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Abstract: Three novel small organic heterocyclic compounds: 2-(1,2-diphenyl)-1H-benzimidazole-
7-tert-butylpyrene (compound A), 1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene (com-
pound B), and 1,3,6,8-tetra(1,2-diphenyl)-1H-benzimidazolepyrene (compound C) were synthesized
and characterized for possible applications as blue OLED emitters. The specific molecular design
targeted decreasing intermolecular aggregation and disrupting crystallinity in the solid-state, in
order to reduce dye aggregation, and thus obtain efficient pure blue photo- and electrolumines-
cence. Accordingly, the new compounds displayed reasonably high spectral purity in both solution-
and solid-states with average CIE coordinates of (0.160 ± 0.005, 0.029 ± 0.009) in solution and
(0.152 ± 0.007, 0.126 ± 0.005) in solid-state. These compounds showed a systematic decrease in
degree of crystallinity and intermolecular aggregation due to increasing steric hindrance, as revealed
using powder X-ray diffraction analysis and spectroscopic studies. An organic light-emitting diode
(OLED) prototype fabricated using compound B as the non-doped emissive layer displayed an
external quantum efficiency (EQE) of 0.35 (±0.04)% and luminance 100 (±6) cd m−2 at 5.5 V with an
essentially pure blue electroluminescence corresponding to CIE coordinates of (0.1482, 0.1300). The
highest EQE observed from this OLED prototype was 4.3 (±0.3)% at 3.5 V, and the highest luminance
of 290 (±10) cd m−2 at 7.5 V. These values were found comparable to characteristics of the best pure
blue OLED devices based on simple fluorescent small-molecule organic chromophores.

Keywords: OLED; benzimidazole; pyrene; electroluminescence; optoelectronic applications

1. Introduction

Organic light emitting diodes (OLEDs) have been steadily present over the past
30 years, from a laboratory concept stemming from the pioneering work of Ching W. Tang
and Steven A. Van Slyke, to a leading technology in the consumer electronics market [1,2].
When compared to competing liquid crystal display (LCD) technology, OLED displays
offer advantages such as energy conservation, device mechanical flexibility needed for
curved electronic displays with broad viewing angles, outstanding picture quality due to
the absence of back-lighting, and small overall device thickness with significantly lower
weight [2,3]. The much shorter lifespan of OLED panels as compared to that of current
market leader LCDs, however, is still a formidable challenge, stemming in major part
from inferior performance of blue emitters [2–4]. Blue OLED emitters typically suffer
from inefficient charge injection and mobility, lower photo/thermal/chemical stability,
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and insufficient spectral purity as compared to red and green emitters in full-color RGB
(red, green, blue) electronic displays [4–6] The intrinsically wide HOMO-LUMO energy
gaps of blue emitters make charge injection from the electrodes/supporting organic layers
to the emissive layer more difficult. In addition, blue emitters are susceptible to rapid
degradation as a result of side-reactions from the high-energy excited state [4]. Therefore, it
is important to continue developing novel blue emitters that can potentially address these
inadequacies [4–7].

Several strategies are suggested to address the aforementioned inadequacies of blue
emitters. Such efforts include optimization of molecular design, OLED architecture, and
the exciton harvesting mechanism [4,5]. Interestingly, multifunctional molecular designs
are recognized as one of the most promising solutions. In this regard, hole and/or electron
transport moieties may be incorporated into blue emitters in order to facilitate proper
flux of charges to the emissive layer [4]. Multifunctional emitters are classified as p-type
(hole transporters) [8–11], n-type (electron transporters) [12–14], and bipolar (electron and
hole transporters) [15–17]. The use of multifunctional emissive materials could effectively
reduce the number of supporting organic semiconducting layers in OLEDs, e.g., charge
injectors and transporters, thus lowering the complexity and cost of OLED devices [4].

In this manuscript, we report the design, synthesis, and characterization of three novel,
structurally similar, multifunctional small organic molecules. These compounds are hybrids
of pyrene and benzimidazole derivatives, namely, 2-(1,2-diphenyl)-1H-benzimidazole-7-
tert-butylpyrene (compound A), 1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene
(compound B), and 1,3,6,8-tetra(1,2-diphenyl)-1H-benzimidazolepyrene (compound C),
presented in Figure 1. In designing these compounds, pyrene moieties were chosen to serve
as blue luminophores due to a number of favorable characteristics. In particular, pyrene
functional groups show resistance to photo- and thermal-degradation related to the high
chemical stability of the polyaromatic hydrocarbon (PAH) core, high fluorescence quantum
efficiency, favorable charge carrier properties, ease of synthesis/modification, and low
cost [7,18]. Due to these favorable characteristics, a vast number of pyrene derivatives
have been studied as emissive materials, charge injection materials, and charge transport
materials in OLEDs [7,18]. However, pyrene-derived pure blue OLED emitters are less
common owing to extensive π-π stacking of the nearly planar pyrene moieties in the
condensed state, resulting in excimer formation. This phenomenon produces a substantial
bathochromic shift in the pyrene derivatives’ emission spectrum, leading to greenish-blue,
bluish-green, or green emission in thin films [7]. In addition, pyrene aggregation accounts
for aggregation-caused quenching of the fluorescence emission, thus reducing the OLED
emission efficiency [3,7].

There are notable exceptions to the common aggregation-caused quenching situa-
tion. One example includes pyrene derivatives that exhibit aggregation induced emission
(AIE) [19,20]. Compounds displaying AIE phenomenon show enhanced emission in the
solid-state as a result of restricted intra-molecular motion. Strategies other than AIE to pre-
serve desirable optical characteristics of small-molecule pyrene derivatives include using
twisted structures to restrict π-π stacking for relatively small molecules [21,22], designing
polymers/oligomers/dendrimers with pyrene moieties placed in such a way that they
cannot aggregate effectively due to steric effects [23,24], and applying a suitable host matrix
to dilute pyrene derivative and diminish dye aggregation [25]. The novel compounds
discussed in this manuscript, however, are not AIE materials. Instead, our design utilizes
multiple phenyl and/or tertiary butyl groups attached to the pyrene-benzimidazole cores
of compounds A, B, and C. These groups were found to effectively reduce π-π stacking of
pyrenyl moieties in the solid-state by causing substantial steric hindrance. In addition to
further inducing steric hindrance, electron deficient benzimidazole moieties in the target
compounds were added in order to facilitate electron transport since these units are known
to possess electron transporting properties, particularly when conjugated to organic or
transition metal electron donors [16,26,27].
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Figure 1. Synthesis and structure of pyrene-benzimidazole derivatives, 2-(1,2-diphenyl)-1H-benzimidazole-7-tert-
butylpyrene (compound A), 1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene (compound B), and 1,3,6,8-tetra(1,2-
diphenyl)-1H-benzimidazolepyrene (compound C).

Compounds A, B, and C were systematically evaluated for morphological, photo-
thermal, optical, and electrochemical properties to assess the suitability of these molecules
as blue OLED emitters. As expected, compounds A, B, and C showed systematic reduc-
tion in degree of crystallinity due to increasing steric hindrance that prevents solid-state
crystalline packing of these compounds. As a result, an essentially pure blue emission was
observed from all three compounds in both solution and solid states. The spectroscopic
characteristics of these compounds were thoroughly investigated in both solution and
solid states. Since compound B showed the most suitable photophysical properties among
the three compounds investigated, a non-doped OLED prototype was fabricated using
compound B as the emissive material. As expected, this OLED prototype showed an
essentially pure blue electroluminescence with Commission Internationale de L’Eclairage
(CIE) coordinates of (0.148, 0.130). Other OLED performance characteristics including
power and current efficiencies and external quantum efficiency (EQE) were also evaluated
for this prototype.
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2. Experimental Section
2.1. Materials

Tetrakis(triphenylphosphine)palladium(0), 2-bromo-7-tert-butylpyrene, 1,3-dibromo-
7-tert-butylpyrene, 1,3,6,8-tetrabromopyrene, 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)phenyl]-1H-benzimidazole, and 2,6-dibromopyridine, and 1,3,5-tris(1-
phenyl-1H-benzimidazole-2-yl)benzene (TPBI, sublimed grade) were purchased from
Tokyo Chemical Industries Co. Ltd. (Portland, OR, USA). Bathocuproine (2,9-dimethyl-
4,7-diphenyl-1,10-phenanthroline, BCP) and N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-
biphenyl)-4,4′-diamine (NPB, sublimed grade) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Tetrabutylammonium hexafluorophosphate (TBAPF6) and ferrocene
(Fc) were purchased from Sigma-Aldrich (St. Louis, MO, USA), and potassium carbonate
(K2CO3) was purchased from Fisher Scientific (Fair Lawn, NJ, USA). Analytical grade
chloroform (CHCl3), tetrahydrofuran (THF), hexane, ethyl acetate (EA), 1,4-dioxane,
acetone, isopropanol, acetonitrile (ACN), and dichloromethane (DCM) were purchased
from Macron (Center Valley, PA, USA). High-purity aluminum (Al) and calcium (Ca)
with purity of 99.999% were purchased from Angstrom Engineering Inc. (Kitchener, ON,
Canada). Glass slides coated with indium tin oxide (ITO) with sheet resistance of 8–12 Ohm
square−1 were purchased from Delta Technologies (Loveland, CO, USA). Flash column
chromatography was performed on silica gel (Sorbent Technologies, 60 Å, 40–63 µm) slurry
packed into glass columns. Deionized water was obtained from an Elga model PURELAB
ultra water-filtration system.

2.2. Instrumentation

A scanning UV-vis spectrophotometer (UV-3101PC, Shimadzu, Columbia, MD) was
used to obtain absorption spectra and a HORIBA Spex Fluorolog-3-spectrofluorometer
(FL3-22TAU3, Jobin-Yvon, Edison, NJ) was used for steady-state fluorescent spectra, along
with quartz cuvettes (Starna Cells, Atascadero, CA, USA) with path lengths of 1 cm (for
solutions) and quartz slides for thin films (1mm, Ted Pella, Inc., Redding, CA, USA). The
entrance and exit slit bandwidths of this spectrofluorometer were maintained at 3–5 nm
for recording photoluminescence spectra. The same spectrofluorometer was used for
photostability experiments with entrance slit bandwidth maintained at 14 nm. Absolute
quantum yields of compounds were obtained using a Petite Integrating Sphere (Jobin-
Yvon, Edison, NJ, USA) installed in this fluorometer. A PTI Time Master TM-11/2005
lifetime spectrometer (Photon Technology International, Edison, NJ, USA) was used in
single photon counting experiments; LED excitation sources with wavelengths 297 nm (for
compounds B and C) and 340 nm (for compound A) were used in these experiments. Thin
films (75 ± 7 nm thickness) of compounds A, B, and C were prepared for spectroscopic
characterizations on clean quartz slides (Ted Pella, Inc., Redding, CA, USA) by spin coating,
using model WS-650MZ-23NPPB spin-coater (Laurell Technologies Corporation, North
Wales, PA, USA). For spin coating, dilute chloroform solutions (0.1–0.5 mM) were filtered
through syringe filters (0.1 µm pore size), and were spin-coated on clean quartz slides
(100 µL solution volume at 1500–2000 rpm, with 2 min spinning duration). A Hi Res
Modulated TGA 2950 Thermogravimetric Analyzer (TA Instruments, New Castle, DE,
USA) was employed to obtain thermal decomposition data. An Autolab potentiostat
(model PGSTAT 302N, Metrohm, Riverview, FL, USA) was used for cyclic voltammetry
analysis at room temperature, using a three-electrode system consisting of a platinum disk
(3 mm diameter) working electrode, Ag/AgNO3 non-aqueous reference electrode, and
a Pt wire counter electrode (CH Instruments, Austin, TX, USA). The reference electrode
was checked against ferrocene (Fc) standard each time before and after experiments were
performed, and the measured potentials were reported against the Fc/Fc+ redox potential
value. For cyclic voltammetry experiments, ACN or DCM solutions of TBAPF6 (1 mM)
were used as the supporting electrolyte. A Bruker Kappa APEX-II DUO diffractometer
(Bruker, Madison, WI, USA) was employed to perform single crystal X-ray diffraction
(XRD). A PANalytical Empyrean multipurpose diffractometer (Westborough, MA) with a
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copper anode was employed to obtain powder X-ray diffraction (PXRD) data. 1H NMR and
13C NMR spectra were recorded at 400 MHz and 100 MHz, respectively, and are reported
in ppm downfield from tetramethylsilane. High-resolution mass spectra (HRMS) were
obtained at the Louisiana State University Mass Spectrometry Facility using an Agilent
6230 ESI TOF and Bruker UltrafleXtreme MALDI TOF instruments.

OLED prototypes were fabricated using vacuum thermal deposition. An ultra-high
vacuum thermal evaporator (Nexdep series, mounted in a glovebox, Angstrom Engineering,
Kitchener, ON, Canada) was used to deposit metal and organic layers on ITO-coated
glass substrates using a previously reported procedure [28]. In brief, ITO-coated glass
substrates were cleaned by sequential ultra-sonication in an aqueous detergent solution,
DI water, acetone, and isopropanol. Then, these cleaned substrates were dried overnight
inside a glovebox and subjected to oxygen plasma treatment for 20 min under ambient
conditions. These oxygen plasma treated ITO coated glass substrates were returned to the
glovebox to prepare OLED prototypes by mounting them onto the sample holder inside
the VTE chamber. The base pressure of the VTE system was maintained at < 1 × 10−6

Torr throughout the material deposition process. Depositions of metals and organic layers
were performed through specially designed shadow masks with rates of 1 Å s−1 (organic
compounds), 0.3 Å s−1 (Ca), and 2 Å s−1 (Al). A Bruker Dektak XT stylus profilometer
(Bruker Nano Inc., Tucson, AZ, USA) was used to determine and calibrate the OLED layer
thicknesses. Electroluminescence spectra and performance characteristics of the OLED
prototypes were obtained using a PTI QuantaMaster4/2006SE spectrofluorometer (Photon
Technology International, Edison, NJ) combined with an integrating sphere (Labsphere,
North Sutton, NH, USA). A prototype OLED device was attached to an optical port of
the integrating sphere using a specially fabricated Teflon holder. A Keithley 2601 source
meter (Tektronix, Inc., Beaverton, OR, USA) was employed to control and measure the
current and voltage of OLED prototypes. The absolute total spectral flux measurement was
calibrated using a SCL-050 lamp standard (Labsphere, North Sutton, NJ, USA).

2.3. Computational Studies

All DFT and time-dependent DFT computations (at B3LYP/6-31G(d) level of theory)
were carried out using Gaussian 16 computational package running on a Windows-based
computer [29]. The geometry optimization was done in gas phase, and frequency calcula-
tions were performed on each optimized structure to ensure it was a true minimum.

3. Synthesis and Characterization

Synthesis of compound A is described here to provide a representative protocol.
An Airfree flask was charged with 2-bromo-7-tert-butylpyrene P1 (341 mg, 1.00 mmol),
1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-benzimidazole P2
(397 mg, 1.01 mmol), and tetrakis(triphenylphosphine)palladium(0) (120 mg, 0.1 mmol) in
a nitrogen atmosphere. Next, 1,4-dioxane (degassed, 80 mL) and an aqueous potassium
carbonate solution (degassed, 0.2 M, 20 mL) were added to the same flask. The reaction
mixture was stirred at 60 ◦C for 24 h under argon atmosphere in a sealed flask. Crude
product precipitated inside the flask as white needles upon cooling the reaction mixture to
room temperature. The crude product was isolated using vacuum filtration, followed by
air-drying at ambient temperature. Silica gel flash column chromatography purification
was performed on the crude product using ethyl acetate: hexane (2:3 v/v) as an eluent to
isolate pure compound A as colorless needles (332 ±37 mg, yield 58%). 1H NMR (CD2Cl2,
400 MHz, ppm): δ 8.31 (s, 2H), 8.14 (m, 4H), 8.09 (m, 2H), 8.04 (m, 1H), 7.93 (m, 2H), 7.83
(d, 1H), 7.71 (m, 3H), 7.59 (t, 1H), 7.51 (m, 2H), 7.40 (m), 7.35 (m, 2H), 1.64 (s, 9H); 13C
Proton Decoupled NMR (CD2Cl2, 100 MHz, ppm): δ 152.1, 149.4, 143.3, 141.3, 137.6, 137.5,
131.4, 131.0, 130.8, 130.1, 129.1, 128.7, 128.7, 128.4, 128.0, 127.8, 127.2, 123.8, 123.3, 123.2,
122.8, 122.5, 119.7, 110.5, 35.2, 31.6. HRMS (ESI-TOF) m/z 527.2417 [M+H]+ (calcd. for
C39H30N2 527.2409).
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A single crystal of the compound A obtained by crystallization of the reaction mix-
ture was analyzed using X-ray crystallography. The resolved structure included sol-
vent 1,4-dioxane co-crystallized with the compound A. Crystal Data for Compound A
(C39H30N2 + C4H8O2) are; (M = 614.75 g/mol): monoclinic, space group P21/n (no. 14),
a = 19.5670(4) Å, b = 6.09880(10) Å, c = 27.1657(6) Å, β = 98.2182(13)◦, V = 15,588.1(3) Å3,
Z = 4, T = 100.0(5) K, µ(CuKα) = 0.604 mm−1, Dcalc = 1.273 g/cm3, 31690 reflections mea-
sured (5.2◦ < 2θ < 136.6◦), 5870 unique (Rint = 0.0404) that were used in all calculations.
The final R1 was 0.0391 (I > 2σ(I)) and wR2 was 0.1048 (all data). CCDC 1902159 contains
the supplementary crystallographic data for this paper in CIF format. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed
on 23 September 2021), or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax:
+44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk.

For the synthesis of compound B, the molar ratio of 1,3-dibromo-7-tert-butylpyrene P3
and 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-benzimidazole
P2 used was 1.00:2.05. For the synthesis of compound C, the molar ratio of 1,3,6,8-
tetrabromopyrene P4 and 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl]-1H-benzimidazole P2 used was 1.00:4.05. The detailed synthesis protocols for
compound B and compound C are provided in the Supporting Information. Compound
B was a yellow solid (yield 67%) and compound C was a light brown solid (yield 65%).
Complete characterization data for B and C are provided in the Supporting Information.

4. Results and Discussion
4.1. Solid-State Morphology

Compounds A, B, and C were synthesized using Suzuki coupling protocol between
respective mono-, di-, or tetrabromopyrenes (P1, P3, or P4) and 1-phenyl-2-[3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-benzimidazole P2 (Figure 1). Powder
and/or single-crystal XRD experiments were performed for compounds A, B, and C
(Figure 2 and Figure S1 in the Supporting Information). The powder XRD data indicates
that compounds A, B, and C are predominantly amorphous, as their XRD plots display
two intense broad scattering bands at 2θ approx. 10◦ and 20◦, while displaying systematic
reduction of the intensity of sharp Bragg diffraction peaks stemming from the crystalline
phase (the Bragg peaks essentially disappear for the compounds B and C). Crystallinity,
determined as a ratio of integrated intensity of the Bragg diffraction peaks to the total
integrated intensity (Bragg peaks plus diffuse background) [30], was estimated at 40% for
a compound A sample, but only 5% for compound B, and zero—for compound C. The
observed decreasing crystallinity trend (i.e., A >> B > C) is correlated with a systematic
increase in the number of phenyl and/or 1-phenylbenzimidazole substituents in these
compounds (i.e., 3, 5, and 8 substituents in compounds A, B, and C, respectively). An
increasing number of large substituents hinders crystalline packing and disrupts π stacking
of the pyrenyl moieties by elevating steric hindrance, thus making the compounds more
amorphous in solid state. Generally, amorphous organic compounds are more suitable for
optoelectronic applications than crystalline compounds because amorphous compounds
lack non-linear optical, thermal, and electronic characteristics stemming from crystalline
anisotropy [31,32].

Since only compound A showed reasonable crystallinity in powder XRD data, we
were able to obtain acceptable quality single crystals, and single-crystal X-ray structure
was determined for the compound A (Figure 2).

Interestingly, solid-state packing of compound A (Figure S2 in the Supporting Infor-
mation) indicated that two neighboring A molecules are paired in a head-to-tail fashion,
with the closest intermolecular distance between two neighboring benzimidazole N atoms
being 5.5 (±3) Å. It is noted that among aliphatic and aromatic moieties attached to a
pyrene core to induce steric hindrance, the phenyl group that is attached to the N atom
(position 1) of benzimidazole unit is the most twisted moiety in the molecule. This phenyl
group is positioned nearly orthogonal to the rest of the molecule as shown in Figure 2, thus

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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causing additional twisting of the benzimidazole unit and resulting in the highest steric
hindrance to prevent stacking aggregation in the solid state. In addition to causing signifi-
cant steric restrictions for crystalline packing in the solid state, the bulky non-symmetrical
1-phenylbenzimidazole substituents may also induce existence of different conformational
isomers in solid state, that can also contribute to increasing amorphous character of the
solid-state phase. Since the number of benzimidazole-attached phenyl groups increases
from A to B, and to C, solid-state packing is drastically affected, as denoted by a shift in the
solid-state morphologies from more crystalline (compound A) to completely amorphous
(compound C).
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4.2. Photo and Thermal Stability

Organic blue emitters may undergo various degradation processes that affect them to
different extents [33–40]. OLED degradation is caused by external factors such as heat, light,
moisture, and oxygen. Internal factors that cause OLED degradation include fabrication
errors such as formation of pinholes and/or deformities, morphological changes that may
occur in organic layers, and excessive electrical stress in non-optimized designs. Some
organic materials are less chemically stable. For example, it has been reported that blue
phosphorescent emitters with strong electron withdrawing moieties (i.e., F, CN) and with
iridium metal centers are more susceptible to degradation when used in optoelectronic
devices [33–36]. Some polymeric blue emitters are also susceptible to delamination and/or
non-emissive ‘black’ spot formation as a result of morphological changes [37]. Heat gen-
eration as a result of OLEDs biasing due to Joule heating stems from a high resistance of
organic layers, and non-radiative recombination also contributes to OLED degradation [38].
Photodegradation of OLED emitters is induced by light in the presence of oxygen, and may
occur during material handling, device fabrication, and device operation [39,40]. There-
fore, among the aforementioned factors that may potentially lead to OLED degradation,
susceptibility to photo- and thermal degradation was evaluated for compounds A, B, and
C as a preliminary assessment of the stability of these compounds and their suitability for
OLED applications.

Photostability of compounds A, B, and C was evaluated using a previously reported
time-dependent kinetic fluorescence method [41]. In brief, thin films of compounds A,
B, and C on quartz plates were intensively irradiated with monochromatic light at their
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respective maximum absorbance (λmax) wavelengths for 100 consecutive minutes, while
recording the photoluminescence intensity fluctuations at the respective wavelengths
corresponding to emission maxima. Accordingly, λmax values used in this study for
compounds A, B, and C were 347, 372, and 400 nm, respectfully. It is assumed that any
decrease in the recorded emission intensity with increasing irradiation time is correlated to
the extent of photodegradation of the thin-film material. Accordingly, the percentage of
photodegradation for all compounds was estimated using Equation (1).

Photodegradation (%) =

(
1− I

I0

)
× 100 % (1)

where I is the emission intensity after intense irradiation of the thin films for a sufficient
time period to undergo substantial photodegradation and I0 is the initial emission intensity
(prior to irradiation). Bathocuproine (BCP), which is a well-known electron transport/hole
blocking compound, was used as the reference compound [39]. Resultant photodegradation
curves are presented in Figure 3. Under these experimental conditions, the reference BCP
showed the highest photodegradation, with an approximately 30% reduction of the initial
fluorescence intensity under the given experimental conditions (Figure 3). This high
photobleaching rate observed for BCP can be attributed to the high-energy excited state
of BCP, as indicated by its large HOMO–LUMO energy gap value, which leads to a high
susceptibility towards photo-induced degradation reactions [39]. Compounds A and C
showed a 16% and a 14% reduction of relative fluorescence intensity as compared to
BCP. In contrast, compound B displayed the lowest photobleaching, with only 7% of
relative fluorescence intensity decay among tested compounds under given experimental
conditions. Therefore, it can be assumed that compounds A, B, and C were reasonably
photostable with respect to the reference compound BCP. The exact structural reasons
for the observed relative photostability trend of compounds A, B, and C (A ≤ C < B) are
not clear. We notice that the LUMO energy in these compounds decreases in the order of
increasing photostability (–2.23 eV for A, –2.31 eV for C, and –2.56 eV for B, Table 4). The
LUMO energy may affect excited state reactivity of these compounds towards oxygen [42],
resulting in faster photooxidation rates for A and C. Photostability of organic compounds
generally depends on the interplay of many complex factors and susceptibility towards
various photobleaching mechanisms that are not yet fully understood [43].
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Resistance to thermal decomposition is vital for OLED emitters [35,38]. Therefore,
thermal stability of compounds A, B, and C was evaluated using thermogravimetric analy-
sis (TGA) [44]. Typical TGA experiments were conducted by heating a compound sample
(<5 mg) in nitrogen atmosphere from 25 to 600 ◦C at a constant rate (10 ◦C min−1). Since
thermal degradation of most organic compounds is associated with the formation of volatile
compounds, the temperature that corresponds to an onset of weight loss (<5%) is reported
as the onset decomposition temperature of the compound (Tonset), and it is determined by
using a step-tangent method [44]. The resultant TGA profiles of compounds A, B, and C
are provided in Figure S5 in the Supporting Information, and Tonset values are listed in
Table 1. Accordingly, compounds A, B, and C displayed substantial thermal stability with
Tonset values in the range of 308–467 ◦C. The Tonset trend for the compounds, C < B < A,
can be attributed to a gradual decrease of the relative fraction of the highly thermally stable
pyrenyl moiety in compounds A, B, and C (i.e., 38, 25, and 16%, respectively). Accordingly,
compound A with the highest percentage of pyrenyl fraction (38%) also showed the high-
est Tonset. In contrast, compound C with the lowest percentage of pyrenyl fraction (16%)
showed the lowest Tonset among these three compounds.

Table 1. Thermal and absorption spectra data summary for compounds A, B, and C.

Compound Tonset (◦C)
λmax (nm) FWHM

(nm)
ε × 104

(M−1cm−1)
Compound

Tonset (◦C)
Sol x Film Sol x Film

A 467
284
326
342

285
329
347

43
12
8

73
18
20

5.7

B 378
243, 259 y

293
366, 351 y

N/A
296
372

42
41
47

N/A
87
61

4.6

C 308
242

303, 293 y

378, 396 y

N/A
309
400

58
44
53

N/A
55
74

3.7

x In DCM solution (10 µM), y Prominent shoulder peak maxima, N/A: Not available within the scanned
wavelength range.

4.3. Spectral Properties in Solution and in Solid State

Normalized UV-vis absorption and photoluminescence spectra of compound B and
synthetic precursors of compound B, i.e., pyrene derivative (P3) and benzimidazole deriva-
tive (P2), in DCM solution (5–10 µM) are presented in Figure 4. Similarly, absorption
and photoluminescence spectra of compounds A and C, and their respective synthetic
precursors were recorded in DCM (5–10 µM) and are shown in Figures S3 and S4 in the
Supporting Information. It is noted that spectral characteristics of compounds A, B, and
C are complex and could be attributed to both pyrene and benzimidazole components
(Figure 4 and Figures S3 and S4 in the Supporting Information). For example, absorption
and photoluminescence spectral features of compound B show similarities to those of its
synthetic precursors (Figure 4). The absorption spectrum appears as a superposition of
the pyrene and benzimidazole spectral features. Nevertheless, detailed features in the
spectrum are unique in terms of shape, relative peak intensities, and peak positioning.
For example, the absorption spectrum of compound B shows a much less pronounced
fine vibronic structure compared to the spectra of its synthetic precursors. The additive
characteristic of the absorption spectrum of compound B clearly indicates low extent of
π-electron delocalization between pyrene and benzimidazole chromophores so that the
two chromophores behave as electronically isolated entities in the molecule of B. This
observation is also confirmed using the X-ray single crystal structure of the related com-
pound A where a significant twist can be found between the pyrene and benzimidazole
units in the molecular structure (Figure 2 and Figure S2 in the Supporting Information). In
contrast to the additive characteristic of the absorption spectrum, the photoluminescence
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spectrum of compound B closely resembles the pyrene emission band (albeit with a less
pronounced vibronic structure), and there was no benzimidazole emission band observed
(Figure 4). This could be explained by considering an efficient intramolecular excitation
energy transfer between the higher-energy benzimidazole and the lower-energy pyrene
chromophores via the dipole-induced dipole Förster mechanism. Indeed, there is a strong
overlap between the emission band of the benzimidazole compound P2 and the absorption
band of the pyrene compound P3, that should facilitate energy transfer by this mechanism.
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and its synthetic precursors: pyrene derivative (P3) and benzimidazole derivative (P2) in DCM.

Figure 5 shows a comparison of the normalized absorption and photoluminescence
spectra of pyrene-benzimidazole derivatives (compounds A, B, and C) in dilute DCM
solutions (1 µM–10 µM), as well as in thin films on quartz. All three compounds showed
multiple absorption peaks corresponding to multiple electronic transitions, with or without
distinguishable vibronic features (i.e., shoulders, peak clusters). The absorption maxima
(λmax) values for compounds A, B, and C are summarized in Table 1 for solution and
solid states. It is noteworthy that a systematic red-shift of λmax values was observed for
compounds A, B, and C, in particular for the lowest energy absorption band. This could be
due to the increasing contribution of the extended conjugation in these compounds with
the increasing number of benzimidazole units. In solid-state, the absorption spectra were
broadened as denoted by the increase in the full lengths of half maxima (FWHM) values.
For example, FWHM values of the lowest energy absorption bands were broadened by
12–21 nm for compounds A, B, and C in the solid-state relative to solution (Table 1). In
addition, the solid-state absorption bands were red-shifted. For example, the lowest energy
absorption bands were bathochromically shifted by 4–6 nm for compounds A, B, and C in
the solid-state as compared to the corresponding solution spectra (Table 1). These spectral
changes in the solid-state suggest that despite the steric hindrance caused by the bulky
substituent groups, compounds A, B, and C still demonstrated some propensity (albeit not
very strong) towards aggregation in the solid state.

Combined photoluminescence spectra for compounds A, B, and C are also presented
in Figure 5 for both solution and solid states, and a summary of photoluminescence
characteristics is provided in Table 2. As discussed above, photoluminescence spectra
of all three compounds display a single broad band corresponding to emission from the
pyrene chromophore. While this band shows a distinct vibronic structure in the solution
state, no such structure was observed in the solid-state, suggesting noticeable pyrene
chromophore aggregation in the solid-state [45]. Emission maxima (λmax) values recorded
in DCM solution were found in the range of 395–424 nm. In solid-state, the λmax values
ranged from 452 nm to 456 nm (Table 2). Thus, the solid-state photoluminescence spectra
of compounds A, B, and C were red-shifted relative to solution by 61 nm, 58 nm, and
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30 nm, respectively. The values of λmax in solid state for all three compounds were
relatively close, resulting in systematic reduction of the Stokes shifts, and suggesting a
smaller extent of aggregation for the compound C as compared to the compounds A
and B. Simultaneously, a systematic reduction of peak broadening was observed in the
solid-state, as indicated by a gradual decrease in FWHM values (81 nm, 72 nm, and 52 nm
for the compounds A, B, and C, respectively). Hence, this further confirms a gradual
reduction of the pyrene chromophore aggregation in the solid state, in agreement with
the initial design plan discussed in Section 4.1. It is important to note that despite the
observed bathochromic shift and broadening of the emission bands in the solid state, all
three compounds displayed emission values that were characteristic of pyrene monomer
and not of pyrene excimer. Thus, we can conclude that our design approach was viable for
targeting minimization of intermolecular stacking, disruption of crystalline packing, and
decreasing pyrene chromophore aggregation in compounds A, B, and C.
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As photoluminescence of these compounds originated from the non-aggregated
pyrene chromophore emission, it was primarily confined to the violet-blue region (in
DCM) and blue region (in solid-state) of the electromagnetic spectrum (EMS). The color
of these compounds has been assigned in accordance to CIE coordinate values that are
listed in Table 2. In summary, compounds A, B, and C have average CIE coordinates
of (0.160 ± 0.005, 0.029 ± 0.009) in DCM solution and (0.152 ± 0.007, 0.126 ± 0.005) in
solid-state. These CIE coordinates comply with the general criterion for blue emitters,
where y < 0.150 and (x + y) < 0.300 [5]. These values slightly deviate from the National Tele-
vision System Committee (NTSC) and European Broadcast Union (EBU) standards since
these require average CIE coordinates of (0.150 ± 0.010, 0.07 ± 0.010) for blue emitters in
electronic displays [4]. Nonetheless, many blue emitters of significant commercial interest
(i.e., emitters that show high OLED device performance) often have CIE coordinates that
are not fully compliant with NTSC/EBU standards [46–48]. Solid-state emission spectra of
compounds A, B, and C also show negligible emission in the near-UV region of the EMS.
Since electronic screens frequently interact with human eyes, the emission in the near-UV
range from electronic screens can harm eyes through development of conditions such as
corneal sunburn, pterygium, and cataract that can ultimately lead to blindness. Therefore,
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blue emitters that do not emit UV light, e.g., compounds A, B, and C, would be safer for
human eyes if used in electronic displays [49].

Table 2. Summary of emission properties of compounds A, B, and C.

Compound λmax (nm) FWHM (nm) Stokes Shift
(cm−1 × 103) PLQY CIE Coordinates (x,y)

Sol x Film Sol x Film Sol x Film Sol y Film Sol x Film

A 395 456 45 81 3.9 6.9 48 35 0.1620,
0.0197

0.1483,
0.1214

B 396 452 43 72 2.1 4.8 71 51 0.1635,
0.0306

0.1482,
0.1300

C 424 454 49 52 1.2 3.0 98 56 0.1548,
0.0373

0.1600,
0.1275

x In DCM solution (1µM), y Measured in acetonitrile: DCM (4:6 v/v) solvent mixture.

The origin of the emission spectra as fluorescence stemming from the lowest-energy
pyrene S1 state, and thus unlikely participation of a triplet T1 state was confirmed by DFT
computational studies, and was corroborated in emission lifetime experiments (vide infra).
Specifically, geometry optimizations of compounds A, B, and C were carried out for the
ground state singlet S0 and triplet T1 states using DFT computations at B3LYP/6-31G(d)
level of theory, and the optimization of the excited state S1 was done using time-dependent
DFT computations at the same level of theory. The results of the computational studies
are summarized in Table 3. They indicate that there is a significant S1–T1 energy gap
ranging from 1.26 eV for compound A to 0.93 eV for compound C. Such a large singlet-
triplet energy gap would preclude both population of the T1 state through a forbidden
intersystem crossing process, and participation of the T1 state in fluorescent emission
process (e.g., in delayed fluorescence, etc.).

Table 3. DFT computational studies on singlet and triplet excited statesa, lifetimes, and fluorescence
rate constant kfl for compounds A, B, and C.

Compound
Energy (eV) b S1–T1 Energy

Gap (eV)
Lifetime
τfl (ns) c kfl (s) d

S1 State T1 State

A 3.37 2.11 1.26 e 5.74 8.36 × 107

B 3.12 1.94 1.18 4.12 1.72 × 108

C 2.67 1.74 0.93 2.08 4.71 × 108

a The full geometry optimizations were carried out in gas phase using DFT (for S0 and T1 states) and time-
dependent DFT (for S1 state) at B3LYP/6-31G(d) level of theory. b Relative to ground (S0) state. c Measured in
DCM; excitation wavelength 340 nm (for compound A), and 297 nm (for compounds B and C). d Calculated as
PLQY/τfl. e The biexponential decay was detected, with a second component at 0.53 ns.

4.4. Photoluminescence Quantum Yield (PLQY) and Lifetime Measurements

PLQY is the ratio of emitted photons to absorbed photons for a fluorophore and is
influenced by factors such as optical characteristics, molecular rigidity, and inter/intra
molecular interactions [50]. It is noted that a dye with a high PLQY may not necessarily
exhibit high electroluminescence when used as an emitter in an OLED device and may
even not exhibit similar emission behavior (i.e., emission peak shape, intensity, position,
efficiency, etc.). This may be due to the differences in emissive and/or quenching mecha-
nisms of photo- and electroluminescence, influence of other semiconductor layers within
the device, device architecture, as well as physical and electrical properties of the emissive
layer [51,52]. Nevertheless, compounds with low PLQY values typically do not show
efficient electroluminescence. Therefore, it is important to estimate PLQY values of com-
pounds A, B, and C, to further understand the optical characteristics of these compounds
and evaluate their suitability for OLED applications. Accordingly, absolute PLQY values
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were measured using an integrating sphere for solutions and thin films deposited on quartz
slides [53]. The resultant PLQY values of compounds A, B, and C are presented in Table 2.
It is noteworthy that all three compounds show substantial PLQY values in both solution
and solid state, and they increase in the following order: A < B < C.

We also studied emission lifetimes in dilute DCM solutions using a single photon
counting method (Table 3). All three compounds displayed relatively short lifetimes consis-
tent with normal fluorescence from an S1 state, and indicating unlikeliness of participation
of the more exotic mechanisms involving triplet state (e.g., delayed fluorescence). There
was a clear trend of decreasing emission lifetime in the order A > B > C; this trend was
commensurate with the increasing number of benzimidazole substituents at the pyrene
chromophore. The larger number of substituents could contribute to vibronically coupled
non-radiative deactivation of the excited state, and thus reduce the emission lifetime.

Using the experimental values of photoluminescence quantum yields and emission
lifetimes, we also calculated fluorescence rate constants kfl (Table 3). There is a clear trend of
increasing kfl in the order A < B < C, which explains the experimentally observed trend in
increasing PLQY in the same order. The PLQY values were lower in solid-state relative to di-
lute solution, suggesting that some quenching occurs in the solid-state due to chromophore
aggregation, as was also revealed in the spectroscopic studies described above.

4.5. Electrochemical Properties

Equations (2) and (3) were used to calculate HOMO and LUMO energies of com-
pounds A, B, and C from cyclic voltammetry (CV) data, which is a common experimental
method for estimating the highest occupied molecular orbitals (HOMO) and the lowest
unoccupied molecular orbitals (LUMO) energies of organic semiconductors [54]. The
cyclic voltammograms obtained for compounds A, B, and C are presented in Figure S6 in
the Supporting Information. The experimentally obtained energies of frontier molecular
orbitals are listed in Table 3. All three compounds showed quasi-reversible oxidation peaks
(Figure S6 in the Supporting Information). Furthermore, compounds A and B showed two
distinguishable peaks with prominent shoulders. These multiple oxidation peaks can be
attributed to separate oxidation of the imidazole and pyrene units. The electrochemical
potential window for ACN (used for compounds A and B) was wider than DCM (used for
compound C); therefore, only the first oxidation was recorded for the compound C. The
onset of oxidation and reduction waves as obtained from cyclic voltammograms can be
used for estimating oxidation (Eox) and reduction (Ered) potentials [52]. For molecules with
quasi-reversible cyclic voltammograms and showing only oxidation peak(s), the LUMO can
be estimated using an optical energy gap (Eg) and the HOMO values, which are obtained
experimentally from CV data (Equations (2) and (3)).

HOMO (eV) = −1e [Eox + 4.71] V (2)

LUMO (eV) = Eg −HOMO (eV) (3)

The Eg values for compounds A, B, and C were determined using UV-vis absorption
spectra and hence referred to as an optical energy gap. This simple Eg calculation method is
widely used for organic semiconductor materials through employment of Equation (4) [55].
This method is based on the hypothesis that the higher wavelength onset of the absorption
spectrum corresponds to the minimum energy required to promote a ground state (HOMO)
electron to the first excited state (LUMO), which is true for many small organic molecule
semiconductors.

Eg (eV) = hf = h·
(

c
λonset

)
=

1240
λonset

(4)

where h is Planck’s constant (6.626 × 10−34 J s), c is speed of light in vacuum
(3.00 × 10−8 ms−1), and λonset is the wavelength of the absorption onset (nm). The
value of (h × c) is also a constant (1240 eV. nm). Accordingly, HOMO and LUMO energies
calculated using the aforementioned methods for compounds A, B, and C were estimated
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to be in the respective range of –5.10 to –5.56 eV and –2.23 to –2.56 eV (Table 4). It
should be noted that Eg gradually decreases with the increasing number of benzimidazole
moieties, likely due to the more extended electronic conjugation. The experimental Eg
values showed good correlation with the DFT calculated S1 excited state energies (Table 3).
The HOMO and LUMO energies for these compounds were also in a range in which
it would be relatively easy to find energetically matching and commercially available
supporting organic semiconductors (i.e., charge transporters/injectors/blockers) and the
work functions of most metal electrodes, making it easier to integrate these compounds
into traditional OLED architectures [56].

4.6. Characterization of an OLED Prototype with Compound B as an Active Layer

Compound B, which exhibited the best overall combination of photo-physical charac-
teristics, was used to fabricate an OLED prototype for preliminary evaluation of the OLED
performance. Although using an electroluminescent material as dopant in a host matrix
(doped device) may enhance the efficiency of OLED devices by controlling aggregation
induced quenching, introducing favorable host-dopant energy transfer, and improving
charge transport through the active layer, a non-doped device is simpler to fabricate, and it
is also more reflective of electronic properties of the material. Thus, a non-doped OLED
prototype was fabricated at this preliminary stage to reduce device complexity and study
the electroluminescence characteristics of the emitter itself.

Table 4. Summary of the electrochemical properties of compounds A, B, and C.

Compound Eg (eV) HOMO (eV) LUMO (eV)

Compound A y 3.16 −5.39 −2.23
Compound B y 3.00 −5.56 −2.56
Compound C z 2.79 −5.10 −2.31

BCP 3.65 x −6.61 x −2.95 x

x These values were obtained from [56]. y In ACN solvent. z In DCM solvent.

An optimized OLED prototype was fabricated using vacuum thermal deposition
with the following device configuration: ITO (140 nm)/NPB (30 nm)/Compound B
(30 nm)/TPBI (30 nm)/Ca (10 nm)/Al (100 nm), as schematically shown in Figure 6A.
NPB is N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine, and TPBI is 1,3,5-
tris(1-phenyl-1H-benzimidazole-2-yl)benzene). Here, NPB and TPBI were used as hole
and electron transport layers, respectively; ITO and Ca were electrode materials, and
compound B was the non-doped emissive layer (the energy diagram of the device is shown
in Figure 6C). In this device, no separate electron blocking layer was used, in order to
examine electron and hole transporting ability of the compound B.

This OLED device showed a blue electroluminescence with λmax at 454 nm, while
turning on at 3 V. CIE coordinates of the electroluminescence spectrum were identical to
that of the solid-state photoluminescence (0.1482, 0.1300), implying blue emission with
substantial spectral purity.

The performance of this OLED prototype was assessed by determining current den-
sity, luminance, power and current efficiencies, and external quantum efficiency (EQE) in
accordance with previously reported protocols [3,57]. At a typical for electronic devices
applied voltage of 5.5 V, the EQE, which is the ratio of emitted photons into the viewing
direction to injected charges, was recorded at 0.35 (± 0.04) %. At the same applied voltage,
luminance, or the amount of light emitted per unit surface area of OLED weighed by the
visual response of the human eye, was measured at 100 (± 6) cd m−2, and power and cur-
rent efficiencies, which provide insights into energy consumption and light emitting ability
of an OLED, were recorded as 1.2 (±0.6) lm W−1 and 0.17 (±0.2) cd A−1, respectively. The
OLED performance plots of this prototype are provided in Figure 7. The observed lumi-
nance substantially increased upon increasing applied voltage, reaching 290 (±10) cd m−2

at 7.5 V. On the other hand, the EQE was at a maximum value of 4.3 (±0.3) % at 3.5 V and
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gradually decreased at the higher applied voltage primarily due to the rapid increase in
the current density. These values are comparable to characteristics of the better blue OLED
devices based on simple small-molecule organic chromophores.
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Structure of the device is shown in Figure 6A.

A comparison of photoluminescence (in DCM solution and in thin films) and electro-
luminescence (in the OLED prototype) of compound B is presented in Figure 8. It is noted
that the luminescence in solid state (both photo- and electroluminescence) may be affected
by the chromophore aggregation as denoted by the band broadening and red-shifting, as
compared to the solution luminescence. Interestingly, this red-shifting of the luminescence
band brought the emission precisely in the blue range, with a negligible overlap with
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near-UV region of the electromagnetic spectrum. It is noteworthy that the solid-state photo-
luminescence and electroluminescence were nearly completely superimposable, suggesting
emission from the same pyrene chromophore regardless of the excitation method.
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5. Conclusions

Three novel organic blue emitters were synthesized using Suzuki coupling. Com-
pounds A, B, and C showed a systematic decrease in degree of crystallinity, as elucidated
by powder X-ray diffraction analysis. Due to specific molecular design aimed at preclud-
ing extensive aggregation and preventing crystallization in solid state, these compounds
displayed an essentially pure blue emission in the solid-state. This emission behavior was
in stark contrast to many pyrene derivatives reported in the literature, which typically emit
a bluish-green or greenish-blue fluorescence as a result of excessive solid-state aggregation
and excimer formation. Spectroscopic characteristics, such as absorption, photolumines-
cence, and quantum yield, as well as electronic properties of these novel compounds
were found suitable for optoelectronic applications. An OLED prototype, fabricated using
compound B as the non-doped emissive layer, displayed a blue electroluminescence corre-
sponding to CIE coordinates of (0.1482, 0.1300), with an external quantum efficiency of 0.35
(±0.4)% and luminance of 100 (±6) cd m−2 measured at 5.5 V. Future directions for this
research will involve evaluation of OLED prototypes with doped emissive layers consisting
of these materials by embedding them in a suitable host matrix to potentially improve the
device performance, as well as fabrication and evaluation of the OLED prototypes with
compounds A and C.

Supplementary Materials: The following are available online. Figure S1. Powder XRD data for
comp; Figure S2. Molecular packing of compound A in the unit cells derived from single-crystal XRD;
Figure S3. Normalized UV-vis absorption (Abs.) and photoluminescence (PL) spectra of compound
A, and its parent compounds: pyrene derivative (P1) and benzimidazole derivative (P2) in DCM;
Figure S4. Normalized UV-vis absorption (Abs.) and photoluminescence (PL) spectra of compound
C, and its parent compounds: pyrene derivative (P4) and benzimidazole derivative (P2) in DCM;
Figure S5. TGA profiles of compounds A, B, and C; Figure S6. Cyclic voltammograms of compounds
A, B, and C in 0.1 M TBAPF6 in CH2Cl2/acetonitrile (potential vs. Fc/Fc+).
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