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protein S100A9 and its ligands receptor of advanced gly-
cation end products and Toll-like receptor 4. Its anti-angi-
ogenic effects are achieved at least in part through these 
effects on regulatory myeloid cells and also potentially 
through inactivating histone deacetylase-4 and reducing 
expression of hypoxia-inducible factor 1-controlled genes. 
The aim is to comprehensively review the mode of action 
of tasquinimod as a novel oral anti-cancer agent. Based on 
its unique combination of effects, tasquinimod is a novel 
agent with clinical therapeutic potential in various solid 
tumours, both alone and as part of rational combination 
therapy.
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Introduction

The tumour microenvironment plays a key role in sup-
porting the growth, invasion and metastasis of malignant 
tumour cells and in protecting the cancer cells from the host 
immune response [1]. Stromal cells in the microenviron-
ment have a powerful influence on cancer development, and 
full manifestation of the malignant characteristics of cancer 
cells depends on complex interactions between cancer cells 
and the surrounding stroma cells, including immune cells, 
angiogenic vascular cells and cancer-associated fibroblasts. 
Interactions of cancer cells with cellular and non-cellular 
components of the microenvironment occur through various 
membrane receptors and specialised proteins that can bind 
to matrix collagen, providing important signals for cancer 
growth and invasion. Changes in the microenvironment of 
cancer cells also influence the development of mechanisms 

Abstract T asquinimod is a small molecule with pleio-
tropic effects on the tumour microenvironment. Tasquini-
mod inhibits the growth and metastasis of tumour cells 
in vitro and in vivo. It targets the tumour microenviron-
ment, enhancing the host immune response and inhib-
iting the angiogenic response. Tasquinimod influences 
infiltrating myeloid cells in the tumour milieu shifting the 
balance towards a less immunosuppressive phenotype. 
Myeloid-derived suppressor cells and tumour-associated 
macrophages are major components of the immunosup-
pressive microenvironment and as a result promote tumour 
growth and favour angiogenesis and metastasis forma-
tion. Growing evidence indicates that tasquinimod targets 
these myeloid cells and modulates local tumour immunity 
by blocking the interaction between the multifunctional 

E. Raymond (*) 
Department of Medical Oncology, Beaujon University Hospital, 
Clichy, France
e-mail: eric.raymond@bjn.aphp.fr

E. Raymond 
Service de Cancérologie, Hôpital Beaujon, 100 Bld du Général 
Leclerc, 92110 Clichy, France

A. Dalgleish 
Division of Cellular and Molecular Medicine, Department 
of Oncology, St George’s, University of London, London, UK

J.-E. Damber 
Department of Urology, Institute of Clinical Sciences, 
Gothenburg University, Göteborg, Sweden

M. Smith 
Massachusetts General Hospital Cancer Center, Boston, USA

R. Pili 
Roswell Park Cancer Institute, Buffalo, NY, USA



2	 Cancer Chemother Pharmacol (2014) 73:1–8

1 3

by which tumour cells are able to proliferate and metasta-
sise. Although the intrinsic aggressiveness of cancer cells is 
initiated by oncogenic mutations in major oncogenes, their 
adaptation to the stroma is likely to be regulated by several 
epigenetic factors that facilitate survival and invasion [2]. 
This plasticity of tumour cells to adapt to the surrounding 
environment has been recognised in a number of preclini-
cal models. Among the most obvious changes are epige-
netic modifications in genomic expression and phenotypic 
modifications that drive epithelial-to-mesenchymal transi-
tion. Hence, the tumour milieu represents a critical target 
for intervention, with increasing interest in the potential 
for novel therapeutic and prevention strategies to act on the 
surroundings rather than the tumour itself [3–5].

Tasquinimod is a novel oral quinoline-3-carboxamide 
derivative with multiple effects on the tumour microenvi-
ronment, which is currently at an advanced stage of clini-
cal evaluation as an anti-cancer agent. Among other clinical 
trials, tasquinimod is currently being studied in a Phase III 
trial in metastatic prostate cancer and in a Phase II trial in 
hepatocellular, ovarian, gastric and renal cell carcinomas 
(clinicaltrials.gov, NCT01234311, NCT01743469). The 
aim of this review is to summarise the available data and 
provide an overview of the biological properties of tasquin-
imod that contribute to its anti-tumour effects.

The tumour microenvironment

Role of immune system in promoting tumour growth

Immunotherapy for cancer uses the potential of the host 
immune response to recognise and eliminate tumour cells. 
Modulation of the immune response has been the subject 
of intensive preclinical and clinical research to control 
tumour growth. The innate and adaptive immune systems 
can mediate anti-tumour immunity; however, as tumours 
progress, they escape from immune surveillance through 
various mechanisms [6]. Among the factors suppressing 
the immune response to cancer cells, myeloid cells with 
pro-inflammatory and immunosuppressive effects, namely 
myeloid-derived suppressor cells (MDSC) and tumour-
associated macrophages (TAM), have been the focus of 
specific attention [7].

The association between chronic inflammation and can-
cer is well recognised; prolonged presence of an inflamma-
tory milieu predisposes to an increased risk for developing 
cancer and facilitates tumour development and progres-
sion [4, 8, 9]. Chronic inflammation is a complex process 
that promotes carcinogenesis and tumour progression, 
although the mechanisms by which specific inflammatory 
mediators contribute to tumour growth are not fully under-
stood. Inflammatory mediators induce the accumulation 

of myeloid cells, including MDSC and TAM, which are 
strongly immunosuppressive and can be found in most 
models of solid tumours and in clinical cancer [7, 10, 11].

TAM associated with tumours are predominantly the M2 
phenotype, which suppress adaptive immunity, encourage 
angiogenesis and support metastasis through the expression 
of cytokines, growth factors and matrix metalloproteases [7], 
in contrast to the classically activated M1 phenotype which 
promote immune responses and inhibit angiogenesis. MDSC 
are a heterogeneous population of early myeloid progenitors 
defined by function and characterised in mice by the expres-
sion of CD11b and Gr-1. They mediate local tumour immu-
nity and facilitate carcinogenesis and tumour growth and 
progression by inhibiting T and NK (natural killer) cell acti-
vation and also directly stimulate tumour growth and metas-
tasis by encouraging angiogenesis and creating a favourable 
environment for metastasis formation [12, 13].

Suppression of tumour-specific T cell sensitisation is an 
important mechanism that results in uncontrolled prolifera-
tion of cancer cells. MDSC present in the tumour micro-
environment have the capacity to suppress the cytotoxic 
effects of NK cells and the adaptive immune response medi-
ated by CD4+ and CD8+ T cells, strongly inhibiting the 
anti-tumour effects of these cells [14, 15]. Hence, MDSC 
are thought to play a key role in promoting tumour-associ-
ated immune suppression and allowing tumour growth and 
are thus a potential target for preventing tumour progres-
sion. Accordingly, targeting MDSC in the tumour microen-
vironment is considered a promising therapeutic strategy.

Role of tumour angiogenesis

The term angiogenesis describes the development and 
growth of new capillary blood vessels from existing ves-
sels, and this is an essential step necessary to supply oxy-
gen and nutrients to tumours once they are larger than a few 
millimetres. It has long been recognised that blockade of 
angiogenesis is a potential anti-cancer intervention, since 
solid tumours are dependent on this process for sustained 
growth and metastasis [16]. Hence, inhibition of tumour 
angiogenesis, through inhibition of the vascular endothe-
lial growth factor (VEGF) signalling pathway, has been 
actively pursued as a promising therapeutic strategy [17].

Angiogenesis is a complex process regulated by the 
highly coordinated function of various proteins with 
pro- and anti-angiogenic functions [18, 19]. As a tumour 
increases in size and outgrows the existing blood supply, 
hypoxia drives the angiogenic response (angiogenic switch) 
through the hypoxia-inducible factor (HIF) pathway. The 
hypoxic tumour microenvironment contributes to tumour 
progression by activating a series of adaptive responses 
that include tumour neovascularisation and tumour-
specific immune responses, mediated through the key 
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transcriptional regulators HIF-1α and HIF-2α. HIF activ-
ity is regulated by an oxygen-dependent mechanism, and 
in hypoxia, the HIF-1α subunit is stabilised, moves to the 
nucleus, forms a dimer with the HIF-1β subunit and binds 
to its co-activator, p300. This complex regulates expression 
of hypoxia-responsive genes, including those involved in 
angiogenesis (and many others) [20].

Anti‑tumour effects of tasquinimod in preclinical 
models

A series of quinoline-3-carboxamide analogues were iden-
tified in the early 1980s, and the lead molecule, linomide, 
was found to stimulate the immune response and inhibit the 
growth and metastasis of cancer cells in preclinical mod-
els. This compound was evaluated in clinical trials, but 
development was stopped because of unacceptable toxicity, 
attributed to dose-dependent pro-inflammatory reactions 
[21]. Tasquinimod was subsequently selected for devel-
opment (from a library of compounds) on the basis of its 
low potential for pro-inflammatory side effects and much 
higher potency (30–60-fold more potent) than linomide 
[21–23]. It entered Phase I trials in 2005 [21].

The anti-tumour effects of tasquinimod have been docu-
mented in a wide range of preclinical models including both 
rodent tumours and human tumour xenografts (Table 1) [22, 
24, 25]. The activity of tasquinimod against human prostate 
cancer was evaluated using xenografts in intact male nude 
mice chosen to encompass the range of phenotypes and gen-
otypes typical of clinical tumours in patients: localised and 
metastatic, androgen receptor (AR)-positive and AR-nega-
tive, AR wild type and mutant, and PSA-positive and PSA-
negative cancers. In all five models (CWR-22RV1, LAPC-
4, LNCaP, PC-3 and DU-145), tasquinimod treatment at a 
dose of 1 mg/kg/day for 1 month decreased the tumour vol-
ume by at least 50 % (p < 0.05) [24]. In subsequent studies, 
tasquinimod was shown to enhance the efficacy of radiation 
against human endothelial and prostate cancer cells in cul-
ture and human prostate cancer xenografts growing in cas-
trated male nude mice [25]. These in vivo effects were most 
pronounced when tasquinimod was administered after com-
pletion of radiation therapy, thus indicating that tasquinimod 
interferes with tumour rescue mechanisms [25].

In addition to inhibiting the growth of primary tumours, 
tasquinimod prevents metastasis formation in animal mod-
els. In a preclinical study of castration-resistant prostate 
tumour xenografts in mice, tasquinimod inhibited the for-
mation of lung and lymph node metastases and suppressed 
the formation of tumours in bone after intratibial implanta-
tion [26].

Extensive studies have been undertaken to evaluate the 
mechanism underlying these anti-tumour effects of tasquin-
imod, focusing on its effects on the immune system and 
angiogenesis.

Immunomodulatory effects of tasquinimod

Infiltrating myeloid cells in the tumour microenvironment 
are essential for tumour growth, metastasis and angiogen-
esis [6, 13, 15]. Growing evidence indicates that tasquini-
mod targets the myeloid cell compartment and modulates 
local tumour immunity by binding to the calcium-binding 
protein S100A9 [27].

S100A9 is a multifunctional protein which is often co-
expressed with S100A8, another member of the S100 
protein family. They are classified as damage-associated 
molecular pattern (DAMP) molecules that are secreted 
from myeloid cells upon activation [28]. S100A9 binds 
in the presence of zinc and calcium to Toll-like receptor 4 
(TLR4) and the receptor of advanced glycation end prod-
ucts (RAGE) and promotes pro-inflammatory responses 
[29, 30]. S100A9 may be involved in cancer progression 
by several mechanisms. For instance, S100A9 expressed 
by myeloid cells and tumour cells in the tumour microen-
vironment is important for the accumulation and activa-
tion of regulatory myeloid cells (e.g. MDSC and TAM) 
[31, 32]. Furthermore, S100A9 also has a role in recruiting 
both inflammatory cells and tumour cells to metastatic sites 
[33–35]. Thus, blocking the function of S100A9 by small 
molecule inhibitors may provide a new approach for the 
prevention of tumour growth and metastasis [10, 36].

High levels of S100A9 have been found in the microenvi-
ronment of several forms of tumours, and a high expression 
level has been correlated with poor tumour differentiation 
[37, 38]. In bladder cancer, increased expression of S100A8 
and S100A9 proteins is associated with a worse prognosis 

Table 1   Preclinical tumour 
models in which tasquinimod 
has shown activity [22, 24, 25]

Rodent tumours Human tumours

EL4 mouse lymphoma
Dunning 3327 AT-1 rat prostate cancer
TC-2 mouse (TRAMP) prostate cancer

CWR-22Rv1 human prostate cancer (castration-resistant)
CWR-22RH human prostate cancer (castration-resistant)
LAPC4 human prostate cancer (androgen-sensitive)
LNCaP human prostate cancer
PC-3 human prostate cancer
DU145 human prostate cancer
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[39]. Similarly, the expression of S100A9 is increased early 
in the course of prostate cancer and may contribute to tumour 
development and metastasis. Moreover, the presence of cir-
culating S100A9 has been suggested as a marker to distin-
guish prostate cancer from benign prostate enlargement [40].

Tasquinimod binds to S100A9 and inhibits its interac-
tion with receptors such as RAGE and TLR4. The impor-
tance of these interactions in tumour development was 
illustrated in experiments in knock-out mice showing that 
in the absence of S100A9 or TLR4, the development of 
spontaneous prostate cancer tumours was delayed [27]. 
In the EL4 mouse lymphoma model, tasquinimod treat-
ment inhibited tumour growth, which was associated with 
reduced expression of TGF-β. TGF-β is an immunosup-
pressive cytokine overexpressed by tumours which attracts 
MDSC into the tumour stroma and plays an important role 
in regulating adaptive immune responses [27].

Tasquinimod has shown anti-tumour effects in several 
other syngeneic tumour models, possibly by modulating 
the accumulation and function of regulatory myeloid cells, 
thereby reducing immunosuppression in the tumour micro-
environment. Accordingly, the combination of tasquinimod 
with immunotherapy using tumour-targeted superantigens 
(TTS) resulted in a significant enhancement of anti-tumour 
effects and an increase in the number of tumour-infiltrating 
CD8+ T cells in the mouse B16 melanoma model [41]. It 
is likely that these effects are the result of the changes in 
infiltrating regulatory myeloid cells induced by tasquini-
mod. Specifically, tasquinimod reduced the subpopulation 
of CD11b+Ly6Chigh MDSC and increased the subpopula-
tion of CD11b+Ly6G+ MDSC, thus shifting the infiltrating 
myeloid cell population towards a more granulocytic phe-
notype [41]. Tasquinimod also reduced the accumulation of 
MDSC in a castration-resistant, syngeneic transplantable 
murine prostate cancer model (CR Myc-Cap) and enhanced 
the survivin cancer vaccine efficacy in this model [42]. 
Further evidence for immunomodulatory effects by tas-
quinimod was obtained in several syngeneic tumour mod-
els, where tasquinimod treatment induced a shift within 
the F4/80+ tumour-infiltrating macrophages from a strong 
dominance of M2 into a less suppressive M1 myeloid pop-
ulation (unpublished data). Thus, tasquinimod may alter the 
balance between M1 and M2 macrophages in the tumour 
microenvironment further promoting anti-tumour effects.

There are many links between the immune system and 
angiogenic pathways, including the potential for TAM and 
MDSC to promote angiogenesis through production of pro-
inflammatory cytokines and endothelial growth factors [11, 
13, 43]. Hence, the effects of tasquinimod on regulatory 
myeloid cells may, in addition to relieving the immunosup-
pressive pressure within the tumour, drive the anti-angio-
genic effects discussed below, as well as complementing 
other anti-angiogenic mechanisms.

Anti‑angiogenic effects of tasquinimod

Tasquinimod has been shown to inhibit angiogenesis in a 
variety of models: it inhibits endothelial cell growth and 
capillary tube formation from aortic rings in in vitro (ex 
vivo) models, decreases the density of tumour microves-
sels (CD31-positive) and reduces real-time tumour blood 
flow and tumour oxygenation in vivo [22]. However, tas-
quinimod has no direct effects on VEGF signalling; it does 
not interact with VEGF or inhibit VEGF receptor tyrosine 
kinase activity, in contrast to existing approved anti-angi-
ogenic agents such as bevacizumab and VEGF receptor 
tyrosine kinase inhibitors. The evidence suggests that the 
effects of tasquinimod are mediated through down-regula-
tion of HIF-1α-controlled genes, such as VEGF, CXCR4, 
lysyl oxidase (LOX) and SDF-1 [26, 44].

Several mechanisms may underlie the inhibitory effects 
of tasquinimod on the angiogenic switch. As already dis-
cussed, the inhibitory effects of tasquinimod on myeloid 
cells (MDSC and TAM) also have the potential to inhibit 
angiogenesis. A recent original research report indicates that 
another possible mechanism for the effect of tasquinimod on 
HIF-1-controlled genes may be interaction with histone dea-
cetylases (HDAC). Histone modifications such as acetyla-
tion are involved in chromatin alterations and tumorigenesis 
[45]. HDAC function is closely involved in angiogenesis and 
tumour progression through control of hypoxia-responsive 
genes, and HDAC inhibitors have the potential to inhibit 
angiogenesis, by altering the balance between pro- and anti-
angiogenic factors [46–49]. Tasquinimod locks HDAC4 in an 
inactive configuration by binding allosterically and with high 
affinity to its zinc-binding domain. This inhibits formation of 
the HDAC4/HDAC3/nuclear co-receptor (NCoR) repressor 
complex [50], without inhibiting enzyme activity. This affects 
downstream HDAC-mediated deacetylation of targets includ-
ing HIF-1α [51, 52] and blocks activation of the HIF-1α-p300 
complex, with a subsequent reduction in HIF-1α-mediated  
target gene expression [50].

Tasquinimod also increases tumour levels of TSP-1 [44], 
an endogenous anti-angiogenic agent that has been shown to 
promote the recruitment of M1 polarised TAM, which inhibit 
angiogenesis and tumour progression, relative to the pro-angi-
ogenic M2 phenotype [53]. Consequently, tasquinimod-driven 
increases of TSP-1 in the tumour may alter the balance between 
M1 and M2, favouring anti-angiogenesis [44]. In support of 
this, tasquinimod has been shown to reduce the frequency of 
CD206+M2 TAM in two mouse models [41, 54, 55].

Medical need and role of tasquinimod

The tumour microenvironment promotes the growth and 
spread of many types of solid tumours through suppression 
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of immune responses and offers an important opportunity 
for therapeutic intervention, as already discussed. Targeting 
the myeloid cell compartment is a novel approach that has a 
vast potential for treatment for many different forms of can-
cer. Tasquinimod is a leading drug that demonstrated potent 
effects on modulating the tumour cell microenvironment 
in several preclinical models leading to extensive clinical 
evaluations in various types of tumours including prostate 
cancer. A proof of concept study is ongoing to investigate 
the clinical activity of tasquinimod in other tumour types, 
including several where there is a rationale to target MDSC 
and in which there is already evidence of benefit with anti-
angiogenic therapy: advanced or metastatic hepatocellular 
carcinoma, ovarian carcinoma, renal cell carcinoma and 
gastric carcinoma after progression with standard therapies 
(NCT01743469). This trial follows a novel design in which 
the endpoint is the proportion of patients who have neither 
progressed (RECIST and Choi criteria [56]) nor died at 
specified time points in each cohort.

Tasquinimod has already shown promising effects in 
the treatment of prostate cancer in clinical studies. There 
is also encouraging preclinical evidence that tasquinimod 
can enhance the effects of other anti-neoplastic treatments, 
including radiotherapy, chemotherapy, androgen ablation 
and immunotherapy. Considering that inhibitory effects of 
MDSC on innate anti-tumour immunity represent a sig-
nificant barrier to cancer immunotherapy, there emerged 
a strong rationale for combining tasquinimod with other 
immunological approaches, supported by preclinical work 
discussed earlier including the combination with immuno-
therapy using TTS and with a survivin cancer vaccine [41, 
42, 55]. In addition, it has been proposed that emergence 
of resistance to VEGF receptor tyrosine kinase inhibitors 
may be mediated in part by the survival of MDSC, which 
provide sustained angiogenic drive as well as immunosup-
pression [57]. Hence, in view of its toxicity profile and its 
effects on MDSC and HIF-induced angiogenesis, there 
are several experiments to support the use of tasquinimod 
either in combination with anti-VEGF drugs in the first-
line setting or after failure of conventional anti-angiogenic 
agents in patients with recurrent clear-cell renal cell carci-
noma or hepatic cancer.

Tasquinimod significantly increased the effects of frac-
tionated radiation on endothelial and prostate cancer cells 
in vitro and in vivo [25]. Based on the effects on tumour 
oxygenation, vascular volume and blood vessel density, 
this was attributed to the inhibition by tasquinimod of the 
angiogenic rebound caused by fractionated radiation.

Preclinical results indicate that the anti-cancer effects 
of tasquinimod are enhanced when it is combined with 
taxanes [24], and a Phase I trial is currently evaluating the 
combination of tasquinimod and cabazitaxel in metastatic 

castration-resistant prostate cancer (CRPC) patients after 
failure of docetaxel (NCT01513733).

The combination of tasquinimod with androgen abla-
tion is also effective in animal models [24]. The synergistic 
effects of tasquinimod combined with androgen ablation 
may be relying in part on angiogenesis, although possible 
effects on the androgen axis cannot be ruled out. Andro-
gen ablation results in a temporary anti-angiogenic effect 
as a consequence of up-regulation of TSP-1, which is sub-
sequently overcome by increased VEGF production [58]. 
In addition, as CXCR4 may promote AR signalling in the 
absence of hormone [59], a further role for combination 
with anti-androgens can be envisaged for tasquinimod.

There is also the potential to combine tasquinimod with 
newer treatments for metastatic CRPC that address the con-
tinued dependence on androgen signalling such as abirater-
one, an androgen synthesis inhibitor, and enzalutamide, a 
potent AR antagonist. The need for more treatment options 
is highlighted by the recent report that only very mod-
est responses to abiraterone were seen in tumours escap-
ing enzalutamide treatment [60]; given its different mode 
of action from androgen-directed therapies, tasquinimod 
could be valuable in this situation [57].

Discussion and conclusions

Tasquinimod targets the tumour microenvironment with 
the potential to overcome tumour-associated immunosup-
pression and inhibit angiogenesis, metastasis and tumour 
growth (Fig. 1). It binds to the S100A9 protein, a calcium-
binding protein involved in inflammatory events and can-
cer development, inhibiting its interaction with TLR4 and 
RAGE. This reduces the infiltration of MDSC, influences 
the balance between M1 and M2 TAM and enhances anti-
tumour immune responses. The mechanisms underlying 
the anti-angiogenic effects of tasquinimod are not fully 
understood, but do not involve direct effects on VEGF or 
VEGF receptor tyrosine kinase inhibitors. Inhibition of 
angiogenesis may be a further consequence of MDSC inhi-
bition, while selective allosteric modulation of HDAC4 has 
also been proposed to mediate blocking of the angiogenic 
switch. Through its direct and indirect effects, tasquinimod 
has the potential to modify immunomodulatory and angio-
genic pathways leading to an anti-cancer treatment effect. 
These complementary effects on the tumour microenviron-
ment are the subject of ongoing evaluation which is likely 
to provide further insights into its unique mode of action.

Tasquinimod is a promising first-in-class anti-cancer 
agent with a unique combination of effects on the tumour 
microenvironment which is currently undergoing clinical 
evaluation as an oral once-daily cancer treatment.
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Metastatic CRPC is an area of significant unmet clini-
cal need and the initial focus for the clinical development 
of tasquinimod. In a randomised, Phase II, double-blind, 
placebo-controlled trial in men with minimally symp-
tomatic metastatic CRPC, 69  % of tasquinimod-treated 
patients were progression-free at 6 months compared with 
37  % of the placebo group (p  <  0.001), and median pro-
gression-free survival was increased from 3.3 to 7.6 months 
(p = 0.0042), reflecting a significant delay in disease pro-
gression with tasquinimod treatment [61]. Further support 
for an effect on the tumour microenvironment was provided 
by the effects on biomarkers such as bone alkaline phos-
phatase, VEGF and PSA. On the basis of these results, a 
Phase III trial is ongoing in a similar patient population to 
confirm the effects of tasquinimod in delaying progression 
and prolonging survival; progression-free survival is the 
primary endpoint and the trial is powered to show an effect 
on overall survival (NCT01234311). A Phase II trial is 
investigating the potential of tasquinimod as maintenance 
therapy in metastatic CRPC not progressing after chemo-
therapy with docetaxel (NCT01732549). The encouraging 

results already seen in the Phase II trial support the further 
evaluation of tasquinimod in prostate cancer, despite the 
lack of effect of established anti-angiogenic agents, includ-
ing bevacizumab and sunitinib, on survival in randomised 
trials. The benefits of tasquinimod may be attributed to its 
broad pleiotropic effects on the tumour microenvironment, 
including a high capacity to overcome tumour-related 
immunosuppression.

In summary, based on its mechanism of action, tasquini-
mod represents a novel targeted therapy with potential in 
many tumour types, and proof-of-concept trials are ongo-
ing; it may also be suitable for combination strategies in 
different solid tumours. Further preclinical and clinical 
testing will fully exploit its therapeutic potential as a novel 
agent targeting the tumour microenvironment rather than 
tumour cells directly.
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Fig. 1   Overview of  
tasquinimod mode of action
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