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Abstract: This paper summarizes some of the essential aspects for the fabrication of functional
devices from bottom-up silicon nanowires. In a first part, the different ways of exploiting nanowires
in functional devices, from single nanowires to large assemblies of nanowires such as nanonets
(two-dimensional arrays of randomly oriented nanowires), are briefly reviewed. Subsequently, the
main properties of nanowires are discussed followed by those of nanonets that benefit from the
large numbers of nanowires involved. After describing the main techniques used for the growth of
nanowires, in the context of functional device fabrication, the different techniques used for nanowire
manipulation are largely presented as they constitute one of the first fundamental steps that allows the
nanowire positioning necessary to start the integration process. The advantages and disadvantages
of each of these manipulation techniques are discussed. Then, the main families of nanowire-based
transistors are presented; their most common integration routes and the electrical performance of
the resulting devices are also presented and compared in order to highlight the relevance of these
different geometries. Because they can be bottlenecks, the key technological elements necessary for
the integration of silicon nanowires are detailed: the sintering technique, the importance of surface
and interface engineering, and the key role of silicidation for good device performance. Finally the
main application areas for these silicon nanowire devices are reviewed.

Keywords: nanowires; nanonets; transistor; integration process; silicon

1. Introduction

The study of nano-objects reveals a new world in which the observed properties may
differ from those of bulk materials. When the size of structures reaches the nanoscale,
the ratio of surface to volume of the structures increases drastically [1]. Since the number
of atoms on the surface becomes comparable to the number in the volume, the physico-
chemical properties of nanostructures are modified and even controlled by surface effects.
These surface effects induce new properties compared to the bulk material that multiply
the field of investigation. Over time, the study of nano-objects has increasingly become a
scientific and technological revolution. Nanowires (NWs) can be defined as nanostructures
that have diameters towards the nanometer scale (<100 nm).

Nanowires are still in an experimental stage and have not yet been used in real
applications [2,3]. However, there is a graceful evolution in NW-based technology and
investigations suggest that they can be used as the building blocks for the next-generation
electronics and very sensitive biosensors [2,4,5]. Another possible real application of
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nanowires is nano-electromechanical systems (NEMS) due to their high Young’s mod-
uli [2,6]. Nanorobots can also be aided by nanowires in the generation and conduction of
their required energy [7].

In this review, we focus on synthesized silicon nanowires (bottom-up NWs) and
do not consider nanowires formed by any etching techniques. These nanowires can be
used vertically attached directly to their growth substrate [8,9], or detached from it to be
transferred elsewhere and integrated into devices [10,11]. The mastery of the synthesis tech-
niques allows obtaining nanowires of very small diameters, with controlled crystallinity
and doping. In addition, surface engineering allows good control of their surface prop-
erties. Their quasi-one-dimensional characteristic gives them remarkable properties for
many applications—such as electronic, optoelectronic, energy, and biomedical applications.
In 1998, Morales and Lieber succeeded in synthesizing the first silicon and germanium
nanowires with diameters of less than 20 nm for lengths greater than 1 µm [12]. This major
breakthrough was an immediate success within the scientific community as a new field of
research in nanoelectronics.

It is possible to make conducting (e.g., Ni, Pt, Au), semiconducting (e.g., Si, InP, GaN),
and insulating (e.g., SiO2, TiO2) nanowires which can find different possible real appli-
cations [2,13–15]. Among these nanowires, silicon nanowires (SiNWs) are considered as
popular nanomaterials due to their exceptional electrical and mechanical properties and
their conductivity can be controlled by the field effect behavior [2,16–18]. In addition, their
synthesis is very well controlled due to broad study in the literature, their integration in
transistors takes benefits from the technological knowledge related to the manufacture of
MOSFET, particularly for the production of electrical contacts [19,20]. Finally, NWs have
a very high length-to-diameter ratio called form factor. Because of this one-dimensional
shape, which is comparable to some biological molecules, NWs are the ideal transducer
for bio-detection. In 2001, Lieber’s group was the first to highlight the promising po-
tential of SiNWs as biosensors [21]. This technology still arouses curiosity today, and
silicon nanowires are still potential candidates for field effect transistors and advanced
sensors [22,23].

To appreciate the attractiveness of silicon nanowires (SiNWs) in a broad sense, we
have shown in Figure 1 the result of a search on the Of Knowledge website with the
keyword “Si or Silicon” AND “nanowire*” in the title. The first decade of the 21st century
saw an explosion in the number of publications on silicon nanowires (Figure 1), as their
potential appeared extremely promising. These publications are mainly concerned with
the synthesis, formation, characterization, and integration into functional devices that are
mostly composed of a single nanowire or several nanowires in parallel. From 2012 onwards,
we observe a steady decrease in the number of publications. This can be attributed on
the one hand to the less innovative aspect of the topic over the years with increasingly
complete coverage of knowledge on this material. On the other hand, the difficulty of
producing functional devices in a reproducible and efficient manner with technologies
that are transferable to industry and at reasonable costs tends to blunt the appeal of these
materials. A few years ago, and based on this observation, some groups [24–30] started to
work on nanowire assemblies, also called nanowire networks and referred to as nanonets.
Indeed, such assemblies benefit from advantageous nanometric properties, as well as easy
connection to macroscopic objects thanks to their large dimension.

In this review, properties, growth, and transfer methods of SiNWs—either singularly,
or in the form of a network—are reported. To have a better view of devices based on
these materials, technological key parameters were discussed. Afterward, SiNW-based
transistors are explored as building blocks for most of the applications depicted in different
common forms—in particular, single NW field effect transistors (SiNW-FETs), nanonet
field effect transistors (SiNN-FETs), and multi-parallel channel field effect transistors (MPC-
FETs). Ultimately, it is shown that SiNWs, owing to their unique physical and chemical
properties, are promising candidates for the wide range of applications that differ from
those of bulk silicon material.
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the keyword “Si or Silicon Nanowire” on the website Of Knowledge.

2. From Nanowire-Based to Nanonet-Based Silicon Devices

There are a broad variety of nanowire-based devices—such as single nanowire, crossed
nanowires, forest of upright nanowires, and two- and three-dimensional (2D and 3D)
nanonet based devices—as schematically summarized in Figure 2. Crossed nanowire device
architectures, more complex than single NW devices, can open up new opportunities that
differentiate NW-based devices from conventional paradigms. Depending on the choice
of NWs, the structure can yield a variety of critical device elements, including transistors
and diodes [31]. Forest-like and 3D-NW structures, combining the properties of 1D and
3D nanostructures, could have more interesting properties than simple arrays of in-plane
nanowires because of their higher porosity and specific surface area [32]. However, in this
review, we will focus on single NW field effect transistors (SiNW-FETs), nanonet field effect
transistors (SiNN-FETs), and multi-parallel channel field effect transistors (MPC-FETs).
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Today, single nanowire devices and parallel nanowire devices are well known to the
scientific community and widely reported in the literature. Nanonet-based devices, on
the other hand, are less well known, especially in the context of semiconductor nanowires.
Nanonet, an acronym for NANOstructured NETwork, is a term that was introduced by
George Grüner in 2006 [35,36]. It refers to a network of one-dimensional, randomly oriented
nanostructures on the surface of a substrate. Two types of nanonets can be distinguished
according to the thickness of the film formed. On one hand, three-dimensional nanonets
have a thickness comparable to or larger than the length of the nanostructures (Figure 3a).
On the other hand, two-dimensional nanonets are defined by a film thickness comparable
to the diameter of the nanostructures (Figure 3b).
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Figure 3. Schematic made by SEM images for representation of a nanonet (a) three-dimensional
(3D nanonet) and (b) two-dimensional (2D nanonet). A top view and percolation path in red are
highlighted in image (b).

Considering the electronic properties, such three-dimensional or two-dimensional
networks are governed by percolation theory. Percolation is associated with a system in
which randomly distributed objects of a given geometry may or may not form connections
with each other [37,38]. A nanonet is then defined as percolating when a network of infinite
size can communicate (e.g., conduct current) over the entire network via percolation paths
that involve nanostructures and connections between nanostructures (Figure 3b). The
density of nanostructures is a key parameter to control this communication (conduction in
the current, etc.) via the interconnections between nanostructures. As a result, there is a
critical density, called the percolation threshold, at which percolation pathways can be used
to ensure communication in the nanonet. The manufacture of functional electrical devices
from nanonets requires densities above the percolation threshold. Besides, nanonets are
highly interesting because once the nanostructures are gathered to form the network, new
properties appear and multiply the number of degrees of freedom. These properties are
separated according to the intrinsic properties of the nanostructures and the macroscopic
properties that come from the nanonet itself [36,39]. The particular properties of the
nanonets are described in Section 4 in detail.

The literature on silicon nanonets remains scarce, despite the very well-controlled
growth of NWs and excellent carrier mobility in bulk materials [40,41]. One of the plausible
reasons for the lack of interest in these nanonets is the formation of an oxide that forms
around the NWs when they are exposed to air. This native oxide is an electrical insulator and
thus limits conduction across the junctions between NWs and the fabrication of long channel
devices [42]. As a consequence, there is a deep-seated belief in the scientific community that
it would be impossible to produce functional electrical devices based on Si-NW networks.
To overcome this major disadvantage, Heo et al. [42] used intermediate metal contacts in
the transistor channel to allow current to flow despite insulating junctions between SiNWs,
but such a solution has a profound impact on the nanonet and the advantages arising from
the geometry of the nanonets are probably lost. The Lieber group [43] also made devices
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with arrays of silicon NWs; however, the length of the NWs remains close to the length of
the channel and therefore the current can flow directly from one contact to another without
using junctions between NWs. Furthermore, SiNNs have also been studied by the Unalan
group for photodetection applications [44]. According to their observations, light makes it
possible to reduce the height of the energy barrier at the level of the junctions between NWs,
thus allowing the passage of current through the devices. However, even in that study, the
length of the channel remains comparable to that of the NWs, limiting the junction number
to one maximum. As a result, few NW/NW junctions are involved in the conduction of the
nanonet, which prevents the full benefits of network geometry from being exploited.

Generally, semiconducting nanonets—in comparison with metallic ones—are much
less studied and, most of the time, when dealing with NWs, the reported work is an
isolated study that is not followed by any other publication [24,44–46]. We believe that the
reason for this lies in the great sensitivity of semiconducting nanonets to their environment,
which makes electrical properties unstable and weakly reproducible at first sight. However,
Ternon’s group has demonstrated that appropriate surface engineering and optimization of
the effects resulting from the nanometric scale allow addressing this instability and low
reproducibility. As a consequence, sensitivity can be controlled instead of endured [47]. As
a result, they developed a process for sintering junctions that makes nanonets insensitive
to oxidation in the long term [48] making their integration into electronic devices possible.

Among NWs, SiNWs are considered one of the most popular one-dimensional materi-
als due to their functionality for nanoscale electronics without the need for complex and
costly fabrication facilities. The main obstacles to the mass production of single NW devices,
including high-resolution lithography technologies or elaborated process technology, are
still valid. There are a huge number of papers on single SiNWs, but not all the other class
of SiNW assemble like silicon nanonets, although they indicate being a good alternative for
single NWs due to their easier integration and production in large-scale electronics. These
types of materials combine the advantage of NWs, such as high sensitivity, with the ability
to be transferred on any kind of substrates, whether rigid or flexible.

3. Silicon Nanowire Properties
3.1. Mechanical Properties

Mechanical properties of nanowires are of considerable significance in device pro-
cessing since changes in temperature, induced strain, and external stress can change the
electrical conductivity of the nanowire due to internal dislocations or flexoelectricity [49,50].
The processing of VLSI (very large-scale integration) induces compressive and tensile
stresses via deposition of different materials which can cause failure in devices mainly due
to delamination and electro-migration [51]. Moreover, due to the Si NW ability to relax
strain, it presents the possibility to also combine lattice mismatched materials (e.g., Ge) in
axial heterostructures without the formation of misfit dislocations. Nanowires, which are
1D systems, are expected to have interesting mechanical properties due to their high aspect
ratio compared to bulk materials and reduced number of defects per unit length [6,51].
However, manipulating these materials for mechanical measurements is a challenging
task [51,52]. The main methods which are used to investigate their mechanical properties
are mechanical resonance, atomic force microscopy (AFM), and nanoindentation [18,52].
The resonance method is used only for the determination of the elastic properties and is
not easy to measure the applied force. On the other hand, nanoindentation has very good
force and displacement resolution and control [52].

Experiments based on the AFM-based nanoindentation showed that the stiffness of
silicon nanowires is well described by the Herz theory [18]. Therefore, the wires with diam-
eters in the range of 100 nm to 600 nm have elastic modulus values which are independent
of the wire diameter and are more or less identical to those of bulk silicon [18]. This implies
that the elastic characteristics of silicon nanowires with diameters larger than 100 nm are
not affected by the finite size effect. Furthermore, the elastic modulus of nanowires with
diameters of less than 100 nm was found to decrease with diameter [18]. In contrast, com-
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putational studies do not support any size dependence of Young’s modulus for SiNWs with
a diameter greater than 10 nm [53,54]. In fact, some experimentalists disagree on the evolu-
tion of Young’s modulus as a function of size [55]. In many cases, experimentally depicted
structures and the analogous theoretically simulated models have different dimensions,
surface contours, or passivation. Therefore, it has been speculated that the surface effects
should have a certain influence on the difference between experimental and theoretical
data. Importantly, the experimental proofs of possible sources of such misconceptions have
been provided, at least for the resonance and tensile tests [56–60].

Moreover, NWs can be used in the field of sensors and nano-electromechanical systems
(NEMS) [18,51]. This is because, according to their tensile strength and Young’s modulus,
they are very robust materials and have the ability to store elastic energy [51,61]. Then,
nanoscale resonators can be built from silicon nanowires with high oscillation frequencies
(100 MHz up to 1 GHz) because of their excellent elastic properties [18,51]. The detection
of molecules at atomic resolution was achieved with these nanoscale resonators [18].

3.2. Electrical Properties

The small sizes of SiNWs make their electronic and electrical properties strongly de-
pendent on growth direction, size, morphology, and surface reconstruction. A well-known
example is the size dependence of the electronic bandgap width of SiNWs irrespective
of wire direction. As the nanowire diameter, d, decreases below 10 nm, the band gap of
the nanowire widens and deviates from that of bulk silicon gradually (Equation (1)) [62].
Moreover, the orientation of the NW axis and the surface have a great effect on the electronic
properties of SiNWs [63].

Band Gap ∝
1
dn ; 1 ≤ n ≤ 2 (1)

Therefore, the electronic properties—such as the band gap, valley splitting, and effec-
tive mass—are also functions of the diameter [64]. These affect the transport properties of
the nanowires [65]. Hydrogen and oxygen terminated SiNWs have also been studied to
gain an understanding of their optical and electronic properties [66–68].

In the presence of perfect crystalline SiNW with four atoms per unit cell, three con-
ductance channels are found corresponding to three s bands crossing the Fermi level [69].
Conductance variations are observed if one or two atoms are added or removed. Thus,
the conductance is affected by the crystalline structure of the nanowire [23]. Furthermore,
variations in the surface conditions, such as scattering phenomena of carriers in nanowires,
cause changes in conductivity [23,51]; meanwhile, it is also seen that scattering phenomena
are NW diameter dependent [23,70].

The large aspect ratio of nanowires makes their conductivity very sensitive to surface
excitation by external charges [6,23,61]. As it is seen in Figure 4, a small surface pertur-
bation can influence the entire section of the nanowire, whereas in the case of a thin film,
only a fraction of its surface is influenced. This important property is the reason why
silicon nanowires are so electrically sensitive to surface events. Thus, this phenomenon is
the basis for the detection of single molecules and the use of silicon nanowires in biosen-
sors [17,22,61,71].

It has been shown that threshold voltage (Vth) can be significantly tuned by the NW
diameter (d) [72,73]. Vth is linearly proportional to d in an NW field effect transistor
(NWFET) due to the greater influence of the surface scattering processes. NWFETs based
on thin nanowires exhibit a steep subthreshold slope with a small threshold voltage, but
low conductivity in comparison with NWFETs with larger diameters in which—due to
high short-channel length effects—they experience a moderated subthreshold slope with a
larger threshold voltage [74].
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2D thin-film case. Reproduced from [61].

Additionally, the free carrier concentration in silicon nanowires depends on the size of
the structure. It was shown that the donor ionization energy of silicon nanowires increases
with decreasing nanowire diameter. Therefore, the free carrier density can be profoundly
modified at diameter values much larger (>10 nm) than those at which quantum and
dopant surface segregation effects are set in [16].

Thus, silicon nanowires exhibit charge trapping behavior and transport properties,
tunable by surface engineering, that make them attractive for use in electronic devices
such as MIS (metal–insulator–semiconductor) structures and field effect transistors (FET).
Therefore, SiNWs are attractive for designing a wide range of functional devices such as
flash memory, logic devices, as well as chemical and biological sensors [51,62,75–78].

3.3. Surface Chemistry

As for bulk silicon, silicon nanowires are subject to surface oxidation when exposed
to an oxidizing atmosphere such as air. This native oxide is of poor quality and is accom-
panied by many oxygen-derived defects. Moreover, native oxides are a contamination
source by metallic impurities [79] and are poorly stable in aqueous media [80]. Native
oxide can be easily removed by using either chemical reactants—such as buffer oxide
etching (BOE) solution, diluted hydrofluoric acid (HF), HF vapor, and gaseous ammonia
(NH3)—or by physical etching method including argon (Ar) plasma etching. Most of these
methods provide hydrogenated surfaces that are an interesting starting point for further
functionalization in the frame of sensor applications [79,81].

In contrast to bulk silicon or thin films, the oxidation kinetics of H-terminated silicon
nanowires is very slowed down regardless of the oxidation temperature (ambient—900 ◦C)
compared to planar structures [82–85]. Moreover, it has been shown that—below 100 nm in
diameter—the smaller the diameter of the nanowires, the slower the phenomenon [83]. This
change in kinetics is commonly explained by compressive stress at the SiO2/Si interface re-
tarding the interfacial reaction [82,83]. Then, this effect becomes more significant for a more
curved surface [86]. On this basis, Fazzini et al. propose that since oxidation retardation
is inversely proportional to nanowire diameter, this property can be used to homogenize
the diameter of a given nanowire population [87]. Such a slowing down of oxidation is an
extremely interesting phenomenon when it comes to making functional devices. Indeed,
this unwanted oxidation has detrimental effects on the electronic properties of nanowires.
Preventing oxidation during silicon processing is an important task in all microelectronic
processing. Thus, thanks to this slowing down of oxidation, silicon nanowires with a
diameter lower than 10 nm can remain several days in the ambient air without oxidizing
and can then be easily processed without any special precautions against oxidation [84].
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3.4. Optical Properties

Remarkably, small diameter (<6 nm) SiNWs grown along most of the crystallographic
orientations have a direct band gap [88], meaning that the maximum of the valence band
and the minimum of the conduction band occur at the same point in the reciprocal space.
This property has allowed envisaging the use of SiNWs as optically active materials for
photonics applications [89]. Silicon nanowires exhibit strong antireflective properties and
are capable of enhancing optical absorption over that of bare bulk crystalline silicon [90].
Nanowires can exhibit mechanical strain effects if exposed to light which has a wavelength
comparable to their energy bandgap. This is due to their photoelastic properties [18].

In all, as yet it has been shown that SiNWs are found to process such remarkable
optical properties as visible photoluminescence (PL) [91,92], very low total reflection [92,93],
enhancement of Raman scattering [92–94], coherent anti-Stokes light scattering [95], inter-
band PL [93,96], and efficiency of generation of third harmonics whereby light is generated
at a wavelength which is one-third of the pump wavelength [92,97].

3.5. Thermal Properties

SiNWs could have applications in nano- and micro-scale thermoelectric power gen-
erators [98,99]. Therefore, it is important to study their thermal conductivity. However,
for a major increment in the Seebeck coefficient, nanowires with a diameter of less than
5 nm are required [100]. The optimal diameter of NWs for good thermoelectric properties
is between 30 and 100 nm. The thermal conductivity can be very small if rough nanowires
are fabricated, while electrical conductivity and the Seebeck coefficient are very close to the
bulk silicon [101]. Two opposite phenomena compete within the nanowires with respect
to the thermal conductivity. On the one hand, as the diameter of the nanowires decreases,
the surface-to-volume ratio increases, which increases the surface scattering effects and
thus decreases the thermal conductivity of the nanowires. On the other hand, it has been
predicted that for very small diameters (<1.5 nm), by a quantum confinement phonons
effect, the thermal conductivity increases [102,103].

One has to note that silicon nanowires, when used within applications or experiments,
may have a curved-like shape and not be straight. As the phonon transport can be affected
by their curvature, their thermal conductivity then changes. There is an additional ob-
structive mechanism to phonon transport, particularly in the ballistic regime, thanks to
the deviation of phonon from the main heat flow direction due to its curvature. Therefore,
thermal conductivity is reduced when the radius of the nanowire curvature increases [5].
The effect of the curvature on the thermal impedance has a greater effect when the radius
of the curvature is one order smaller than the phonon mean free path [5].

This observation is interesting since the thermal conductivity of silicon nanowires can
be controlled by the proper shaping of the wire. For instance, the thermal conductivity of
NWs with large roughness is found to be significantly below the prediction [5,104]. This
is important in the use of silicon nanowires in next-generation electronics because the
shrinking of electronic devices towards the nanoscale region demands an increase in power
dissipation per unit area [99,105].

4. Silicon Nanonet Properties

Two-dimensional (2D) nanonets are very promising because, by an averaging effect,
the structure provides an increase in the reproducibility of nanonet properties by minimiz-
ing the disparities existing between the NWs. It also compensates for potential failures
in operation to the extent that NWs from the network, which are not initially involved
in conduction paths, can contribute to a new conduction path to bypass the failed NWs.
Nanonets offer undisputed advantages thanks to the wise combination of the intrinsic
properties of nanostructures with those of the nanonet. According to Zhao and Grüner, the
‘nanonet’ morphology can be regarded as a fourth material phase in addition to monocrys-
talline, polycrystalline, and amorphous structures [106]. Finally, because of the coexistence
of NWs and junctions within a conduction path, it is expected that the switching of the
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transistors from ‘off’ state to the ‘on’ state will be even more abrupt as the number of
junctions increases [107]. However, to allow these advantages to be revealed and exploited,
it is important that the dimensions of the nanonet be much larger than the length of the
NWs and that the number of NWs involved in conduction is sufficiently large. Here,
important parameters impacting nanonet-based devices besides ones from individual NWs
are the morphological quality of the nanonets, the density of NWs within the nanonet,
the size of the nanonet, and particularly the distance between the two electrodes of the
device compared to the length of NWs. Such degrees of freedom in nanonet create vast
opportunities in future applications.

4.1. Electrical Conductivity

Above the percolation threshold, the current is likely to flow through percolation
paths (also called conduction paths) that involve nanostructures and connections between
nanostructures. These junctions between nanostructures appear as an energy barrier for
carriers and are therefore likely to be more resistive than nanostructures [36,108]. In that
case, they can control conduction within the nanonet. As mentioned earlier, these junctions
generate additional resistance, so they can enormously affect percolation transport in
nanowire network [107,109]. Such a two-dimensional network is normally governed by
the theory of percolation. Percolation is often defined as a system in which randomly
distributed objects of a given geometry can form, or not form, connections between each
other [37,110,111]. A nanonet is then defined as a percolating system when a network of
infinite size can communicate (e.g., conduct current) over the entire network via percolation
paths that involve nanostructures and connections between nanostructures. The density
of nanostructures is a key parameter to control the communication in the medium via the
interconnections between nanostructures. As a result, there is a critical density—called
the percolation threshold—above which percolation paths allow for communication in the
nanonet. The fabrication of functional electrical devices from nanonets requires the use of
densities above the percolation threshold.

4.2. Porosity and Optical Transparency

Due to the very high aspect ratio of nanostructures, and by playing with the density
and diameter of NWs, NNs can reach even 90% of optical transparency as illustrated in
Figure 5.

Indeed, for low-density percolating networks, nanonets are essentially composed of
voids. In the case of metallic NWs, this property makes nanonets particularly attractive
as transparent electrodes [26]. With the same idea, in the case of semiconductor NWs,
nanonets would be particularly attractive to form transparent transistors and transparent
electronics in general. Moreover, the high porosity of the nanonet can allow the insertion of
functional materials [108], which is of high value when dealing with biosensors.

4.3. Mechanical Strength and Flexibility

Based on the excellent flexibility in individual nanowires which is diameter depen-
dent, and for diameters less than 100 nm is remarkable when these nanostructures are
assembled as a nanonet, the entire network is capable of being subjected to mechanical
deformation [112] (Figure 5) and can adapt to the substrate morphology [112,113]. The
flexibility in the choice of nanostructures and the unique structure of the network suggests
a broad spectrum of applications for nanonets, as we will see in the following.
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Figure 5. Silicon nanowire nanonets manufactured by vacuum filtration and then transferred to
(a) Silicon/Si3N4, (b) Kapton, (c) plastic, and (d) glass substrates. (e) The transmittance of SiNN with
the three densities were shown in image (e), the transmittance of the substrate (bare glass) is also
reported. Reproduced from [114].

4.4. Fault Tolerance and Reproducibility

For electrical devices, conduction in a nanonet is ensured by multiple percolation
paths that connect the two metallic contacts. Then, the number of conduction paths is
greater but the presence of junctions within each path ultimately implies a reduction in
current. Therefore, for a given electric field, the amount of current is generally lower in
nanonet than in single nanowire devices (Figure 6). However, if one path is faulty, many
other conduction paths remain and can guarantee the functionality of the device [36].
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Moreover, the macroscopic properties of a given nanonet are the result of a consider-
able number (for 1 × 1 cm2 e.g., 106–108 NWs) of nanostructures which makes it possible
to smooth out the disparities that may exist from one NW to another. Therefore, the prop-
erties of the nanonets show less disparity than those of the population of nanowires that
constitute it. This can be demonstrated by studying the electrical characteristics of the
single nanowire or nanonet devices based on the same nanowire population, as Pauline
Serre has done. With a technological work based on heavily doped NWs (degenerated),
she produced single SiNW resistors and Si NN resistors (Figure 6) [28,39]. By studying
numerous devices (10 single SiNW resistors, >100 SiNN resistors), evidence of averaging
effect is proven for nanonets. Indeed, the dispersion in the current of these two types of
devices is clearly different: 64% for single NW resistors, against 18% for SiNN resistors.
As a consequence, one of the main drawbacks of the single NW-based devices, lack of
reproducibility, can be eliminated by the nanonet geometry.

5. Silicon Nanowire Growth

There are two major approaches to form nanowires. The ‘top-down’ approach starts
from bulk silicon in the form of a substrate or thin film silicon with the use of SOI substrate
with the objective to etch the material until reaching the formation of high aspect ratio
structures called nanowires, but which section is not necessarily circular. Besides, the
‘bottom-up’ approach is used to grow nanowires, either vertically on the substrate or in-
plane lying on the substrate. In the past few decades, there has been extensive research
on synthetic nanowire strategies focused on a bottom-up approach to understand the
growth of nanostructures, tune the geometrical dimensions during growth, and form
heterostructures. Here, we focus on bottom-up approaches that give the opportunity to
detach the NWs and to collect them with the objective to form a nanonet by assembling
the NWs. Then, targeted bottom-up syntheses are additive and can be done in two phases:
vapor and solution phase.

5.1. Vapor Phase
5.1.1. Low Pressure

In the frame of low-pressure chemical growth, silicon nanowires are synthesized using
the vapor–liquid–solid (VLS) mechanism (see Figure 7A) on a silicon substrate <111> from
a metal catalyst (Au [115,116], In [117], Pt [118], Sn [119], etc.) in a CVD reactor. To allow
the NW growth, the catalyst must be present on the surface of the substrate in the form
of nanoparticles. For this purpose, it is possible to disperse a solution of colloids on the
surface of the substrate [11] or to deposit a thin film that forms nanoparticles by thermal
dewetting [117]. Then the growth of the Si nanowires is carried out in the presence of silane,
SiH4, used as a precursor to silicon. The Si atoms incorporate into the metallic droplets
and when it reaches saturation, the excess silicon crystallizes at the interface between the
droplet and the substrate. This process continues as long as the system is supplied with
gaseous precursors and thus forms silicon nanowires.

Silicon nanowires can be doped during growth by adding boron (p-doping) or phos-
phorus (n-doping) in gaseous form. Phosphine, PH3, is used for n-type doping and
diborane, B2H6, for p-type doping [120]. The concentration of dopants in nanowires is
directly related to the ratio between the concentration of dopant gas and the concentration
of silane [121], which allows the doping of nanowires to be controlled with great precision
during the growth. Two other gases can also be added during the synthesis of nanowires:
hydrogen, H2, which is used as a carrier gas; and hydrogen chloride, HCl, which is used to
prevent the diffusion of gold on the surface of the nanowires and thus inhibit the lateral
and branch growth of the structures [121–123]. The silicon nanowires produced by VLS
are of good crystal quality and can have a very high length at low costs. The length of the
nanowires is controlled by the time of the growth and diameter of the nanowires depending
on the size of the metallic nanoparticles [21].
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5.1.2. High Pressure

The patented SyMMES technique [124] is similar to the CVD method and it aims to
make its industrial scaling simpler, by limiting the hazard of the reactants, facilitating
reactor design, and producing nanowires in large quantities.

In Figure 8, this method is shown for the solvent-free chemical synthesis of thin
(10 ± 3 nm) SiNWs using diphenylsilane as a Si source and small (1–2 nm) gold nanoparti-
cles (AuNP) as a catalyst in a sealed reactor at 420 ◦C and with a pressure < 10 bar. The
catalyst nanoparticles are immobilized on micron-sized salt (NaCl) powder, which acts as a
sacrificial 3D substrate which is easily removable by washing with water after NW growth.
Pure SiNWs are obtained at a high production yield of 1 mg cm−3 of reactor volume and
with a 70% chemical yield. In this method, n-type doping of the SiNWs is achieved by
adding diphenylphosphine at concentrations of 0.025 to 1.5% as the dopant source [125]. Re-
cently, the impact of the size/shape of SiNWs grown by this technique is also demonstrated
on the electrochemical performance of conventional Li-ion batteries [126].
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5.2. Liquid (Solution) Phase

The first liquid phase technique for SiNW growth is the direct counterpart of the VLS
technique. Then the solution–liquid–solid (SLS) mechanism is fully similar to that of VLS,
except that nanowire precursors are dissolved into a high-boiling liquid, such as squalene
(C30H62), and the catalysts are suspended therein, as described by Heitsch et al. [127].

The second method in liquid involves electrochemical phenomena. Here, anodic
aluminum oxide (AAO) substrates are used for templated solution growth, using electro-
chemical deposition to fill the channels as shown in Figure 7B [128]. Drawing upon the
solution-phase synthesis of nanoparticles, redox reactions can also be used to produce
nanowires [129]. Seed particles are first grown by a rapid reduction of a dissolved precursor
with a strong reducing agent such as sodium borohydride. Secondary growth is achieved
with a weaker reducing agent, such as L-ascorbic acid, to prevent additional seed particle
production. The nanowire anisotropy is achieved by controlling surface chemistry [123].

5.3. Summary on Growth

Table 1 gives a simple comparison between the different techniques used for SiNW
growth. We studied the various methods currently used in bottom-up SiNW growth. Gold
is the most widely used catalyst for SiNW growth by CVD under VLS mechanism, as it
offers a good size control. However, the recent advances in the mentioned SiNW growth
techniques are still in their early stages. The most appropriate method for the growth will
ultimately be determined by a number of factors, including the desired application, as well
as the available process control and associated costs. SiNW properties can be finely tuned
for the desired application using the various growth methods available.

Table 1. Comparison between different NW growth methods including low pressure VLS (LP VLS),
high pressure VLS (HP VLS), SLS, and electrochemical.

Method Diameter Range Crystallinity Doping Yield Scalability Homogeneity Catalyst Freestanding

LP VLS >30 nm Monocrystalline Highly
controlled Medium Good Generally

dispersed Yes No

HP VLS <30 nm Polycrystalline Controlled High Very
good Homogeneous Yes Yes

SLS Between 20 and
30 nm Monocrystalline Controlled Medium Good Dispersed Yes No

Electrochemical Limited by
template Polycrystalline Controlled High Good Highly

homogeneous Yes No
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6. SiNW Collective Handling

After growth, the nanowires are detached from the substrate and dispersed in solution
to allow collective manipulation (colloidal suspension). Depending on the chosen assembly
technique, it is possible to form arrays with a preferred orientation which are then not
necessarily percolating or to form randomly oriented arrays. The common points of all
these methods are the low thermal budget (less than 200 ◦C) and the easy scalability. In
the frame of electronic application and functional device formation, the formation of the
percolating network is mandatory. As a consequence, when the applied method leads to a
preferential orientation, a two-step process has to be used to allow the crossing of the NWs
that is required to allow charge carrier displacement.

6.1. Network with Preferential Orientation
6.1.1. Drop-Casting

The drop-casting is the simplest method to deposit NWs on top of a substrate. In
this approach, a drop of a NW suspension is first deposited (literally ‘drop-casted’) on the
surface. Second, a drying process is applied to evaporate the liquid. The clear advantage
of this approach is its simplicity and versatility. There is also an opportunity to even mix
different nanowires in a suitable solvent via ultrasonication before drop-casting. The main
drawback is related to the homogeneity of the NW distribution on the substrate surface.
Indeed, the drying process often induces shear forces that impact the NW positioning. As
a consequence, drop-casting is well dedicated when the needs in terms of positioning or
density are not too restrictive.

6.1.2. Fluidic Directed Assembly

In this method, nanowires can be assembled into parallel arrays with the control
of average separation as well as complex crossed nanowires arrays. In this technique,
the nanowires are suspended in a solution such as ethanol. Then, the suspension is sent
through fluidic channel structures formed between poly(dimethylsiloxane) (PDMS) molds
and a flat substrate. As a consequence, the NWs tend to align in the flow direction. In this
way, by building the appropriate fluidic channel, parallel and crossed arrays of NWs can
be readily achieved with single and sequential crossed flows (Figure 9), respectively, for
the assembly [130]. The same result can be obtained with chemically patterned substrate
that preferentially attracts the NWs in the functionalized region (Figure 9A).

The fluidic phase poses a challenge for single-nanowire control, accompanied to some
extent by issues related to spacious microfluidic and large footprint electrodes [130].

6.1.3. Langmuir–Blodgett Assembly

Another promising method to produce aligned arrays of NWs on various substrates
is the Langmuir–Blodgett (LB) technique [43,131–134]. In this technique, NW suspension
is densely packed using a compression trough at an air–liquid interface. Dip coating can
be then used to transfer the NWs onto receiver substrates by van der Waals, hydrophobic-
hydrophilic, or electrostatic interactions when the substrate is lowered and withdrawn
from the system, in the vertical direction as shown in Figure 10a.

This technique is frequently used in the assembly of highly ordered nanomaterials. By
repeating the assembly process with a changed orientation of the substrate, hierarchical
nanowire structures can also be produced as shown in Figure 10b–d [131].

The density of nanowires can be improved by adapting LB techniques to align the
nanowires. Limitations of this technique include reorganization of the nanowires dur-
ing dip coating that leads to overlapping features and gaps within the dense arrays of
nanowires [43,133,134].
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Figure 9. Assembly of periodic NW arrays and layer-by-layer assembly of crossed NW arrays.
(A) Schematic view of the assembly of NWs onto a chemically patterned substrate. The light gray
areas correspond to NH2-terminated surfaces, whereas the dark gray areas correspond to either
methyl-terminated or bare surfaces. NWs are preferentially attracted to the NH2-terminated regions
of the surface. (B) Parallel arrays of GaP NWs with 500-nm separation obtained with a patterned
SAM surface. (C) Typical SEM images of crossed arrays of InP NWs obtained in a two-step assembly
process with orthogonal flow directions for the sequential steps. Flow directions are highlighted by
arrows in the images. (D) An equilateral triangle of GaP NWs obtained in a three-step assembly
process, with 60◦ angles between flow directions, which are indicated by numbered arrows. The scale
bars correspond to 500 nm in (B–D) Reproduced from [130].
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Figure 10. Langmuir−Blodgett assembly of nanowires. (a) Schematic illustration of the
Langmuir−Blodgett assembly process. Reproduced from [134]. (b,c) SEM images of a high-density
parallel nanowire array (b) and crossed nanowire array (c) on the substrates. (d) SEM images at
different magnifications for patterned crossed nanowire arrays. Reproduced from [43].
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6.1.4. Blown-Bubble Films

An approach with the potential for large scale transfer of well aligned NWs is the
so-called blown-bubble film assembly (BBF) (Figure 11). This approach involves the prepa-
ration of homogeneous polymer suspension of NWs, followed by the expansion of polymer
suspension using a circular die, and finally the breaking by an external force and the trans-
fer of the bubble film to the desired substrate. By tuning the preliminary concentration,
well aligned, and controlled density NWs over large areas are achievable [135–137].
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Blow-bubble approach is inexpensive and can be adapted to patterning nanowires on
many different types of substrates (e.g., flexible, flat, or curved). However, a challenge for
these techniques is to control the viscosity of the bubble film in balance with a compatible
surface coating on the nanowires, which has so far limited this demonstration to films
of epoxy. Another challenge for this technique and for the alignment achieved using
microfluidic flow is to precisely control the position of the deposited nanowires [43,136,137].
This method is highly attractive in a technology where device fabrication costs must be
kept to a minimum and for transferring and aligning a variety of nanomaterials including
SiNWs and CNTs [136,137].

6.1.5. Contact Printing

‘Printing’ has usually been used to describe a method by which a layer of ink is trans-
ferred from a stamp to a substrate through a reversing reaction [138,139]. Figure 12 contains
an illustration of two different printing apparatuses. Printing methods thus include flexo-
graphic printing, offset printing, gravure printing, screen printing, and ink-jet printing. In
the printing method, the choice of the solvents for ink preparation has been identified as an
important parameter for active layer surface morphology [139–142].
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A simple but promising method is the contact printing (CP) technique developed
by Javey et al. Here, the particularity is that the NWs are kept on their growth substrate
until the transfer, no need to form a suspension. Therefore, during CP, nanowires are
mechanically transferred by a shearing motion between the growth and the target substrate.
In order to maximize the nanowire density and the alignment yield, the use of lubricants—
such as mineral oil—is essential [143].

Yao et al. have significantly developed the nanowire alignment in CP by nanoscale
combing technique [144,145]. In this technique, patterned resist windows opened by
lithography are utilized to store the nanowires partially within the so-called anchoring
regions [143,144,146], see Figure 13.
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Figure 13. Schematics and demonstration of nano-combing. (a) Schematics of the nano-combing
process. The blue arrow indicates the traveling direction of the growth substrate with respect to the
target substrate, which yields a combing/aligning force that is parallel and opposite to the anchoring
force. The dashed window at the right bottom shows a side view of the nano-combing process.
(b,c) SEM images of silicon nanowires on the combing (resist) surface at different magnifications.
The thickness of the resist (S1805) layer was 70 nm. Scale bars: 50 µm (b), 10 µm (c) Reproduced
from [144].
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Inspired by this CP technique, Robkopf and Strehle expand the current scope by fo-
cusing on the low-density nanowire assemblies and on dry friction to confine the nanowire
deposition during CP [143]. Their motivation for dry friction was based on the fact that lu-
bricants might act as a source of contamination in micro-device fabrication [147]. Therefore,
they developed the concept of surface-controlled contact printing (SCCP) to avoid the need
for lubricants, patterned resist, and post-print resist removal procedures. SCCP method is
based on the frictional force between an individual nanowire on the growth substrate and
the target surface, as shown in Figure 14. It has been shown that the material of the surface,
the surface roughness, elevated structures, and nanoparticles can, in principle, be effective
in the positioning of nanowires.
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Figure 14. (a–d) Friction-based SCCP concept. (a) Schematic illustration of a nanowire in mechanical
contact with a surface. The frictional force is predominantly influenced by the shear velocity vector, ap-
plied load, contact morphology, and materials of the nanowire and the target substrate. (b–d) Optical
microscopy images of nanowires transferred in a lubricant-free manner (exemplified by the solid
arrow in (a)) onto Si3N4, SiO2, and Au surfaces. The dashed arrow represents the shear direction
of the growth substrate. (e–i) Influence of local surface features on SCCP. (e) Schematic illustration
showing the interaction of a nanowire with a previously deposited nanowire (left), the interactions of
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nanowires with a step (center), and the interaction of a nanowire with a nanoparticle (right). (f)
Schematic and optical images of an 80 nm step in Si3N4, revealing that nanowires are preferentially
deposited onto the elevated area. (g) Optical micrograph depicting an area decorated locally with
Au nanoparticles of 50 nm in diameter. The nanoparticles increase the frictional force acting on the
nanowires and, therefore, significantly increase the deposited nanowire density. (h) SEM image
of a nanowire on a surface decorated with Au nanoparticles of 20 nm in diameter. The arrows
indicate the positions of nanoparticles. The inset shows a magnified region containing a nanowire
and Au nanoparticles. (i) The effect of the step, as shown in (f), is masked when Au nanoparticles
(here, 50 nm in diameter) are present. The shear direction of the growth substrate is indicated in all
images by a dashed arrow. The scale bars for (f–i) represent 100 µm, and that for (h) represents 1 µm.
(j–m) Towards SCCP nano-device fabrication. (j) Schematic illustration of various catcher concepts,
listed from front to back: elevated plateaux, nanoparticles, changes in surface roughness or material
composition, catchers with selectivity or guiding rails, catchers for single and multiple-nanowire
positioning, and catchers fabricated out of the substrate material with nanowires spanning a trench.
(k) Catchers on SiO2 of different lateral shapes, leading to an increased nanowire density adjacent
to the catcher. The dashed arrow indicates the shear direction of the nanowire growth substrate.
(l) Gold catchers on Si3N4 with the ability to position single nanowires (see white arrows). The
width of a single structure is 300 nm. (m) Optical image of one triangular and six rectangular Au
structures for single-nanowire positioning. When the triangular structure catches a single nanowire,
the rectangular structures appear to assist, serving a function similar to that of a guiding rail, as
revealed by experiments. Reproduced from [143].

Contact printing can be a promising alternative to transfer highly controllable single-
NWs, but using lubricant is still necessary for that. SCCP provides further possibilities
to control the positioning of nanowires by lubricant free or dry friction interaction. The
reduction in nanowire densities and lower alignment yields are still some drawbacks of
this method [143,144].

6.2. Random Networks
6.2.1. Vacuum Filtration

Vacuum filtration [148,149] is widely used in the literature as it allows the production
of homogeneous nanostructured networks at low cost and over large areas. During solution
filtration, the nanostructures are randomly trapped on the surface of a porous filter. In the
frame of Si nanonet assembling, Pauline Serre [28] and Maxime Legallais [27] have shown
that the process consists in five main steps that are: (1) dispersion of the silicon NWs in
solution, (2) purification of the suspension by centrifugation, (3) analysis of the suspension
by absorption spectroscopy, (4) assembly of the NWs into nanonets by vacuum filtration,
and finally, (5) transfer of the nanonet onto a substrate, as shown in Figure 15.

Since the properties of nanonets are influenced by NW density, it is important to
be able to control the density of nanonet. As the density of nanowires in nanonets is
directly related to the number of nanowires in the suspension, the mastery of a technique of
quantification of NWs is necessary. In Ternon’s group, several techniques—such as Raman,
infrared, fluorescence, and absorption spectroscopy—have been tested. Only the latter
has made it possible to obtain a measurement that is directly proportional to the number
of nanowires in the solution [28,36,150]. Then, for a given absorbance and a given NW
geometry, the NN density is directly linked to the volume of the filtered suspension with
high reproducibility. The greater the volume of filtered suspension, the greater the density
in the nanonets (see Figure 16).
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Figure 15. Overview of the protocol for manufacturing nanonets. This process consists of five
main steps: (1) dispersion of the silicon NWs in solution, (2) purification of the NW suspension by
centrifugation, (3) analysis of the suspension by absorption spectroscopy, (4) assembly of the NWs
into nanonets by vacuum filtration, and (5) transfer of the nanonet onto a substrate. Reproduced
from [27].
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Once the nanowire solution has been analyzed, the silicon nanowires can be assembled
by the filtration method with the schematic equipment in Figure 15 (step 4) [28,151,152].
The nanowire suspension is filtered for a few minutes through a nitrocellulose membrane.
The progressive accumulation of the nanostructures on the filter surface decreases the flow
velocity in these areas and induces an increase in flow in the areas devoid of nanostructures.
These different flow velocities involved are at the origin of the self-assembly mechanism
and the homogeneity of the nanonet.

When the nanowire suspension is not homogeneous—i.e., it contains aggregates from
growth defects or clusters of NWs—it is possible to remove some of these elements by
centrifugation as demonstrated by M. Legallais [27].

After filtration, NN can be transferred to the desired substrate either by the dis-
solution of the filter [148] or by direct contact [153]. For instance, Serre et al. [28] and
Legallais et al. [27] demonstrated that this transfer can be carried out via a wet process by
dissolving the membrane produced by vacuum filtration in an acetone bath. The adhesion
of the nanonets to the surface of the substrates is simply due to van der Waals forces [27,28].
This process is well dedicated for SiNN [44,154] and can be adapted for a wide variety of
nanostructures—such as NWs of zinc oxide [155], germanium [156], or carbon nanotubes
(CNTs) [148,152]. Furthermore, the size of the nanonet is only conditioned by the size of
the filter used and can therefore be easily enlarged. Finally, the formed nanonets can be
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transferred onto different types of substrates either rigid or flexible, insulating or conduc-
tive, opaque or transparent, as shown in Figure 5, depending on the characterization and
the intended application. Still, there is some difficulty such as finding a flexible substrate
which is compatible with acetone.

Vacuum filtration is a low-temperature process in film production which affords films
with some advantages such as surface uniformity and controllable thickness. Transferring
NWs to a flexible substrate after being deposited on the filter depends on the substrate
endurance towards acetone as most of the flexible substrates are attacked by it [27,157].

6.2.2. Spray Coating

One of the simple and efficient routes for the deposition of randomly dispersed
nanowires or highly ordered and highly aligned even on a wide range of receiver substrates
is spray coating. Spray coating is a technique in which nanowire suspension is electrostati-
cally forced through a nozzle whereby a fine aerosol will be formed [158,159]. The spray
coating system consisted of a hot plate for controlling the temperature of the substrate,
a pressure flow spray nozzle element, a nozzle movement, and an angle control module.
Normally, the spray coating system is designed by taking to account the viscosity of NW
suspension, the NW suspension supply, and other process variables [158] (see Figure 17).
Ossama Assad et al. [158] showed that by controlling these conditions and provided that the
size of the generated droplet is comparable to the length of the single NW, the shear-driven
elongation of the droplet results is likely in the alignment with the confined NW in the
spraying direction.
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Figure 17. (a) Image of the electrostatic spray system step. Reproduced from [159]. (b) SEM image
of the electrostatic spray deposited nanowire network. Reproduced from [159]. (c) Schematic of
the spray coating apparatus. Reproduced from [158]. (d) representative dark-field optical image
of spray-coated SiNWs on the SiOx/Si substrate and the constituent analysis of 700 SiNWs with
respect to the flow direction. Reproduced from [158]. Spray coating method can be controlled under
conditions of temperature, droplet size, spray coating angle, and airflow which makes this method
interesting either in the well-aligned or well controlled density in large size of nanonet with a small
lack in control over the low density of nanonets.
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Since this technique has no limitation in substrate size, it has great potential for
large scale production and can replace spin-coating which is a conventional method [139].
However, the main concerns of utilizing the spray coating belong to higher film thickness
and roughness.

As already mentioned, one of the key parameters in nanonet assembly is density.
In spray coating, by controlling the concentration of the nanowire suspension or at the
same time regulating the flow duration, it is possible to adjust the density of deposited
NWs—e.g., for having high density deposited NWs, we should increase the spray coating
duration. The level of density control over deposited NWs in this approach is similar to
other techniques such as blown-bubble and contact transfer techniques, while in these two
techniques we are dealing with just aligned nanowires.

Spray coating facilitates a low-cost uniform coverage over a large area which has a
potential for immediate implementation in the industry and/or line production. In this
technique, NWs film making by the spray coating method depends on the nozzle speed,
diameter, and length of nanowires and is more beneficial for high densities and large-scale
fabrication [158,159].

6.3. Advantages and Disadvantages of Each Technique

As already discussed, semiconductor NWs have demonstrated excellent performance
for nanoscale electronics and due to their great mechanical flexibility, high yield, and low-
cost bottom-up synthesis; they have outstanding potential to be used in flexible electronics.
As the assembly of NWs remains a challenge for practical large-scale application, various
innovative NW assembly technologies have been investigated [160]. As a result below in
Table 2, there is a simple comparison between different techniques of transferring nanowires
into a variety of substrates from rigid to flexible ones.

Table 2. Advantages and disadvantages of each NWs transferring technique.

Technique NWs
Uniformity

Random/
Aligned

Density
(Percolation

Regime)

NWs Layer
Thickness

(Low
Density)

Versatile in
Substrate Scalability Localized/

Large Scale Complexity

Drop-casting Low Random/
Aligned Low Low High Low Localized Low

Fluidic
directed Medium Aligned Low Low Low Low Localized Medium

Langmuir-
Blodgett High Aligned Medium High High Medium Localized/

Large scale Medium

Blown-
bubble High Aligned Medium Low High Low Localized

Contact
printing Medium Aligned Medium Medium Medium Low Localized Medium

Vacuum
filtration High Random High High Medium Medium Large scale Low

Spray
coating High Random/

Aligned Medium Low High High Large scale Low

In order to fabricate devices based on a single SiNW, the best option in terms of
simplicity and adaptability to varieties of substrates is drop-casting, but still this technique
is not efficient and the number of devices out of each NW transfer is trivial and negligible.
However, other techniques—such as Langmuir–Blodgett, blown-bubble, contact printing,
and fluidic directed—are the best choices for multiple-parallel channel devices. Each
technique has its advantages but still, Langmuir–Blodgett seems to be a better option over
others. Finally, in order to have nanonet (assembly of randomly oriented nanowires), we
deal with mostly two methods, vacuum filtration and spray coating in the other technique
several transfer process in different angles are needed to produce arrays of nanowires with
junctions so these latter methods are complex with low yield. Although in vacuum filtration
technique, density regulation is much easier and the process is inexpensive, spray coating
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can prevail over vacuum filtration because it is easily applicable on different substrates, at
large scale, and it allows the selection of a random or aligned nanowire array.

Generally, though all these methods have an advantage over direct growth methods,
these methods extend the assembly procedures, which increase the risk of additional
contamination and destruction of the intrinsic properties.

7. Silicon Nanowire-Based Transistors

The small size and unprecedented ability to combine semiconductors with very differ-
ent lattice parameters provide exciting new opportunities for devices. At the beginning
of the 20th century, nanowire device researchers face the exciting challenge of deciding
which devices, and thus which future applications, hold particular promise for this new
class of material [161,162]. Among the many possibilities, the field effect transistor (FET)
stands out as the modern workhorse of the semiconductor industry. Not surprisingly,
most of the efforts in nanowire devices have focused on the fabrication of nanowire field
effect transistors, as it is the building block of modern electronics and the most frequently
fabricated device in history. FET is the dominant semiconductor device in digital and
analog integrated circuits (ICs), and the most common power device [163]. It is a compact
transistor that has been miniaturized and mass-produced for a wide range of applications.

Silicon transistor technology, especially metal–oxide–semiconductor (MOS) technol-
ogy, is scaling down as predicted by Moore’s Law [18,164]. Originally, transistors had
a three-dimensional active region (solid silicon substrate) then it was reduced to a two-
dimensional geometry (silicon ultra-thin film on insulator (SOI)) to finally reach a one-
dimensional structure with the introduction of nanowires (FinFET on SOI) [165,166], as
schematically illustrated in Figure 18.
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However, this scaling of the typical silicon transistor technology has almost reached its
limits [22,51]. Despite the advanced capabilities of fabrication tools, many physical effects
can prevent the tools from performing satisfactorily when the device size is scaled down
to the nanoscale. In addition, transistor scalability, performance, and power dissipation
are three fundamental issues facing aggressive miniaturization. Furthermore, the leakage
mechanisms associated with the size reduction of conventional silicon transistors down
to the nanoscale include direct gate dielectric tunneling, band-to-band tunneling, and
short channel effects. Finally, silicon has almost reached its intrinsic switching speed limit.
Other semiconducting materials with higher carrier mobility could solve the problem,
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but the required power dissipation levels in the nanoscale structure do not allow further
downscaling [6].

Nevertheless, one-dimensional (1D) structures are the smallest structures that can be
used for efficient transport of electrons [6,61,167]. Semiconductor nanowires fall into this
category and are obvious candidates to replace ultrathin-film SOI transistors [168]. Among
semiconductor NWs, silicon nanowires have been studied more and are considered the most
suitable for implementing nanowire transistors, as silicon dominates the semiconductor
industry and its structure and doping can be precisely controlled [168]. However, the
smaller the footprint of the manufactured devices, the higher the manufacturing cost and
the more complicated it is to observe good reproducibility and homogeneity of the device
characteristics. Nevertheless, being able to introduce nanometric structures into the devices
is extremely interesting because it allows new properties and functionalities to emerge. In
this, nanonet devices are extremely promising because they are made of nano components
while having a large enough footprint to lower the cost and complexity of production. They
are clearly not part of the miniaturization dynamics of the ‘More Moore’ trend, but rather
contribute to the ‘More-than-Moore’ trend or even to a paradigm shift (Figure 19a).
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Figure 19. (a) Simple comparison between single SiNW-, thin film Si- and SiNN-FETs with respect to
the industrial size and fabrication costs related. (b) Positioning (Nanonet TFT) in terms of thin-film
transistor (TFT) performance versus footprint in comparison with the existing technologies (TFT
based on: cSi: monocrystalline Si; poly-Si: polycrystalline Si; a-Si: amorphous Si; Organic: organic
material; Oxide: metal oxide film).

Nanonet based transistors belong to the category of thin film transistors that pro-
vide numerous functionalities for various applications such as CMOS circuits, sensors,
responsive surfaces, and flexible and transparent electronics. They compete not only with
other materials such as oxides or organics but also with other forms of silicon, amorphous,
polycrystalline, or monocrystalline. In this context, Figure 19b shows the performance of
these devices according to their footprint.

In this section, we focus on nanowire transistors with the simplest geometry—namely,
a source electrode, a drain electrode, a channel consisting of a single nanowire, parallel
nanowires, or a nanonet, as well as a full back gate or localized top-gate. Thus, we will
present the most basic integration processes and then the typical electrical characteristics.

7.1. Integration Process
7.1.1. Single Nanowire FETs (Single-SiNW-FETs)

Whether the approach is bottom-up or top-down, there is a phenomenal variety of
integration processes and device geometries in the literature. There is a large number of
studies presenting the fabrication of transistors with the simplest geometry, which we
will describe in the rest of this paragraph [10,11,169], to the most complex transistors with
variable doping along the nanowires and gate multiplicity allowing an electrostatic control
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of the doping and thus the control of the nature of the channel (P or N) [170,171]. Even
for the simplest geometry, there are integration subtleties that impact the properties of
the manufactured transistor. A simple silicon nanowire transistor can be built as shown
in Figure 20a. The two gold cubes represent the source (labeled S) and drain (labeled D)
contacts of the transistor respectively whereas the gate is on the backside of the substrate.
The dark blue cylinder represents the nanowire which is the channel of the transistor.
The channel can be doped p-type or n-type. The top-gate of the transistor is shown in
Figure 20b,c as a rectangular-like plate labeled with G. The gate can be placed in a semi-
cylindrical shape on the top of the nanowire or all around the nanowire [168]. SiNW
transistors manufactured with a gate that surrounds the whole nanowire (all-around-gate)
allow better current control through the channel and thus higher current densities can
be controlled compared to a planar device. What is more, the all-around-gate allows the
devices to be shrunk even more (down to 10 nm) due to the excellent control of short-
channel effects and leakage [51].
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between source and drain.

The bottom-up approach, which is the subject of this paper, has caught our attention
because it provides great flexibility in that nanowire growth and integration are two
completely independent steps. Thus, it is easy to choose the material, length, diameter,
type, and concentration of the dopants, and the orientation of the crystals because all
these parameters can be adjusted during the synthesis. Today, the main limitation of this
approach is the complexity of developing a method for large-scale transistor integration
with high reproducibility.

For the simplest geometry (Figure 20a), the bottom-up processes start with as-grown
SiNWs in both bottom-up (Figure 21i) as described in Section 5. Subsequently, the as-
synthesized SiNWs have to be transferred onto the desired substrate, generally includ-
ing the back-gate, by using the simple drop-casting or one of the methods described in
Section 6 (Figure 21ii). In some works, SiNWs are passivated in order to preserve them
from the environment sensibility, low efficiency, and short lifetime [27,172,173]. Thereafter,
a photo- or electron-beam lithography process (Figure 21iii) followed by metallization
(Figure 21iv) and lift-off (Figure 21v) are utilized to pattern metallic electrodes to the
SiNWs [3,169,174]. Silicidation which is a process of the intermetallic compound formed
by the reaction of metal and silicon can be performed in order to lower the access and/or
series resistance of the device in contacts [11,175,176]. Eventually if desired, a top-gate can
be added by an additional photolithography step.
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Figure 21. (i) The growth of SiNWs in CVD reaction via the VLS mechanism. (ii) Deposi-
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Generally, this type of integration process, based on drop-casting, yields only a low suc-
cess rate in obtaining nanowire devices without allowing large statistical studies. However,
this is sufficient to study the fundamental properties of single SiNW devices. Further-
more, this method is clearly not suitable for the low-cost, mass production of SiNW devices.
Therefore, the use of the techniques described in Section 6 that allow the assembly of SiNWs
with controlled orientation and spacing over large areas is essential for the fabrication of
complex logic circuits and high-performance devices.

7.1.2. Silicon Nanonet FETs (SiNN-FETs)

To qualify as a nanonet device, the geometry of the transistor must be such that the
length of the channel is greater than the length of the nanowires so that no nanowires are
able to bridge the two electrodes directly. The current flows from one contact (source) to
another (drain) via percolation paths that involve NWs as well as junctions between NWs.
Typical devices are illustrated in Figure 22.
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Thus, the fabrication starts with the assembly of the nanonets on the surface of the
substrate including the back gate according to one of the methods described in Section 6.
Then the fabrication process of back-gated SiNN-FETs can be broken down into four
main steps:

- Sintering of the NW–NW junctions and passivation of the NN to stabilize electrical
properties (see Section 8.1 Sintering and Section 8.2 Surface and Interface).

- NN patterning to define the channel geometry (Figure 23i-0–i-5).
- Deposition of the source/drain contacts (Figure 23ii-0–ii-5).
- Silicidation of the source/drain contacts (see Section 8.3 Silicidation).
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By doing the silicidation step, back-gate SiNN-based FETs are achieved. These steps
can be modified due to the need and application. For example, one might need a local
top-gate instead of a full back-gate hence some procedures will be added such as deposition
of the gate oxide, lithography of top-gate, and metal evaporation step to introduce top-gate.
In Figure 24, SiNN-based FETs with two different designs are demonstrated.
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appropriate technique (Section 6), it is possible to align nanowires parallel to each other 
and then apply the integration process presented for single nanowire transistors which 
will then result in an MPC FET since the channel will consist of nanowires in parallel 
(Figure 25a,b). The second strategy consists in producing a nanonet on the surface of the 
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Figure 24. (a) SEM image final full back-gate FET based on SiNN. The length of the Si nanonet
channel is 50 µm for a width of 120 µm. The square contacts measure 200 µm on each side. (b) SEM
image final local top-gate FET based on SiNN. The length of the Si nanonet channel is 50 µm for
a width of 100 µm. The square contacts measure 200 µm on each side. Although this integration
process involves only simple and mastered steps, such integration has proven to be challenging since,
to date, very few papers have presented the fabrication of this type of device. Moreover, to date, there
are works based on the SiNN devices on rigid substrates, especially resistors and transistors but there
is a great potential in the field of flexibility that is still unproven.

7.1.3. Multiple-Parallel-Channel FETs (MPC-FETs)

The realization of a multiple-parallel-channel field effect transistor (in reference to
multiple parallel NWs as channels) can arise from two strategies. First, by choosing an
appropriate technique (Section 6), it is possible to align nanowires parallel to each other and
then apply the integration process presented for single nanowire transistors which will then
result in an MPC FET since the channel will consist of nanowires in parallel (Figure 25a,b).
The second strategy consists in producing a nanonet on the surface of the substrate and
then applying the dedicated integration technique while choosing a geometry such that
the length of the channel is smaller than the length of the NWs. As a consequence, several
NWs are able to bridge the two electrodes, forming an MPC-FET (Figure 25c,d).
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7.2. Electrical Characteristics of Single SiNW-, SiMPC-, and SiNN-FETs

The operation of a single SiNW-based transistor is similar to that of a typical FET
transistor. If the SiNWs are p-type and a positive/negative voltage is applied to the gate
(G), then the carriers are depleted/accumulated; conversely, if the SiNWs are n-type and
positive/negative voltage is applied to the gate, then the carriers are accumulated/depleted
(Figure 26). Therefore, the variation of the SiNW conductance via the field-effect action
allows for the transistor action to be implemented with SiNWs [17,31].

P-type SiNWs have attracted greater interest than n-type ones. P-type SiNWs were
fabricated and showed high performance characteristics. Their transconductance was
about 10 times greater than typical planar devices and the holes’ mobility was an order
of magnitude larger too. Both the transconductance and mobility increased after surface
modification of the SiNW. This implies that some of the electrical characteristics of the
SiNW transistors can be controlled by proper surface modification as described in the
next section. Therefore, the performance of SiNW transistors can exceed that of typical
devices [51].
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Figure 26. SiNW-FETs: a family of current versus drain-source voltage (Ids-Vds) plots for a repre-
sentative (a) 20 nm p-Si NW device (channel length of 1 µm; from red to pink, Vg = −5 V to 3 V);
and (b) 20 nm n-Si NW device (channel length of 2 µm; from yellow to red, Vg = −5 V to 5 V) in a
standard back-gated NW-FET geometry as illustrated. Insets in (a,b) are current versus gate–voltage
(Ids-Vg) curves recorded for NWFETs plotted on linear (blue) and log (red) scales at Vds = −1 V and
1 V, respectively. Reproduced from [31].

In addition, one of the major gains in 1D nanostructures is depletion or accumulation
in the bulk of nanowires while in 2D structures such as thin film is happening only on
the surface which causes lateral current shunting. This property provides sensing with
label-free and direct detection when the nanowire is used as a sensor to make real-time
detection possible [22,61]. Based on this advantage in nanowires, Li et al. [75] depicted
an efficient strategy through surface functionalization to build a single silicon nanowire
field-effect transistor-based biosensor that is capable of directly detecting protein adsorp-
tion/desorption at the single-event level (see Figure 27).
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Figure 27. Sensing properties. (A,B) Real-time recordings of the absorption/desorption processes
of F1-ATPases, showing the gradual changes in ID with three steps. Drain voltage, VD = 0.1 V and
gate voltage, VG = 0 V. (C,D) Corresponding AFM images after protein delivery ((C), inset shows an
enlarged image of a single F1 protein) and after further EDTA treatment ((D) inset is the height profile
of the bare silicon nanowire and the nanowire with an adsorbed F1 protein particle in (C) inset. The
total height of F1 is ~12 nm including a ~2 nm linkage). The scale bar is 1 µm. Reproduced from [75].

As will be discussed in the following section, the contact resistance of SiNW-FETs
affects their performance significantly. Devices with titanium (Ti) source-drain contacts
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revealed variations in their transconductance and mobility after thermal annealing effects.
Other materials for the contacts, such as silicide and nickel monosilicide, can reduce this
variation in the performance of the device [11,51].

That is why the MPC-FETs and NN-FETs are particularly interesting, as they can
maintain the nanosize of the components while increasing the amount of current for a
given voltage [178].

In the case of MPC-FETs, fabricated from aligned parallel NWs, Figure 28 depicts
the off-current as a function of the on-current for different inter-electrode (IE) spacing
(2.5–5.5 µm). It can be seen that the current output can clearly exceed the µA range and
that it increases when the inter-electrode (IE) spacing is reduced. However, the off-current
increases when the on-current increases, and accordingly, the on/off current ratio drops
with decreasing IE spacing. Since channel length (Lc) of individual nanowires varies in the
parallel array due to dispersion in nanowire alignment as shown in Figure 28b, though a
small number of nanowires with short channels will be found in the ensemble, affected by
quasi short channel effect (SCE), these nanowires will degrade the total on/off current ratio.
This apparent quasi short channel effect for parallel array devices at such a large electrode
spacing is not observed for single nanowires [178].
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When MPC-FETs are obtained from a randomly oriented nanowire network, the 
same trend is observed: by decreasing the channel length, the on and off current increase 
(Figure 29A,B, 5 and 10 μm). Moreover, from this figure, one can notice a surprising and 
significant degradation of the subthreshold swing. 

Then MPC-FETs are interesting to increase the on-current, but at the same time, off-
current also increases and the commutation ability degrades. Such behavior can be ex-
plained by the intrinsic disparity of the nanowire population. Indeed, whatever the 
method of bottom-up synthesis of NWs, it is possible to observe variations of diameters, 
doping, or surface properties from one nanowire to another. Such variations are respon-
sible for different electrical behaviors for each NW. Thus, there is a dispersion of on-cur-
rent, off-current, sub-threshold slope, and threshold voltages [179,180]. While this is not a 

Figure 28. (a) Source-drain voltage Vsd versus a gate voltage Vg statistics of 36 nanowire parallel
array FET devices. Each device consists of 500–1000 nanowires. Off-current versus on-current
per mm electrode width for Vsd = 0.5 V. The on/off ratio is shown for devices with four different
inter-electrode spacing but the same silicidation process (green/stars 2.5 µm; red/triangles 3.5 µm;
purple/circles 4.5 µm; blue/sq. 5.5 µm). Reproduced from [178]. (b) High density nanowires are
contacted by nickel electrodes. The inset displays the histogram of channel lengths of individual
nanowires after silicidation for a device with 2.5 µm inter-electrode spacing. Reproduced from [178].

When MPC-FETs are obtained from a randomly oriented nanowire network, the
same trend is observed: by decreasing the channel length, the on and off current increase
(Figure 29A,B, 5 and 10 µm). Moreover, from this figure, one can notice a surprising and
significant degradation of the subthreshold swing.

Then MPC-FETs are interesting to increase the on-current, but at the same time,
off-current also increases and the commutation ability degrades. Such behavior can be
explained by the intrinsic disparity of the nanowire population. Indeed, whatever the
method of bottom-up synthesis of NWs, it is possible to observe variations of diameters,
doping, or surface properties from one nanowire to another. Such variations are responsible
for different electrical behaviors for each NW. Thus, there is a dispersion of on-current,
off-current, sub-threshold slope, and threshold voltages [179,180]. While this is not a major



Nanomaterials 2022, 12, 1043 32 of 55

problem for the on-current, the existence of a single nanowire with a high off current will
result in a high off current for the MPC FET. Similarly, if all of the nanowires making up
the MPC-FET switch successively, this will result in the MPC FET switching over a wide
range of gate voltages [72].
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SiNW FET, an MPC FET, and an NN FET. All previous observations are summarized on 
that graph. The MPC-FET clearly exhibits the highest on-current, but all other transistor 
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good performance with fast switching and very low off-current while exhibiting an on-
current up to 100 times higher than that of the single nanowire device, even though its 

Figure 29. Study of transistor electrical properties for various channel lengths. (A) Typical transfer
characteristics from 5 to 100 µm at Vd = −4 V. (B) On current (Ion) as a function of off current (Ioff). The
on current is defined as Id at Vg = −25 V, Vd = −4 V, (C) subthreshold slope (SS), and (D) threshold
voltage (Vth) for various channel lengths extracted for about seventy transistors. For (B) the on-to-off
ratio (Ion/Ioff) is indicated by the dashed lines. Reproduced from [72].

In this context, NN-FETs appear to be promising for reconciling high current, high
Ion/Ioff ratio, and fast switching, as illustrated in Figure 29 (15–100 µm). In Figure 29B,
by measuring over 70 NN-based transistors with different channel lengths, an interesting
trend in the Ion/Ioff curve is observed. On one hand, the NN-FETs with the smallest
length (15–20 µm) have a quite dispersed current while the current is almost stable. On
the other hand, for the longer (>20 µm), current is almost fixed with a reduction in current
by increasing the channel length. As a consequence, this leads to a drastic change in the
on-to-off ratio and the observation of an optimum on-to-off ratio as high as 105 [72].

In order to have a better understanding of the differences inherent to these three
types of nanowire-based devices, Figure 30 presents the transfer characteristics of a single-
SiNW FET, an MPC FET, and an NN FET. All previous observations are summarized on
that graph. The MPC-FET clearly exhibits the highest on-current, but all other transistor
parameters are poor. In contrast, and against all expectations, the NN FET maintains
very good performance with fast switching and very low off-current while exhibiting an
on-current up to 100 times higher than that of the single nanowire device, even though its



Nanomaterials 2022, 12, 1043 33 of 55

channel is over 10 times longer. As a consequence, an NN-FET could be as interesting, and
even more than a single SiNW-FET.
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Figure 30. Typical transfer characteristic at Vd = −1 V for single SiNW-FET with Lc = 3 µm (black),
MPC-FET with Lc = 5 µm (blue), SiNN-FET with Lc = 50 µm (red). Reproduced from [72].

The statistical summary in Figure 31 presents a comparison between the performance,
in terms of Ion/Ioff ratio and subthreshold slope, of single SiNW FETs from the literature
and SiNN as a function of channel length. It is important to mention that, for SiNN based
transistors, each point on the graph results from measuring the performances of several
devices (average and variability): on the order of 15 devices for channel lengths below
300 µm and 3 to 6 devices for longer ones.
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to the channel length (SiNN density is about 0.6 NWs µm−2). Squares of SiNN-FETs segment show the
average of several devices’ performances in which bars are representative of deviation in measured
parameters for a certain Lc.
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Such a graph clearly shows that single-nanowire devices exhibit highly dispersed per-
formance, even for a given channel length, while NN devices show much lower dispersion.

In conclusion, despite having lots of resistive junctions, SiNN based devices have
good performance. Then the NW/NW junctions, which might initially appear to be a
weakness of this type of system, are in fact an asset that allow good performance, good
reproducibility, and high fault tolerance.

8. Technological Key Elements for SiNW-Based Device Integration
8.1. Sintering

When silicon is exposed to air, silicon dioxide (SiO2)—commonly known as native
oxide—is systematically formed on its surface. This oxidation is self-limiting at ambient
temperature and the SiO2 formed stops growing once it has reached a certain thickness of a
few nanometers. According to high-resolution transmission electron microscopy (HRTEM)
analyses, the NWs are covered with about 2 nm native oxide [28]. With a permittivity
dielectric of 3.9, the silica layer—of amorphous structure—has good electrical insulating
properties. The native thickness formed around the NWs is sufficient to inhibit the possible
conduction by tunneling from one NW to another and makes it impossible to fabricate
percolating devices with SiNNs [42]. Subsequently, Pauline Serre showed that in the
absence of oxide, current can flow from one nanowire to the other via the junctions [39]. To
do this, she studied the behavior of resistors based on NNs. Thus, as long as the devices are
stored under nitrogen after deoxidation by hydrofluoric acid (HF) treatment, significant
conduction is observed across the resistor. As soon as they are exposed to air, conductance
decreases exponentially with air exposure time due to the progressive reoxidation of the
NWs as shown in Figure 32a. Such a decrease in current observed in Figure 32a is explained
by the progressive growth of SiO2 at the junctions between NWs as indicated by the passage
from step (1) to (1.a) in Figure 32b. With a time constant of 2.2 days, the silica shell formed is
thick enough to electrically isolate the NW–NW junctions and prevent current flow through
the nanonet. The use of the SiNNs is then jeopardized as a functional device under air.
Nevertheless, when low-temperature annealing (400 ◦C) is performed just after removal
of SiO2 by treatment with hydrofluoric acid (HF), the conductance shown in Figure 32a
decreases by only 20% and then stabilizes for several months [48].

Nanomaterials 2022, 12, x FOR PEER REVIEW 38 of 61 
 

 

32a is explained by the progressive growth of SiO2 at the junctions between NWs as indi-
cated by the passage from step (1) to (1.a) in Figure 32b. With a time constant of 2.2 days, 
the silica shell formed is thick enough to electrically isolate the NW–NW junctions and 
prevent current flow through the nanonet. The use of the SiNNs is then jeopardized as a 
functional device under air. Nevertheless, when low-temperature annealing (400 °C) is 
performed just after removal of SiO2 by treatment with hydrofluoric acid (HF), the con-
ductance shown in Figure 32a decreases by only 20% and then stabilizes for several 
months [48]. 

 
Figure 32. (a) Evolution of the conductance over time of Si nanonets based on not-annealed degen-
erated NWs and annealed at 400 °C after deoxidation. The conductance at 5 V was normalized to 
the initial conductance just after deoxidation. (b) Diagrams illustrating, after deoxidation, the reox-
idation under air of an NW–NW junction (1.a) without annealing or (1.b) with annealing at 400 °C 
under nitrogen. Reproduced from [27]. 

HRTEM analysis, presented in Figure 33a.1 with its equivalent diagram (a.2), reveals 
the presence of a neck at the junction between two NWs. On this micrograph, the visible 
dislocation shows a continuity of crystalline planes between the two NWs. This crystal 
lattice continuity explains the stabilization of the current observed in Figure 32a even after 
several months of exposure to air. The 20% decrease in current after a few days is ex-
plained by the progressive reduction of the neck by the growth of the native oxide. How-
ever, when the reoxidation stops for a SiO2 thickness of about 2 nm, the neck size stabilizes 
and the current is then constant even under air (Figure 32b, step (1.b)). 

Figure 32. (a) Evolution of the conductance over time of Si nanonets based on not-annealed degener-
ated NWs and annealed at 400 ◦C after deoxidation. The conductance at 5 V was normalized to the
initial conductance just after deoxidation. (b) Diagrams illustrating, after deoxidation, the reoxidation
under air of an NW–NW junction (1.a) without annealing or (1.b) with annealing at 400 ◦C under
nitrogen. Reproduced from [27].



Nanomaterials 2022, 12, 1043 35 of 55

HRTEM analysis, presented in Figure 33a.1 with its equivalent diagram (a.2), reveals
the presence of a neck at the junction between two NWs. On this micrograph, the visible
dislocation shows a continuity of crystalline planes between the two NWs. This crystal
lattice continuity explains the stabilization of the current observed in Figure 32a even after
several months of exposure to air. The 20% decrease in current after a few days is explained
by the progressive reduction of the neck by the growth of the native oxide. However, when
the reoxidation stops for a SiO2 thickness of about 2 nm, the neck size stabilizes and the
current is then constant even under air (Figure 32b, step (1.b)).

Nanomaterials 2022, 12, x FOR PEER REVIEW 39 of 61 
 

 

 
Figure 33. (a.1) High-resolution TEM image realized after re-oxidation of a junction between two 
NWs annealed at 400 °C under nitrogen. (a.2) Schematic representation of the TEM image showing 
the formation of a dislocation and a neck delimited by SiO2 at the NW–NW junction. (b.1) Modeling 
of the sintering between two silicon nanoparticles with (w/) and without (w/o) the native oxide. 
Surface diffusion (js), volume diffusion from the grain boundary (jL), and vapor diffusion (jv) are the 
material transports considered. X and φ represent the shot size and diameter of the nanoparticles, 
respectively. (b.2) Sintering map representing the neck size relative to the initial nanoparticle size 
as a function of temperature for different annealing times. Reproduced from [48].  

8.2. Surface and Interfaces 
8.2.1. Modulation Thanks to Interface Surrounding the Channel 
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noise [191,192]. For example, a mechanism for filling or emptying traps at the NW/oxide 
interface leads to a memory effect as this gate dependency could compromise the opera-
tion of the transistor. According to the literature, the most commonly used oxides for pas-
sivation of silicon nanowires are silicon oxide (SiO2), aluminium oxide (Al2O3), and haf-
nium oxide (HfO2) [47,193]. It has been shown that Al2O3 offers better chemical stability 
than silicon oxide while maintaining excellent sensitivity in the case of using them as sen-
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Figure 33. (a.1) High-resolution TEM image realized after re-oxidation of a junction between two
NWs annealed at 400 ◦C under nitrogen. (a.2) Schematic representation of the TEM image showing
the formation of a dislocation and a neck delimited by SiO2 at the NW–NW junction. (b.1) Modeling
of the sintering between two silicon nanoparticles with (w/) and without (w/o) the native oxide.
Surface diffusion (js), volume diffusion from the grain boundary (jL), and vapor diffusion (jv) are the
material transports considered. X and ϕ represent the shot size and diameter of the nanoparticles,
respectively. (b.2) Sintering map representing the neck size relative to the initial nanoparticle size as
a function of temperature for different annealing times. Reproduced from [48].
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8.2. Surface and Interfaces
8.2.1. Modulation Thanks to Interface Surrounding the Channel

The quality of the interface surrounding the channel is a key parameter for all elec-
tronic devices such as FETs as it influences many parameters, from high to low frequency
noise [191,192]. For example, a mechanism for filling or emptying traps at the NW/oxide
interface leads to a memory effect as this gate dependency could compromise the operation
of the transistor. According to the literature, the most commonly used oxides for passivation
of silicon nanowires are silicon oxide (SiO2), aluminium oxide (Al2O3), and hafnium oxide
(HfO2) [47,193]. It has been shown that Al2O3 offers better chemical stability than silicon
oxide while maintaining excellent sensitivity in the case of using them as sensors [194,195].

In their early work, Legallais et al. studied SiNN FETs passivated by the native silicon
dioxide layer which systematically grows when the silicon is exposed to air [47]. It is
known this native SiO2 provides poor-quality interfaces and induces the formation of
a high density of dangling bonds at the interface. On the basis of the foregoing, they
opted for an alumina encapsulation layer as it is fully compatible with the integration
process and can be easily etched before contact deposition, using HF treatment [47]. Atomic
layer deposition (ALD) was chosen for alumina deposition since it involves a self-limiting
growth mechanism that enables the formation of high quality and homogenous thin film.
Moreover, this technique provides a conformal coating and properly encapsulates SiNWs
while preserving the sintered NW–NW junctions (Figure 34).
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Figure 34. Comparison between sintered SiNN coated by (A,C) natively grown silicon dioxide and
passivated by (B,D) alumina deposited using ALD. (A, B) Refer to top-view SEM images of nanonets,
while (C, D) are sectional schemes of three coated SiNWs: one sectioned in the length and two
according to the diameter. For (C), the mean and standard deviation of SiNW length (LSiNWs) and
diameter (DSiNWs) are indicated. For (D), due to conformal coating with ALD, alumina is deposited
simultaneously on SiNWs and onto the substrate whereas SiNW–SiNW junction and underneath
SiNW portions are considered alumina-free. Reproduced from [47].

As native SiO2 has a high density of dangling bonds at the interface, this interruption
in the periodic lattice structure acts as interface traps for carriers. These traps are responsible
for the reduction of transistor performances. On the contrary, alumina provides a better
quality interface and improved electrical characteristics, as clearly shown in Figure 35A,B.
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been achieved by chemically modifying the surface of nanonet with 3-aminopropyl-tri-
ethoxysilane (APTES) silanization [28] or (3-glycidyloxypropyl)trimethoxysilane (GOPS) 
[198]. Particularly, GOPS functionalization enables DNA electrical detection with SiNN-
FETs [199]. Additionally, silicon nanonet field effect transistors (SiNN-FETs) were bio-
modified using thrombin-binding aptamer (TBA-15) [200] with the aim to detect thrombin 
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tamer probes grafting on the SiNN surface. As a result, again it has been demonstrated 
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Figure 35. (A) Effect of the alumina thickness on the subthreshold slope (SS). 0 nm of alumina
corresponds to a 2-nm thick layer of native SiO2. For all transistors, the channel length (Lc) is 20 µm
and the drain voltage (Vd) was set at −4 V. The boxes show the 25th and 75th percentiles, whereas the
whiskers represent the 5th and 95th percentiles. The empty square in the boxes shows the mean value.
(B) Reproducibility of the on and off current for transistors based on native SiO2 SiNNs (full symbol)
and 8-nm alumina encapsulated SiNNs (empty symbol) for 20 µm (square) and 30 µm (triangle) long
channel. For native SiO2 SiNN based devices, no current is observed when the channel length is
30 µm. The on-to-off ratio (Ion = Ioff) is indicated by the dashed line. Ion and Ioff were extracted at
−25 V and +25 V, respectively. Reproduced from [47].

As a result, this study shows that proper material engineering of nanonets via alumina
encapsulation can drastically enhance the electrical characteristics of back-gate FETs.

At the same time, although silicon nanowires are considered promising for future
biomedical sensors, their limited stability under physiological conditions is a challenge for
sensor development. Solving this issue by surface engineering as described above opens
up new possibilities for sensor improvements [81,196,197].

However, as with thin films, the nanostructures composing the nanonet can be
functionalized with, for example, molecules or proteins. DNA sensors based on SiNN
have been achieved by chemically modifying the surface of nanonet with 3-aminopropyl-
triethoxysilane (APTES) silanization [28] or (3-glycidyloxypropyl)trimethoxysilane
(GOPS) [198]. Particularly, GOPS functionalization enables DNA electrical detection with
SiNN-FETs [199]. Additionally, silicon nanonet field effect transistors (SiNN-FETs) were
biomodified using thrombin-binding aptamer (TBA-15) [200] with the aim to detect throm-
bin protein. As an illustration, Figure 36 shows the shift in threshold voltage induced by
aptamer probes grafting on the SiNN surface. As a result, again it has been demonstrated
that the surrounding material can drastically change the characteristics of the SiNN-FETs.

8.2.2. Modulation Thanks to Functionalization under the Channel

As previously stated, the complex electronic mechanisms involved in electronic devices
are highly dependent not only on the energy barriers to conquer but also on the interface
traps, which can induce modification of the charge carrier density thus changing the
performances of the devices. The phenomena are poorly understood, and the roots of
changes are numerous ranging from the neutralization of surface defects, the modification
of the surface energy, and even the creation of interface dipoles. Celle et al. focused on the
control of the chemical nature of the interface between the gate oxide and the semiconductor,
the place where the conduction channel is established in FETs (back gate-bottom contact
structure Figure 37) [201].
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source-drain gold electrodes on the substrate, leading to excellent electronic performances 
of the organic field-effect transistor (OFET) on the same level as those using a standard 
electrode process. It has been demonstrated that the threshold voltage is tunable while 
keeping the other electrical properties nearly unchanged by functionalization of the sur-
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Figure 36. (a) SEM image of the Si nanonet (NN) after transfer on heavily doped Si substrate covered
with a 200 nm thick Si3N4. (b) High-resolution TEM (HRTEM) image displaying an Al2O3 passivated
Si nanowire. (c) Optical image of Al2O3 passivated SiNN field effect transistors (FETs) presenting
different channel geometries. (d) Transfer characteristics were obtained for an L = 100 µm, W = 100 µm
NN-FET at a drain voltage of Vds = −2 V before and after functionalization with thrombin-binding
aptamer (TBA-15). Reproduced from [200].
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They show that thiolated self-assembled monolayer (SAMs) can be used to anchor
source-drain gold electrodes on the substrate, leading to excellent electronic performances
of the organic field-effect transistor (OFET) on the same level as those using a standard
electrode process. It has been demonstrated that the threshold voltage is tunable while
keeping the other electrical properties nearly unchanged by functionalization of the surface
of the substrate under the channel (Figure 38). These self-assembled monolayers strongly
modify the OFET characteristics, leading notably to charge carrier mobility [201,202].

SAMs are known to generate a built-in electric field, which modifies the carrier density
in the transistor channel. For instance, it is seen that fluorinated SAMs have the tendency
to generate a local electric field that accumulates holes, and on the contrary, devices
with 3-aminopropyl-triethoxysilane (APTS), or triarylamine triethoxysilane derivative
(TAATS) accumulate electrons, leading to the need for a very large negative gate bias to
turn on organic semiconductor which is polytriarylamine (PTAA), into hole accumulation
mode. They have shown that this local electric field is related to the dipole moment of the
molecules [201,202].
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8.3. Silicidation

Silicidation was commonly used since the 1980s in MOSFETs in forming an alloy
between metal and silicon during an annealing process in order to decrease the electrical
contact resistance between the two materials. During this step, solid-state reactions occur
by diffusion and/or nucleation processes of the thermally activated species. Depending on
the experimental annealing conditions, different stable crystalline phases called silicides
can form and are denoted MxSiy with M the metal used. Silicon has the particularity of
associating with many metals, some of which are grouped in Table 3. Historically, the sili-
cides TiSi2, CoSi2, and more recently NiSi have been the most used by the microelectronics
industry for their low electrical resistivity ranging from 10 to 25 µΩ.cm [203]. Nevertheless,
Ti- and Co-based alloys require higher temperature annealing which may be responsible for
the deactivation of the dopants contained in the silicon and implies an increase in contact
resistance at the interface between silicide and Si [204]. Moreover, for some Co silicides,
Si is the dominant diffusion species, which causes the formation of gaps or voids in the
silicon. Following this phenomenon, the diffusion of Si gaps can also become considerable.
Thus, simultaneous flows of matter in one direction and of vacancies in the other lead to
the appearance of porosities within the silicon, a phenomenon commonly known as the
Kirkendall effect. This is probably one of the reasons why a high increase in the electri-
cal resistance of Co silicides is observed when the channel length of MOSFETs is below
50 nm [205,206].

Table 3. Properties of different silicides used in the microelectronics industry. Table adapted from
references [205,207,208]. Φbh corresponds to the barrier height on N-type silicon.

Silicide Formation
Temperature (◦C)

Crystalline
Structure

Resistivity
(µΩ.cm) Φbh (eV)

TiSi2 650 Orthorhombic 13–16 0.60
CoSi2 450 Cubic 18–20 0.64
PtSi 300 Orthorhombic 28–35 0.87
NiSi 400 Orthorhombic 10.5–18 0.75

For the reasons stated above, NiSi silicide is today widely used due to its low electrical
resistivity (10.5–18 µΩ.cm) as well as its lower formation temperature (400 ◦C). Further-
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more, Ni-based silicidation is a diffusion process in which Ni is the dominant diffusion
species [206]. While, contrary to Co silicides, the gaps generated during thermal annealing
are located in the metallic contact and avoid the appearance of porosities within the silicon.
Nevertheless, the complexity of the Ni-Si phase diagram presented in Figure 39 indicates
the difficulty to control, during annealing, the formation of the desired NiSi phase. Indeed,
many crystalline and stable phases at room temperature are likely to form [209]. Note that
the variations in resistivity from one phase to another are very large, ranging from 7 to
150 µΩ.cm (Table 4).
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Table 4. Formation temperature, crystallographic structure, electrical resistivity, unit cell volume per
Si atom (VNixSii/Si), and the ratio of this volume to that of Si (VNixSii/Si/VSi) of each room temperature
stable NiXSiy silicide [205,208]. UNK is the acronym for unknown.

Phase
Formation

Temperature (◦C)
Crystalline
Structure

Resistivity
(µΩ.cm) VNixSii/Si (Å

3
) VNixSii/Si/VSi

Ni - Cubic 7–10 - -
Ni3Si UNK Cubic 80–90 43.08 2.15

Ni31Si12 UNK Hexagonal 90–150 39.46 1.97
Ni2Si 200 Orthorhombic 24–30 32.15 1.61
Ni3Si2 UNK Orthorhombic 60–70 28.73 1.44
NiSi 400 Orthorhombic 10.5–18 24.12 1.21
NiSi2 800 Cubic 34–50 19.75 0.99

Si - Cubic Depend on
doping 20.01 1

Currently, the salicidation process [210] (a portmanteau for ‘self-aligned silicide’) is
used to achieve simultaneous silicidation of the source, drain. This technique consists in
forming the Ni2Si phase by diffusion of Ni during the first annealing between 270 and
350 ◦C. Then, after etching the excess of unreacted nickel, the NiSi silicide is formed after
second annealing between 400 and 550 ◦C [211]. According to Ottaviani, NiSi can only be
formed after consumption of the entire metal reservoir, which explains the need to etch the
excess Ni after the first annealing [212].
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It was shown that the NiSi phase can form a low resistive Si-Ni interface for a thermal
budget compatible with the specifications of today’s microelectronics industry.

Silicidation of Silicon Nanowires with Nickel

For silicon nanowires, the formation of a silicide also makes it possible to form an
abrupt interface over the entire cross-section of the nanowire between the silicide and the
nanowire, which facilitates the injection of the carriers. Indeed, the nickel penetrates over
the entire volume of the SiNW and then diffuses longitudinally. Otherwise, for non-silicided
nanowires, the injection of the carriers is less efficient since it is done radially through the
edges of the SiNWs. In addition, Chou et al. studied the kinetics of NiSi formation between
450 and 750 ◦C by in-situ transmission electron microscopy analyses [213,214].

Nevertheless, the NiSi phase is often accompanied by a Ni-rich phase that forms at
lower temperatures [215–217]. Other crystallographic studies have shown the possibility
of obtaining Ni-rich phases such as Ni31Si12 and Ni2Si for temperatures between 400 and
450 ◦C [176,218]. More surprisingly, NiSi2 silicide has been stabilized at low temperatures
between 440 and 550 ◦C while it forms at about 800 ◦C for bulk materials [175,176,218–220].
In order to evaluate the phases likely to form for a given temperature, Figure 40 represents
the minimum and maximum temperatures of formation of the different NixSiy silicides in
silicon nanowires from references reported in the literature.
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According to Figure 40 based on SiNWs, for an annealing temperature of about
400–450 ◦C, we can see that the Ni31Si12, Ni2Si, NiSi, and NiSi2 phases are likely to form,
i.e., a variation in electrical resistivity between 10.5 and 150 µΩ.cm (Table 4). Thus, obtaining
the NiSi phase in SiNWs is complex and the silicidation involves many parameters such as
the crystal orientation [176,218], the diameter of the nanowire [217], the thickness of the
nickel film [225], or the thickness of the oxide surrounding the nanowire [221]. According
to the work of Ogata et al. [220], the diffusion length of silicide in SiNW evolves with the
square root of the annealing time.

According to the literature carried out previously, the desired NiSi silicide of low
electrical resistivity is formed at a temperature of about 400 ◦C for massive materials
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(Table 4). In the context of NW silicidation, the complex growth mechanisms involved
do not allow to conclude on an optimal temperature and time for the formation of the
NiSi phase despite a rich literature on this subject. Nevertheless, according to the work of
Ternon et al. [48] and the studies of Byon et al. [182], an optimum of the electrical properties
can be distinguished for annealing at 400 ◦C which is consistent with the NiSi formation
temperature. Moreover, this temperature does not exceed the maximum temperature
allowed for integration on the back-end of a reading circuit.

To complete the silicidation study, the impact of silicide existence on the electrical
characteristics of SiNWs was also considered [226]. The main advantage of silicide contacts
over non-silicided contacts is better device performance by modifying the nature of the
metal–semiconductor interface, thus reducing series resistance [11,214,215,227]. Guillaume
Rosaz showed that the NiSi silicide, formed at 400 ◦C in the nanowires, lowers the height
of the Schottky barrier, thus favoring the injection of the carriers. The performance of the
transistors is significantly improved by an increase in current accompanied by a decrease
in subthreshold swing [3,11]. The thermally activated intrusion of nickel into the SiNW is
an inexpensive and robust, but not fully controlled, process. They demonstrated that the
silicidation reaction seems to be self-limited (see Figure 41c).
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Figure 41. (a) SEM view of a silicided contact after annealing at 400 ◦C under nitrogen gas during
300 s. The scale bar is 80 nm. (b) EDX picture of the contact presented in (a). Green color indicates
the presence of nickel. One can notice the propagation of the nickel in the SiNW after the annealing
step leading to the formation of a silicide. (c) Length of the silicided section obtained at 400 ◦C under
nitrogen gas in an RTA furnace as a function of the annealing time. Reproduced from [11].

The silicide region lessens the resistance of the contacts in two ways. First, the low
sheet resistance of the silicide layer reduces the in-plane contact resistance, and second, the
silicide reaction leads to an intimate and more reliable metal–semiconductor (MS) contact
and transforms the contact surface initially on the surface of the NW into a contact surface
on the cross-section of the NW. As a result, in terms of performance, the most substantial
properties of a silicide material are its low electrical resistivity and its lower Schottky
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barrier height [227,228]. Byon et al. also studied the impact of silicidation on the electrical
properties of transistors and observed an optimum between 400 and 450 ◦C after successive
annealing from 250 to 500 ◦C [182].

Figure 42 presents the transfer characteristics before and after annealing of a 20 µm
channel SiNN-FET elaborated with a density of 42 × 106 NWs cm−2 (drain-source bias of
−4 V). Before annealing, the device exhibits and the state of 9 nA and 0.7 pA respectively,
resulting in an on/off ratio of 104. After annealing, the state reaches 170 nA while the state
remains constant, corresponding to an enlarged on/off ratio >105 Such improvement by
one order of magnitude confirms the formation of a low resistive phase, enhancing hole
injection at the metal/SiNW contact.
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9. Applications

Silicon nanowires can be exploited in many ways in electronic devices and can find
numerous real applications such as displays, data storage, 3-D computing, lasers, smart
cards, wearable electronics, high efficiency programming, ring oscillators [6,31,168]. They
have so far shown promising applications in areas ranging from biological sensors, thermo-
electric convertors, opto-mechanical devices, piezoelectric sensors, and solar cells among
others. Describing all the potential applications is detail is far beyond the scope of this
review. However, dealing with devices without describing applications would leave a taste
of unfinished business. As a consequence, in this section, without being exhaustive, we
choose to summarize some basic applications for the simplest SiNW-based devices (resistor,
transistors, and diodes).

9.1. Photodetectors

Optical properties of SiNWs have allowed envisaging the use of SiNWs as optically
active materials for photonics application. The ease of bandgap conversion from indirect
to direct band due to dimension, crystallography, mechanical strain, and alloying allows
SiNWs to be used in the optical applications—e.g., photodetectors (PDs) and light emitters
(LEs). Since silicon nanowires have a superior ability to tune absorption with morphology,
Um et al. reported that SiNWs with a coating of an indium oxide layer on it, lead to efficient
carrier separation and collection, resulting in an improvement of quantum efficiency and
by controlling the nanowire radii, can create a multispectral detector [229].
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9.2. Memories

A self-alignment technique can be used to position the silicon nanowires, which could
allow for lower production costs than current flash memory cards. SiNW-based memory
devices showed better stability at higher temperatures, no power consumption in the
off-state, and very small switching energy (10−14 J) [230].

With the advent of new CMOS compatible fabrication methods for silicon nanowires,
it is now feasible to build memory and memristive devices. The SiNW-FET based dielec-
tric charge-trapping flash-like memories have been fabricated and fully characterized by
Zhu et al. (Figure 43c,d) [231].

These non-volatile memory devices exhibited fast programming/erasing speed, ex-
cellent retention, and endurance, indicating the advantages of integrating the multilayer
of charge-storage stacks on the nanowire channel. Such high-performance flash-like non-
volatile memory can be integrated into the microprocessor chip as the local memory which
requires high density and good endurance [231–233].
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parent substrate. Reproduced from [234]. (c) Schematic of a SiNW-FET-based charge-trapping
non-volatile flash memory; (d) TEM image of the cross section of a MATATOS device. Inset demon-
strates the typical thickness of the top gate stack. Reproduced from [231].

9.3. Biosensors

Sensors are important tools for life sciences and biochemistry. The use of sensors in
these areas leads to the detection and diagnosis of diseases and to the discovery of new
drugs [17,71]. Microelectronic sensors based on thin film transistors and ion-sensitive filed-
effect transistors (ISFETs) are used since the 1970s. They offered a cheap solution over the
chemical sensors and could be integrated on a chip [71]. Nevertheless, the microelectronic
sensors did not have the required characteristics to be used as biosensors because of their
undesired sensitivity to temperature and light and because their parameters were not fixed
over time. Additionally, solid-state electrodes were not reliable and this led to the use
of chemical sensors [71]. Currently, the detection of biomolecules at low concentrations
is achieved with fluorescent labeling and optical detection methods. However, this tech-
nique is expensive and time-consuming and thus silicon nanowires may be an alternative
solution [71,235].

Silicon nanowires can almost act as perfect biosensors due to their inherent prop-
erties [235]. When used as sensors, their characteristics include ultrahigh sensitivity
because the molecule being sensed depletes or accumulates the charges in the bulk of
the nanowire [17,235]. In addition, direct label-free detection allows the molecules to be
detected in real time which eliminates the time consuming labeling chemistry [17,23,71].
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Another important characteristic is that they are non-radioactive and that sensor arrays can
allow detection of different molecules in the same solution [23,71].

Although SiNW sensors have great characteristics there are factors that can affect
their performance. These include the surrounding environment of the nanowire and the
electrostatic screening action of the ions in the solution. The performance of a sensor can
be characterized by sensitivity, settling time, and selectivity. A simulation with a silicon
nanowire with a length between 2 and 20 µm showed how the sensitivity can be influenced
by several factors. The results showed that the sensitivity increases with reduced dopant
density and decreased diameter and length. However, it is not possible to reduce these
quantities as much as needed to achieve the maximum desired sensitivity due to the dopant
fluctuations effect. Furthermore, this simulation revealed that the dielectric constant of the
surrounding environment affects the sensitivity of SiNW. If the surrounding media is air
then the sensor has greater sensitivity if it is designed to operate in the depletion mode.
Finally, parasitic ions in the surrounding solution of the sensor screen the charge of the
target molecule and reduce sensitivity [71].

Experimental applications of SiNW sensors include the detection of proteins, DNA,
pH, drug discovery, single viruses, glucose, and arrays for parallel molecule detection, as
shown in Figure 44 [17,61,236].
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Figure 44. (a.1) The illustration of a nanoscale FET biosensor with a cross-sectional view. (b.1) When
positively charged target molecules bind the receptor modified on a p-type NW, positive carriers
(holes) are depleted in the NW, resulting in a decrease in conductance. Conversely, negatively charged
target molecules captured by the receptor would make an accumulation of hole carriers, causing
an increase in conductance. Reproduced from [174]. (a.2) Schematic of a single virus binding and
unbinding to the surface of a SiNW device modified with antibody receptors and the corresponding
time-dependent change in conductance. (b.2) Simultaneous conductance and optical data recorded
for a Si nanowire device after the introduction of influenza A solution. The images correspond to the
two binding/unbinding events highlighted by time points 1–3 and 4–6 in the conductance data, with
the virus appearing as a red dot in the images. Reproduced from [17].

9.4. Gas Sensor

Silicon nanowires can find applications as gas sensors too. As an example, this
was demonstrated for H2 sensing when the surface of an n-type SiNW was coated with
palladium nanoparticles (Pd particles). Good selectivity was demonstrated as no response
was observed when exposed to NH3 or N2O gases. However, when H2 gas flowed over the
sensor, the current flowing through was increased, as shown in Figure 45. Furthermore, the
SiNW sensor responded faster (2.3 s) than an ordinary macroscopic Pd wire sensor (more
than 10 s) [236].
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inside a chamber with a pressure of 0.01 Torr, and a voltage of 2 V was applied across it. Reproduced
from [236].

9.5. Thermoelectric Application

Thermoelectric devices can convert heat directly into electrical power, and vice versa,
and they have a broad range of applications: energy recovery and green energy harvesting;
energy micro-harvesting (scavenging) for the capillary supply of small systems, such
as sensor nodes for Internet of Things (IoT); powering of systems in remote and harsh
environments typical, for example, of spatial exploration; localized and optimized cooling
of small systems, where the reliability and the compactness can play a fundamental role [101,
237,238]. Unfortunately, the available materials with thermoelectric properties good enough
for an acceptable thermal-to-electrical conversion efficiency limit all of the potentialities
offered by thermoelectric devices at the current state of the art.

The observed high electrical and low thermal conductivity of highly doped SiNWs
arrays, shows that SiNWs arrays represent a promising material for thermoelectric applica-
tions. Hence, it could make a significant contribution in the fundamental fields of energy
micro-harvesting (scavenging) and macro-harvesting [101,237,238].

10. Conclusions

Semiconductor nanowires, especially silicon nanowires, have aroused a lot of scientific
interest over the past 25 years and have been considered a promising material for nanoscale
devices and integrated circuits. Key parameters in realizing application through a bottom-
up paradigm include chemical composition, structure, size, morphology, and doping which
have been fully controlled in semiconductor NW systems. Among semiconductor NWs,
silicon NWs—owing to their unique physical and chemical properties—show promise
for a wide range of applications, including FETs. However, such devices based on single
SiNWs face complicated fabrication processes and low reproducibility of their electrical
characteristics which originate from various issues such as dispersion in length, diameter,
and doping of individual nanowires, wire surface passivation, poorly controlled gate
length, or silicidation with the silicide length and quality arising from annealing step.

Researchers tried to solve these issues with multi-channel SiNW-based devices which
have better stability and reproducibility in comparison with single SiNW-based devices.
Apart from increased on-current in MPC-FETs, some other parameters include on-to-off
ratio or subthreshold swing degrade. This degradation occurs due to intrinsic disparities
of all parameters which have already been mentioned for single SiNWs such as length,
diameter, doping, and surface properties.

Silicon nanonets are networks of randomly oriented silicon nanowires. Due to its
flexibility, transparency, and reproducibility, this material is highly attractive as an alterna-
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tive to amorphous silicon or organic materials for various macro-electronic applications
involving sensors and displays. Based on the easy integration process simply relying on
standard photolithography, it has demonstrated successful workability, reproducibility,
and excellent air stability along with interesting performance for device channel length
ranging from micrometer to millimeter scales. SiNN-FETs also displayed good stability and
reproducibility which differentiates them from single SiNW- and MPC-FETs and which are
the results of averaging effect over thousands of nanowires and their junctions.

According to literature, the nanonet-based thin film transistor technology has the
respective advantages of poly-Si, a-Si, or organic material, without their particular draw-
backs, along with being flexible. Moreover, low-cost and large-scale technology is an
important asset of this material, in comparison to the issues surrounding the poly-Si option.
Furthermore, using nanostructures—such as a network of nanowires—allows electronics
to be smaller, more powerful, and more efficient. Finally, in conclusion, nanonets can
address the need for cost-effective, reproducible, and efficient systems to exploit nanoscale
properties while being easily manipulated and compatible with large-scale integration and
opening up many opportunities, both in terms of applications and fundamental studies, in
short, a new field of research.
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