserved pathway associated with liver development, physi‑
ology and pathophysiology (133,134). Early studies based on 
C. elegans and Drosophila genetic models identified a gene 
locus that was correlated with the phenotype of a mutant fly 
with a wing indentation (18,135). This locus was indicated to 
participate in cell fate processes during Drosophila embryo‑
genesis and was later named Notch. The Notch pathway 
consists of receptors (Notch1‑Notch4), ligands (δ‑like 1, 3 and 
4, as well as Jagged 1 and 2), transcriptional complex compo‑
nents and downstream genes, including hairy‑enhancer of 
split (Hes)‑related with YRPW motif (Hey) and Hes (136,137). 
Notch signaling promotes LF by regulating the inflammatory 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  21:  351,  2021 5

response and the function of macrophages (138,139). 
Xie et al (140) reported that Notch‑Hh crosstalk influences 
the pathogenesis of cirrhosis by regulating MFs/HSCs through 
EMT in vitro and in vivo. In a mouse model of liver steatosis 
and LF, sustained Notch activation induces hepatic fibrosis 
in the presence of high lipid levels and inhibition of Notch 

signaling or a reduction in liver fat content may ameliorate 
hepatic fibrosis (141,142).

In mouse models of liver fibrogenesis, the protein and 
mRNA levels of Notch2, Notch3, Hes1 and Hey2 are increased 
in lnc‑LFAR1‑overexpressing HSCs, while downregulation of 
lnc‑LFAR1 reverses these effects (37). Hes is considered the 
prototype Notch target gene and encodes a basic helix‑loop‑helix 
inhibitory transcription factor involved in the self‑renewal of 
target cells by inhibiting differentiation (143,144). Furthermore, 
lentivirus‑mediated knockdown of lnc‑LFAR1 reduced the 
expression levels of Hey2, Notch2 and Notch3. Hes1 inhibits 
CCl4/BDL‑induced expression of these genes; therefore, 
lnc‑LFAR1 may activate HSCs and subsequently accelerate LF 
through modulation of Notch signaling.

7. Other signaling pathways

Further signaling pathways are involved in LF. Homeobox 
transcript antisense RNA (HOTAIR) expression is upregu‑
lated in HSCs during LF. HOTAIR modulates PTEN levels 
and contributes to the activation of the ERK and AKT path‑
ways through miR‑29b (145). In addition, the lncRNA growth 
arrest‑specific transcript 5 inhibits LF by targeting miR‑23a 
through the PTEN/PI3K/Akt signaling pathway in a rat model 
of CCl4‑induced hepatic fibrosis (146). Future research is 
expected to focus increasingly on the association of lncRNAs 
with LF.

8. Conclusion

Regeneration of damaged mature liver tissue is driven by 
multiple signaling pathways, including the TGF‑β/Smad, Hh, 
Wnt, NF‑κB and Notch pathways. A summary is provided 
in Table I and Fig. 1. The complex but delicate networks 
interconnecting these molecular signals regulate cellular 

Table I. lncRNAs regulating the signaling pathways in LF.

lncRNA Experiment type Signaling pathway Function (Refs.)

lncRNA‑ATB In vitro TGF‑β/Smad signaling Promoting HSC activation (33)
lnc‑LFAR1 In vitro and in vivo TGF‑β/Smad signaling,  Promoting HSC activation (34)
  Notch signaling
HOTTIP In vitro and in vivo TGF‑β/Smad signaling Promoting HSC activation (36)
H19 In vitro and in vivo TGF‑β/Smad signaling Promoting HSC activation (39)
lncRNA Gm5091 In vitro and in vivo TGF‑β/Smad signaling Inhibiting HSC activation (42)
NEAT1 In vitro and in vivo TGF‑β/Smad signaling Promoting HSC activation (47)
PVT1 In vitro and in vivo Hedgehog signaling Promoting HSC activation (66)
MEG3 In vitro and in vivo Hedgehog signaling Inhibiting HSC activation (67)
lncRNA‑ATB In vitro Wnt/β‑catenin signaling Promoting HSC activation (94)
lincRNA‑p21 In vitro Wnt/β‑catenin signaling Inhibiting HSC activation (95)
SNHG7 In vitro and in vivo Wnt/β‑catenin signaling Promoting HSC activation (96)
TUG1 In vitro and in vivo NF‑κB signaling Promoting HSC activation (110)

LF, liver fibrosis; HOTTIP, HOXA distal transcript antisense RNA; HSC, hepatocellular carcinoma; lnc‑LFAR1, LF‑associated lncRNA1; 
lincRNA‑p21, long intergenic non‑coding RNA‑p21; lnc/lncRNA, long non‑coding RNA; lncRNA‑ATB, lncRNA‑activated by TGF‑β; 
MEG3, maternally expressed gene 3; NEAT1, encoding nuclear paraspeckle assembly transcript 1; PVT1, plasmacytoma variant transloca‑
tion 1; SNHG7, small nuclear RNA host gene 7; TGF‑β, transforming growth factor‑β; TUG1, taurine upregulated gene 1. 

Figure 1. Regulation of the signaling pathways in LF by lncRNAs. In 
response to LF, the expression of a cohort of lncRNAs is modulated. 
lncRNAs are implicated in the process of LF by targeting components of the 
signaling pathway. Normal arrows represent aggravation of LF. T‑bar arrows 
represent alleviation of LF. LF, liver fibrosis; HOTTIP, HOXA distal tran‑
script antisense RNA; lincRNA‑p21, long intergenic non‑coding RNA‑p21; 
lnc/lncRNA, long non‑coding RNA; lnc‑LFAR1, LF‑associated lncRNA1; 
lncRNA‑ATB, lncRNA‑activated by TGF‑β; NEAT1, nuclear paraspeckle 
assembly transcript 1; MEG3, maternally expressed gene 3; PVT1, plasma‑
cytoma variant translocation 1; SNHG7, small nuclear RNA host gene 7; 
TGF‑β, transforming growth factor‑β; TUG1, taurine upregulated gene 1.
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proliferation, differentiation and apoptosis and thus the 
pathological process of fibrosis. Due to the development of 
high‑throughput sequencing technologies, numerous lncRNAs 
have been identified. These lncRNAs may act on oncogenes or 
tumor suppressors and certain lncRNAs have been well char‑
acterized and proven to be associated with LF. In the present 
review, these signals and intracellular events were summarized 
that independently or cooperatively drive HSC activation. The 
roles and possible mechanisms of action of selected lncRNAs 
in LF were also reviewed. The potential utility of lncRNAs 
as therapeutic agents and biomarkers is promising, although 
the exact mechanisms of action behind most lncRNAs remain 
elusive. Given the numerous potential therapeutic anti‑fibrosis 
strategies targeting factors that promote fibrosis, combination 
therapies including these lncRNAs may produce improved 
clinical outcomes. However, additional functions and regula‑
tory mechanisms of action of these lncRNAs require further 
study prior to their use as clinically applicable biomolecules.
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