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ABSTRACT: We propose a machine learning (ML)-based strategy
for an inexpensive calculation of excitonic properties of light-
harvesting complexes (LHCs). The strategy uses classical molecular
dynamics simulations of LHCs in their natural environment in
combination with ML prediction of the excitonic Hamiltonian of the
embedded aggregate of pigments. The proposed ML model can
reproduce the effects of geometrical fluctuations together with those
due to electrostatic and polarization interactions between the
pigments and the protein. The training is performed on the
chlorophylls of the major LHC of plants, but we demonstrate that
the model is able to extrapolate well beyond the initial training set.
Moreover, the accuracy in predicting the effects of the environment is
tested on the simulation of the small changes observed in the absorption spectra of the wild-type and a mutant of a minor LHC.

1. INTRODUCTION
Photosynthetic light harvesting is made possible by aggregates
of pigments embedded in a protein matrix, the light-harvesting
complexes (LHCs). The pigments in LHCs are responsible for
both absorbing sunlight and funneling the resulting excitation
energy toward the reaction centers.1−3 Their photophysics is
the result of the interactions between the pigments and the
interactions between each pigment with the embedding
protein. The interaction with the protein matrix shapes the
individual energies of each pigment, also called site energies,
whereas the closely spaced arrangement of pigments enables
excitonic coupling between them. These two parameters tune
the optical properties of LHCs, resulting in rich and complex
spectra of the multichromophoric aggregate as compared to
the single chromophore.4−7 In addition, they determine the
regime and direction of excitation energy transfer (EET)
within individual LHCs and among different LHCs in the
photosynthetic machinery.8,9

Modeling LHCs is extremely challenging, as they combine
the complexity of proteins with the intrinsic quantum nature of
the light response of the multichromophoric aggregate.10 A
very effective strategy to get through these difficulties is to use
classical molecular dynamics (MD) simulations to generate
conformational ensembles of LHCs at the desired external
conditions, in combination with hybrid quantum mechanics
(QM)-classical descriptions of the embedded aggregate. In
particular, methods coupling atomistic molecular mechanics
(MM) to QM descriptions (QM/MM) have been shown to be
successful in describing LHCs.7,11−15 Within QM/MM, the
environment interacts with the QM subsystem through
electrostatic interactions of a classical nature. In its standard

formulation, known as electrostatic embedding QM/MM (EE-
QM/MM), each MM atom is assigned a fixed charge (i.e., the
charge it has in a classical MM force-field (FF)), and the
corresponding set of MM point charges interacts with the
electrostatic potential of the QM part. This results in a
polarization of the QM system, but it completely discards the
polarization of the MM part due to the presence of the QM
molecule. This contribution can be recovered by making the
MM environment polarizable, in what is known as polarizable
embedding QM/MM (QM/MMPol). Here, the mutual
polarization between the QM and MM subsystems is included,
which plays a key role in the description of biological
matrices.16

When modeling LHC, QM/MM(Pol) calculations should
be run for many configurations along the dynamics in order to
recover the distributions of site energies and couplings with
reasonable statistical uncertainty.7 While the above strategy is
known to work well for a variety of systems, its fundamental
limitation is the computational cost. In recent years, several
authors have tried to bypass the computational cost of
expensive QM calculations by exploiting machine learning
(ML) techniques. Some works focused on obtaining estimates
of excitation energies and couplings in vacuum.17−20 Inclusion
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of the environment effects poses further challenges, and several
works have tried to include these effects, either in excited-state
properties21,22 or by developing ground-state QM/MM
potentials.23−29

In a previous work30 we have presented a ML approach to
estimate excitonic couplings in LHCs with an accuracy
comparable to that of the reference time-dependent density
functional theory (TD-DFT) calculations while being orders of
magnitude faster. In this work we develop a model for
estimating site energies, thus providing a ML estimate for the
full exciton Hamiltonian. The ML model employed is Gaussian
Process Regression (GPR).31 GPR is a powerful nonlinear
regression algorithm widely employed in the literature.32

Although more complex models like neural networks (NNs)
are known to scale better with large amounts of training data,
GPR models generally perform as well as NNs on small

datasets, with the advantage of being more transparent to the
user. Furthermore, by manipulating the kernel of a GPR model
it is possible to build physical constraints directly inside the
model, facilitating the learning process considerably. Rather
than building a single model for predicting the excitation
energies of the embedded pigments, we exploit the freedom in
composing the GPR kernel to develop a sequential strategy.
Namely, we first model the excitation energies in vacuo and
then add on top of those the corrections for the electrostatic
and polarization effects due to the environment.
As an example, we consider the aggregate of chlorophylls

(Chls) present in various LHCs: the major light-harvesting
complex II (LHCII) of plants, the minor antenna CP29, and
the light-harvesting complex stress-related 1 (LHCSR1) of
mosses. We train our ML model on Chl a and Chl b pigments
embedded in LHCII and show its performance for CP29 and

Figure 1. Overview of the ML models developed in this work. (a) Summary of predictions of the ML models: (i) vacuum, (ii) electrostatic
embedding (EE), and (iii) polarizable embedding. (b) Vacuum ML model. The internal geometry of the pigments is encoded as a Coulomb Matrix
and a nonlinear kernel κvac. A Gaussian Process Regression (GPR) model is fit to reproduce the vacuum excitation energies ϵvac (yellow squares),
solving for αvac. Predictions ϵv̂ac are drawn from a Gaussian process (GP) with posterior mean μvac′ and covariance κvac′ . (c) Electrostatic embedding
ML model. The internal geometry of the pigments is encoded analogously to the vacuum case. MM electrostatic potentials are used as additional
features with a linear kernel. The linear and nonlinear kernels are combined into the resulting κshift kernel. A GPR model is fit to reproduce the
electrochromic shift ϵshift = ϵQM/MM − ϵvac (blue squares), solving for αshift. Predictions ϵŝhift are drawn from a GP with posterior mean μshift′ and
covariance κshift′ . (d) Polarizable embedding ML model. The additional contribution is estimated via a TrEsp representation of the QM charge
distribution ρtr, where TrEsp charges are estimated through a linear model as explained in ref 30. (e) A representation of the system used to
construct the training dataset. LHCII protein is represented in blue, chlorophylls a and b are represented in yellow, carotenoids are represented in
orange, and membrane is represented in pink.
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LHCSR1. We further showcase two example applications for
the analysis of LHCs: the estimation of the influence of protein
residues on the excitation energy of Chls, and the calculation of
the absorption spectrum of CP29 and one of its mutants
(CP29-H111N). The ML models presented here and in ref 30
are implemented in a Python package, excipy, available for
download under the LPGL license agreement33 (https://
github.com/Molecolab-Pisa/excipy).

2. METHODS
The excited states of multichromophoric systems can be
described within the (Frenkel) exciton model. In the exciton
model, the excited states of the system are represented as linear
combinations of excited states localized on each chromophore.
Assuming for simplicity that each chromophore contributes
with one excitation, the resulting Hamiltonian reads

= | | + | |I I V I J
I

I
I J

IJex
(1)

where ϵI is the excitation energy of the state localized on
chromophore I, also called site energy, and VIJ is the electronic
coupling between the transitions of pigments I and J. Site
energies can be obtained from QM/MM(Pol) calculations on
each single chromophore, whereas the electronic couplings can
be computed from the transition density of each excitation.34

Clearly, both the site energies ϵI and the couplings VIJ
depend not only on the geometry of the chromophores but
also on the position of the environment atoms. We have
previously developed a ML approach for estimating electronic
couplings,30 which we now combine with a ML model for
excitation energies of the single chromophores.
2.1. Machine Learning Models of Excitation Energies.

To obtain the excitation energy of a given state, ϵ, we build a
surrogate model,

= ( ; ) (2)

that provides an estimate ϵ ̂ of the excitation energy given a
suitable, mathematical encoding χ of the chromophore (and
possibly the environment) geometry, and a set of additional
parameters Θ.
Here, the strategy is to split the problem in parts, by first

modeling the QM excitation energies in vacuo and then adding
corrections for the environment, including both electrostatic
and polarization effects. Within this framework, eq 2 can be
rewritten as

= + +( ; ) ( ; ) ( ; )vac vac vac shift shift shift pol pol pol

(3)

where ϵvac(χvac; Θvac) represents the vacuum model,
ϵshift(χshift; Θshift) represents the environment shift needed to
recover an electrostatic embedding, and ϵpol(χpol; Θpol) is the
polarization term (see Figure 1a). This step-wise separation
allows us to independently control each model and easily
impose physical constraints.
In this work we model ϵvac(χvac; Θvac) and ϵshift(χshift; Θshift)

as a Gaussian process (GP) in what is known as standard
Gaussian Process Regression (GPR).31,32,35−37 As detailed in
the following, we will instead use an analytical expression for
ϵpol(χpol; Θpol).
A GPR model defines a prior distribution for a target ϵ as a

GP, ϵ(χ) ≈ ( ( ), ( , )), which is fully specified by its
prior mean μ(χ) = [ ]( ) and covariance (also known as

kernel) κ(χ,χ′) = [ ]( ( ) ( ))( ( ) ( )) functions,
where χ denotes an input vector, [·] denotes an expectation,
and we have omitted the dependence on the hyperparameters
Θ for simplicity. Collecting the training inputs into a vector χ =
(χ1, χ2, ..., χN) and the corresponding mean-free targets into ϵ
= (ϵ1 − μ(χ1), ϵ2 − μ(χ2), ..., ϵN − μ(χN)), we take the
prediction ϵ(̅χ*) for a new point χ* as the posterior mean
μ′(χ*):

* * = * + *
=

( ) ( ) ( ) ( , )
m

N

m m
1 (4)

where the expansion coefficients αm are determined from the
resolution of the following linear system:

= +K I( ( , ) )2 (5)

where K(χ, χ)ij = κ(χi, χj) is a matrix of kernel evaluations over
the training inputs, σ2 is a hyperparameter that models the
noise associated with each observation, and I is an N×N
identity matrix. The variance of each prediction, var(ϵ)̂, can be
defined as the diagonal element of the posterior covariance,
κ′(χ*, χ*):

* =

* * + * [ + ] *K K I K

var( ( ))

( , ) ( , ) ( , ) ( , )2 2 1

(6)

where K(χ*, χ)i = κ(χ*, χi) is a vector of kernel evaluations of
the new point and the training inputs.
Additional hyperparameters Θ usually enter the prior mean

μ(·) and covariance κ(·, ·) functions and can be set by
maximizing the log marginal likelihood.31,32 The power of GP
regression stems mainly from the freedom of choosing the
prior kernel. In fact, as any symmetric and positive semidefinite
function is a valid covariance function, one can in principle
incorporate physical requirements inside the kernel, consid-
erably improving the learning efficiency. Moreover, several
mathematical operations between kernels yield a new kernel as
a result,31 making GPR a very flexible and powerful algorithm.
A limitation of GPR modeling is that its memory requirement
scales as O(N2), while the computational cost scales as O(N3),
where N is the number of training points. Several types of
sparse GPR methods have been developed to mitigate this
problem.32 In the present case, however, the limited number of
training points allowed us to use the full GPR algorithm.

2.1.1. Vacuum ML Model. Vacuum site energies ϵvac are
modeled with a GPR model (see Figure 1a and b), taking as
input the chromophore geometry encoded as a Coulomb
matrix38 (CM), ϵv̂ac = ϵvac(χCM), where

=
| |

<
Z Z

i j
r rij

i j

i j
CM,

(7)

where Zi is the atomic number of the ith atom, and rij is the
distance between atoms i and j. The diagonal part of the CM,
commonly written as 0.5Zi2.4, is here ignored, as in our case it is
constant (and therefore uninformative). For our purpose, we
have found it beneficial to exclude hydrogen atoms from the
CM: this helps reduce the risk of overfitting, leaving less room
for the regression algorithm to learn by heart the training data.
Furthermore, it removes identical atoms, which can be
beneficial when dealing with descriptors such as the CM
which are not permutation invariant.39 In fact, identical atoms
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must be handled with care when a CM encoding is
employed.30,39

We note that, as the CM uses inverse distances between all
the atoms, it can describe changes in bond distances, angles,
and torsions, as well as capturing more complex relations
between distant atoms. Although other ad-hoc descriptors
could be devised for each regression problem, the CM has the
advantage of being totally general, and therefore applicable on
molecules different from the ones used in this work. It has
been shown empirically that the CM, being a global descriptor,
works well for modeling excitation properties.17−19,21 In our
previous work, we have employed it with Ridge regression to
learn transition charges associated with Chls embedded in
LHCs.30

For our present task of learning excitation energies, we have
found it essential to introduce nonlinearity in the regression
algorithm. The nonlinearity has been introduced with a Matern
kernel, and the prior mean is defined as the average of the
training energies:

= =
N

( )
1

i
ivac CM vac vac,

(8)

=

+ +
i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

l

d
l

d
l

d
l

( , ; , )

1
5 5

3
exp

5
vac CM CM

2

(9)

where ϵvac,i is the vacuum excitation energy of the ith training
target, d = |χCM − χCM′ | is the euclidean distance between χCM
and χCM′ , and σ and l are two kernel hyperparameters. In this
work, they have been determined via maximization of the log
marginal likelihood. The vacuum ML model is represented
schematically in Figure 1b.
We finally note that the descriptor and regression algorithm

employed here were chosen as the best-performing ones in
several tests with different models and descriptors (details are
reported in Table S1 of the Supporting Information).

2.1.2. Electrostatic Embedding ML Model. In order to
predict the effects on the site energies due to an electrostatic
embedding (EE), we define the electrochromic shift ϵshift =
ϵQM/MM − ϵvac, where ϵQM/MM and ϵvac are evaluated at the
same geometry, with and without the MM charges. We build a
GPR model to estimate ϵshift, which is then added to the
vacuum one to recover the full site energy in the environment:
ϵQ̂M/MM = ϵv̂ac + ϵŝhift (see Figure 1a and c).
The presence of an atomistic and heterogeneous environ-

ment polarizing the QM density requires a specific
featurization and a more complex kernel for estimating ϵshift.
As the size of the system grows considerably compared to the
vacuum case, we seek features whose number does not depend
on the number of environment atoms. Furthermore, the
interaction between QM and MM subsystems is remarkably
more complex than in the vacuum case, where only the
description of the internal geometry of the pigment was
needed.
In order to define a suitable kernel and featurization, we

observe that (i) given a QM subsystem with a fixed geometry,
the EE-QM/MM interaction is an electrostatic interaction
between the QM density ρ(r) and the MM point charges q,

=E r r r qd ( ) ( ; )QM/MM

where Φ(r; q) is the MM electrostatic potential at point r; (ii)
given a fixed arrangement of MM charges q, the QM response
will be different for different QM geometries, i.e., the QM
response has a dependence on the QM internal geometry.
Therefore, a natural encoding of the environment is the

electrostatic potential due to the MM point charges on the
QM atoms:

=
| |

q

r ri
m

m

i m
Pot,

(10)

where m runs over the MM atoms, i refers to the ith QM atom,
and qm is the atomic charge of atom m. We note that this
encoding is extremely memory efficient, as χPot is a vector of
length n, the number of QM atoms. Furthermore, this
featurization does not depend on the choice of the target
molecule, which makes it applicable in arbitrary general
settings. The potential in eq 10 can be computed including
MM atoms up to a certain distance threshold with the QM
region, in order to reduce the cost of computing χPot. In this
work, we include MM residues within 30 Å of the QM
subsystem. To characterize the internal geometry of the QM
system we use the same CM descriptor as in the vacuum case,
eq 7.
We then define the prior GP with the following mean and

composite kernel:

= =( , ) 0shift Pot CM shift (11)

{ } { } =

+ ·

l

l
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2

2
(14)

where σ1, σ2, and l are kernel hyperparameters. The κ1 term in
eq 12 is a linear kernel operating on the MM electrostatic
potential, and represents the direct interaction between the
QM and MM regions. It is mathematically equivalent to the
expression ⟨Φ(C), q⟩ = ∑im ciqmrim−1, where Φ(C) is the
electrostatic potential generated by effective QM charges C =
(c1, c2, ..., cn), determined as the regression coefficients in
ordinary linear regression (OLS). The second term is a
nonlinear response of the QM internal degrees of freedom,
weighted by the magnitude of the interaction energy between
the QM and MM parts. The zero mean defined in eq 11
ensures that, for zero MM potentials acting on the QM system
(vacuum case), the electrostatic shift is predicted to be exactly
zero. As in the vacuum case, kernel hyperparameters are
determined by maximization of the log marginal likelihood.
The EE ML model is represented schematically in Figure 1c.

2.1.3. Polarizable Embedding ML Model. A polarizable
environment introduces an additional term in the excitation
energy which is not present in EE-QM/MM.16,40 This term
can be interpreted as the resonant response of the MM
polarizable sites to the transition density associated with the
electronic excitation. For this reason, it has been classified as a
dispersion-like or resonance contribution.41
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Within an induced-dipole formulation of polarizable
embedding, this contribution can be written as16,40

=
| |

·r r
r r
r r

d ( ) ( )
m

m

m
mPol

tr
3

MMPol tr

(15)

where m runs over the polarizable MM sites, and μmMMPol(ρtr) is
the induced dipole on MM atom m due to the transition
density ρtr. As we have shown in our previous work,30 we can
approximate the transition density ρtr as a set of transition
charges {qtr} and estimate the polarization contribution as

| |
· { }q q

r r
r r

( )
im

i
i m

i m
mPol

tr
3

MMPol tr

(16)

where i runs over the QM atoms, and the induced dipoles are
now dependent on the set of transition charges. This
expression opens up the possibility of a fast computation of
the polarization contribution, as it is possible to estimate
transition charges with a Ridge regression model efficiently. In
this work, the transition charges in the environment are
obtained from a linear model, as described in ref 30 (see also
below), and used to compute the polarization term. The
polarizable ML model is represented schematically in Figure
1d.
2.2. Machine Learning Model for Couplings. We

briefly summarize here the approach used to estimate
electronic couplings. When considering bright transitions, the
electronic coupling VIJ can be accurately described as the
Coulomb interaction between the transition densities
associated with chromophores I and J. By projecting each
transition density onto a set of atomic charges {qtr}, the
Coulomb coupling term can be obtained as

=
| |

V
q q

r rIJ
i I j J

i j

i j
Coul,

tr tr

(17)

where i and j are indices of QM atoms in chromophores I and
J, respectively. This approach is called transition charges from
electrostatic potentials (TrEsp),42 as these charges are
obtained from a fit of the electrostatic potential generated by
the transition density.
The bare Coulomb coupling (eq 17) is indirectly affected by

the environment through the change of transition charges
going from the isolated to the embedded pigment. However,
the environment also directly affects the coupling through a
screening of the Coulomb interaction. This explicit effect can
only be taken into account if the environment model is
polarizable.10,34 Using the same TrEsp representation of the
QM transition charges used for the polarizable model, this
screening term can be expressed as30

=
| |

· { }V q q
r r

r r
( )

( )IJ
m i I

i
i m

i m
m JPol,

TrEsp tr
3

MMPol tr

(18)

This equation is similar to eq 16, but here μmMMPol({qtr}J) are
the dipoles induced by the transition density of chromophore J
and interact by the field generated by the transition charges of
chromophore I.

2.2.1. Estimation of Transition Charges. To estimate
transition charges, we use the linear model devised in ref 30.
Briefly, transition charges in vacuo are estimated with a Ridge
regression linear model, using as input the CM encoding (eq
7). The effect of the environment on the transition charges is
modeled as a scaling of the transition charges by a factor γ.

This factor is estimated separately for Chl a and Chl b through
a Bayesian linear model.
We use the model as trained in ref 30 to estimate the

transition charges that are used in eqs 17 and 18 for computing
electronic couplings, as well as in eq 16 to compute the
polarization contribution to the excitation energy.

3. COMPUTATIONAL DETAILS
3.1. Excitation Energy Calculations. All excitation

energies were calculated at the TD-DFT M062X/6-31G(d)
level of theory. This level of theory was chosen as it has been
previously used in our group to successfully model LHCs.7,43,44

Furthermore, it yields well-separated Qy and Qx states, i.e., a
well-defined regression target. QM/MM calculations included
all MM atoms (protein, membrane, water, and ions) up to 30
Å from the QM region. In all calculations, the phytyl Chl tail
was excluded from the QM part, cutting it after the first
aliphatic carbon. EE-QM/MM charges were taken from the
AMBER ff99SB45 force field, while for QM/MMPol
calculations we used the AMBER AL polarizabilities46 and
fixed charges consistent with polarization. All calculations are
performed with Gaussian 1647 or a locally modified version for
QM/MMPol calculations.
3.2. Generation of the Training Dataset. The training

dataset was generated similarly to that described in ref 30.
Chlorophyll geometries have been extracted from a classical
MD simulation of LHCII embedded in a 1,2-dioleoyl-sn-
glycero-3-phosphocoline (DOPC) membrane employed in
several works by some of us.48,49 240 frames separated by at
least 10 ns from each other have been selected, for a total of
5760 training samples for Chl a and 4320 training samples for
Chl b. The training targets are the Qy excitations of Chls a and
b, calculated at the QM or EE-QM/MM levels as described
above. The training dataset and Python scripts to train the
models are provided in a Zenodo repository.33

3.3. Generation of the Test Datasets. Chlorophyll
geometries for CP29 and LHCSR1 LHCs analyzed in Section
4.1 were extracted from classical MD simulations previously
analyzed by some of us.44,50 For CP29, we have extracted 100
frames, for a total of 1300 test samples, while for LHCSR1 we
have extracted 408 frames, for a total of 3264 test samples.
Excitation energies in vacuum were calculated as described
above.
The scan over the improper dihedral of Chl a analyzed in

Section 4.1 is described in the Supporting Information.
The performance of the EE-QM/MM ML model (Section

4.2) is tested on some Chls present in CP29 (a609, a612,
a616, b606). For each Chl, 50 geometries were extracted from
the classical MD of CP29,50 by first computing the MM
electrostatic potential on the Chl atoms and then using farthest
point sampling (FPS)51 to adequately sample the range of
potentials felt by the Chl. EE-QM/MM excitation energies
were obtained as explained above.
Chlorophyll geometries in methanol (Section 4.2) were

extracted from a classical MD simulation, the details of which
are reported in the Supporting Information. A total of 100
Chl a geometries were extracted analogously to those in CP29,
i.e., by first computing MM potentials and then selecting
structures with FPS. EE-QM/MM excitation energies were
obtained as explained above.
Finally, for the analysis of the QM/MMPol ML model

(Section 4.3), we have extracted geometries for Chls a603 and
a609 from the classical MD trajectories of CP29.50 For each
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Chl, we have extracted 100 frames and computed the QM/
MMPol excitation energies as described above.
3.4. Machine Learning Scores. In order to test the

performance of the ML models, we have employed two scores.
The first is the mean absolute error (MAE), defined as
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(19)

where ϵ ̂ and ϵ denote the predicted and the target energies,
and the sum runs over the N predictions. The second is the
squared Pearson correlation coefficient (r-squared), defined as
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4. RESULTS AND DISCUSSION
4.1. Vacuum ML Model. We first test the performance of

our vacuum ML model in predicting the site energies of Chls a
and b. Figure 2 shows the learning curves obtained with 5-fold

cross-validation (CV-5) for the vacuum ML model, where both
the Pearson’s r-squared and the mean absolute error (MAE)
have been computed on the validation folds. Points correspond
to the mean score, and the shaded region represents the
uncertainty, computed as twice the standard deviation of the
validation scores. For both Chl a and b, we observe a
consistent decrease of the MAE and increase of r2 as the
training set increases.
Both scores do not reach a clear plateau for our maximum

train set size, indicating that it is possible to slightly improve
the prediction error with even more QM calculations. Our
prediction error (∼12.6 meV for Chl a, ∼11.8 meV for Chl b)
compares well with what obtained by Has̈e et al. for BChls in
the Fenna−Matthews−Olson (FMO) complex for a com-
parable training set size.21 The reduction of the validation error
with increasing training set size is an indication of the
robustness of the model’s prediction error. Interestingly, we
also find that learning the site energy of Chl b is slightly easier
than learning that of Chl a, due to the reduced conformational

freedom of Chl b as compared to Chl a in LHCII (see Figure
S1).
In order to test the model against out of sample geometries,

we have performed a relaxed scan over the improper dihedral
formed by atoms NA-C1-MG-C4 in Chl a (see Figure 3a and

Figure S2a). More details on how the scan is performed are
provided in the Supporting Information. Along the scan, the
nitrogen atom (NA) moves from one side of the Chl plane to
the other, considerably impacting the planarity of the ring. This
is reflected in a variation of ϵvac ranging from ∼2.08 eV to
∼2.13 eV (Figure 3b, yellow stars). The model predictions ϵv̂ac
again match quite well the target excitations ϵvac obtained
through TD-DFT, despite the highly distorted geometries
sampled along the scan coordinate (see, for example, Figure
S2b).
As a final important test of the model, we have predicted the

vacuum excitation energy ϵv̂ac for two additional LHCs, namely
LHCSR1 of algae and mosses and the minor LHC of higher
plants CP29 (see Figure 4). We have employed the MD
simulations of ref 44 to compute vacuum site energies of
LHCSR1 at different frames, and the MD simulations of refs
50 and 52 for CP29. The LHCSR1 model contains 8 Chl a,44

while CP29 contains 10 Chl a and 3 Chl b,53 allowing us to
test the model for both pigments.
The performance of the ML model on LHCSR1 and CP29

is shown in Figure 4a and d, respectively. In both cases, the r2
and MAE scores are in line with the predicted cross-validated
scores (Figure 2). The average MAE on Chls a in LHCSR1 is
∼12 meV, while those of Chls a and b in CP29 are ∼12 and 11
meV, respectively. Note that the scores on Chl a and Chl b are
lower than the best scores obtained in the learning curve on
LHCII, because now the entire LHCII training set is employed
to train the ML models. This test further confirms the
reliability of the cross-validation estimates (Figure 2) and
shows that vacuum site energies can be computed on Chl

Figure 2. Learning curves for vacuum site energies ϵv̂ac of chlorophylls
in LHCII. Blue lines report Pearson’s r-squared, and yellow lines
report the mean absolute error (MAE), both evaluated on the
validation test with 5-fold cross-validation (CV-5). The uncertainty is
computed as twice the standard deviation of the validation score and
shown as a shaded region around the corresponding curve. The
horizontal axis reports the dataset size used to perform CV-5.
Diamond markers correspond to Chl a, while circles correspond to
Chl b.

Figure 3. Vacuum ML model predictions along a scan over an
improper dihedral of Chl a. (a) Illustration of the scan. The black
arrow indicates the nitrogen atom that is pushed through the Chl’s
porphyrin ring. (b) Vacuum excitation energy predicted by the
vacuum ML model (blue line with circle markers) and target
excitation energy computed with TD-DFT (yellow line with star
markers). The uncertainty (shaded blue region) is computed as twice
the square root of the posterior variance matrix eq 6.
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geometries other than those of LHCII, such as in different
LHCs.
The good performance obtained on Chl geometries of

practical interest, such as those of different LHCs, as well as on
distorted Chl geometries, confirms that the ML model can
reliably predict vacuum site energies accurately matching the
TD-DFT ones.
4.2. Electrostatic Embedding ML Model. We now

evaluate the performance and robustness of the EE ML model
for the electrochromic shift. The learning curves for Chl a and
Chl b are shown in Figure 5. At variance with the vacuum case
(Figure 2), we observe the same learning pace for both Chl a
and b, indicating that the model describes equally well the
response of both pigments. We further note that convergence
is reached more rapidly here than in the vacuum case, with a
prediction error for both Chl a and Chl b approaching ∼4
meV. The improved rate of convergence of the EE ML model

can be ascribed to the physical constraints that are built
directly inside the kernel κshift (eq 12) and to the nature of the
descriptor χPot (eq 10) which transparently reflects the physics
of the problem. We can appreciate the importance of
incorporating the internal degrees of freedom into the model
by testing a model that does not take the internal degrees of
freedom into account. The learning curves in Figure S4 show
that such a model would perform fairly worse, demonstrating
the pivotal role of the pigment geometry in the response to the
external potential.
As we have done for the vacuum ML model, we now

consider more stringent tests of the model performance to
assess the level of overfitting. In particular, we will determine if
the model can be safely employed to predict site energies on
other LHCs, and in general on arbitrary environments. We first
test the EE ML model predictions on Chls of another LHC,
the minor antenna CP29. We choose as our test set the
following Chls: a609, which is a Chl b in LHCII;53,54a612,
whose environment differs between LHCII and
CP29;49,52a616, which is located near the flexible N-terminal
and is characterized by a high static disorder in the MD
simulation; and finally b606, to test the performance also on a
Chl b. In addition, to compare with a well-established model,
we have estimated the electrochromic shift using the charge
density coupling (CDC) method.55 The CDC method
employes fixed charges, representing the difference density
Δρ upon excitation, to compute the electrochromic shift. It
thus represents a “null model”, under the hypothesis that the
electrochromic shift can be calculated from the properties of
the isolated Chls.
The performance of the EE ML model in CP29 is shown in

Figure 6. Despite the different environments experienced by
the examined Chls, the ML model accurately predicts the TD-
DFT electrochromic shifts. The error on this test set (MAE ≈
4 meV) is similar to the error obtained by cross-validation,
confirming that the model does not degrade when predicting
outside the training dataset. The r2 scores are slightly lower
than the cross-validated ones, due to the fact that here we
considered each Chl separately, with a smaller dispersion of
target values. Compared with the CDC method, our ML

Figure 4. Performance of the vacuum ML model on different test sets. (a) Vacuum ML model predictions for chlorophylls a in LHCSR1. (b)
Structure of CP29. Protein is shown in blue, Chls a are shown in green, Chls b are shown in cyan, and Cars are shown in orange. (c) Structure of
LHCSR1. Protein is shown in yellow, Chls a are shown in green, and Cars are shown in orange. (d) Vacuum ML model predictions for chlorophylls
a in CP29. In both panels (a) and (d), the inset reports the mean absolute error (MAE) and the Pearson’s r-squared, both averaged over the
different chlorophylls.

Figure 5. Learning curves for the electrochromic shift ϵŝhift of
chlorophylls in LHCII. Blue lines report the Pearson’s r-squared, and
yellow lines report the mean absolute error (MAE), both evaluated on
the validation test with 5-fold cross-validation (CV-5). The
uncertainty is computed as twice the standard deviation of the
validation score and shown as a shaded region around the
corresponding curve. The horizontal axis reports the dataset size
used to perform CV-5. Diamond markers correspond to Chl a, while
circles correspond to Chl b.
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model shows a substantial improvement. In fact, the CDC
method consistently shows smaller r2 values for the various
Chls and an approximately 3-fold MAE. In addition, the CDC
method seems systematically biased toward positive electro-
chromic shifts. While for a616 and b606 the CDC retains a
correlation with the target data, for the other Chls its
predictions are almost constant and uncorrelated with the
target.
Our test set comprising Chls embedded in CP29 is an out-

of-sample set, as the precise environment surrounding each
Chl is different between the two LHCs. This confirms the
reliability of the model on other pigment−protein complexes.
However, the LHCII and CP29 environments are globally
similar, both consisting of a protein matrix embedding the Chl,
plus a lipid membrane and water molecules on both sides of
the membrane. In order to test the model on even more out-
of-sample configurations, we have predicted electrochromic
shifts for Chl a in a polar solvent, methanol (Figure 7a).
Geometries are sampled from a classical MD simulation, in
order to thoroughly sample both the internal degrees of
freedom of the Chl as well as the solvent ones. (More details
on the classical MD simulation are provided in the Supporting
Information.) As now the Chl is surrounded by a highly
dynamic environment, rather than simply a protein pocket, we
expect a larger variability in environment features which have
not been seen by the model during the training.
Figure 7b shows the performance of our model for Chl a in

methanol. We note that the r2 score (∼0.83) and the MAE
(∼5 meV) are in good agreement both with the cross-validated
ones and with those obtained for CP29. Importantly, the
performance of the prediction does not degrade for positive
ϵshift values, which do not appear in CP29 (Figure 6). This
more stringent test shows that our model can correctly
extrapolate well outside of the training set. This indicates that
the EE ML model has not memorized the LHCII training set
but instead has learned the correct physics underlying the
electrochromic shift in a fully atomistic environment.
4.3. Polarizable ML Model. Having set up a model for the

prediction of the electrochromic shift, we finally turn to the
effect of polarization. The polarization contribution is not
learned directly here, but it is approximated by eq 16. This
allows us to exploit the prediction of transition charges
developed in our previous work.30 We recall that by summing
this term to the previous ones for ϵvac and the electrochromic

shift ϵshift, we finally obtain the site energy of the embedded
chlorophyll.

Figure 6. Prediction of the electrochromic shift ϵshift in Chls embedded in CP29. The prediction from the electrostatic embedding ML model
(GPR) is shown in yellow circles, where for each point the model uncertainty, calculated as twice the square root of the posterior variance eq 6, is
reported as a horizontal bar. Predictions from the charge density coupling (CDC) method are shown as blue squares. The Pearson’s r-squared is
reported for each prediction. (a) Prediction on Chl a609 (MAEGPR = 4.1 meV, MAECDC = 12.6 meV). (b) Prediction on Chl a612 (MAEGPR = 3.7
meV, MAECDC = 12.7 meV). (c) Prediction on Chl a616 (MAEGPR = 4.2 meV, MAECDC = 12.3 meV). (d) Prediction on Chl b606 (MAEGPR = 4.2
meV, MAECDC = 14.0 meV).

Figure 7. Estimation of the electrochromic shift ϵshift for Chl a
embedded in methanol (see panel (a)). (b) Prediction of the
electrostatic embedding ML model (GPR). The ML model
uncertainty, computed as twice the square root of the posterior
variance eq 6, is reported as a horizontal bar. The Pearson’s r-squared
is reported in the inset. The corresponding mean absolute error
(MAE) is 5.0 meV.
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In Figure 8 we compare the results of this prediction with
the ones calculated at the TD-DFT QM/MMPol level for two

different Chls (a603 and a609). The comparison shows a good
agreement, and the r2 score of ∼0.92 shows that variations of
the site energies are well captured by our polarizable ML
model.
We note that the predicted site energy is shifted to lower

values by a seemingly fixed amount compared to the target one
(Figure 8), which translates into a MAE of ∼24.6 meV. This
effect arises because in our ML sequential model we are
neglecting the effect that the polarizable environment has on
the transition charges that give rise to the polarization term.
One possible way of accounting for this contribution would be
to use effective transition charges qefftr , which account for the
alteration on the transition density when switching from an
electrostatic embedding to a polarizable one. However, this
deviation is essentially systematic, and in a first approximation
it can be accounted for with a simple shift of the estimated site
energy.
After having validated the ML models and demonstrated

their accuracy and reliability in multiple contexts, we here
showcase two applications of our ML estimation of Frenkel
Hamiltonians.
4.4. Determining the Influence of Protein Residues. It

is well known that one of the main roles of the protein in
LHCs is to tune the energy levels of the embedded pigments
through the electrostatic properties of their residues to
optimize their function.2,56 Understanding how the protein
residues influence the excitation properties of the chromo-
phores is at the basis of a rational engineering of protein
mutants with improved properties.57,58

Figure 8. Performance of the polarizable embedding ML model. The
prediction of the ML model is reported on the horizontal axis, and the
target is reported on the vertical axis. Blue points correspond to Chl
a603, and yellow points correspond to Chl a609. Both Chls belong to
CP29. The Pearson’s r-squared averaged over the two Chls is reported
in the inset.

Figure 9. Excitation energy predictions when turning off the electrostatics of selected residues. (a) UMAP60 projection of the MM electrostatic
potential on the QM atoms, when the environment comprises all the atoms (blue points) and when a single residue’s electrostatics is turned off
(yellow points). (b) Illustration of the main idea. The effect of a given protein residue (depicted in yellow) on the excitation energy of a nearby Chl
can be obtained by predicting the site energy with the residue’s electrostatics turned off. (c) Performance of the electrostatic embedding ML model
in predicting the shift in site energy due to turning off the electrostatics-selected residues. The targets are the TD-DFT EE-QM/MM calculations.
(d) Influence of each protein residue on tuning the site energy of Chl a603 (left) and Chl a610 (right). Blue points correspond to the target TD-
DFT EE-QM/MM values, and yellow points are the ML model predictions.
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In the first application, we show how to determine such an
electrostatic influence of protein residues on the site energy of
selected chlorophylls in LHCII. In this analysis we neglect the
effect of a residue on the geometry of the pigment. This kind of
estimation is useful to assess which residues are important for
the spectral tuning of LHCs.59

The basic idea is illustrated in Figure 9b: the influence of
residue R on the site energy of pigment P is computed by
estimating the electrochromic shift twice: one when R
contributes to the MM potential eq 10 felt by P, and one
when R does not contribute to the potential (i.e., its
electrostatics is turned off). The quantity ϵP:R = ϵP:R=on,shift −
ϵP:R=off,shift quantifies the influence of residue R on the site
energy of pigment P. Here ϵP:R=on,shift is the electrochromic shift
computed when residue R is included in the MM potential
acting on P, and ϵP:R=off,shift when R is not included.
Figure 9a shows the UMAP60 projection of the MM

electrostatic potential when the electrostatics of nearby
residues is left untouched (blue points) and when it is turned
off (yellow points). It shows that, when turning off the
electrostatics of a single residue, the MM potential felt by the
QM system differs from what is usually present in the training
set; i.e., we are slightly out of sample when predicting
ϵP̂:R=off,shift. For this reason, in addition of being an application
of the ML models developed, the prediction of ϵP̂:R also serves
as a further validation of the EE ML model.
The good performance of our EE ML model when

estimating ϵP̂:R=off,shift is shown in Figure 9c, which shows the
EE ML model prediction ϵP̂:R=off,shift against the target shift
ϵP:R=off,shift, as computed with TD-DFT M062X/6-31G(d) for
some Chls, namely a603, a610, and a612 of different LHCII
monomers. The high Pearson’s r-squared obtained (∼0.85)
shows that the model can reliably estimate ϵP̂:R=off,shift, enabling
a rapid prediction of the influence of protein residues on the
pigment excitation energies.
Figure 9d shows an example of the use of ϵP̂:R for two Chls.

Here, residues located within 6 Å of the Chl are selected, and
ϵP̂:R is computed with the EE ML model (yellow points). For
each residue, we can estimate both its average effect and its
dispersion. For example, E127 red-shifts the excitation of Chl

a603 (Figure 9d, left), E168 blue-shifts the excitation of Chl
a610 (Figure 9d, right), and L52 has virtually no influence on
the excitation of Chl a603. Moreover, multiple residues (e.g.,
H56, K48 for Chl a603, and R58, D156, K167 for Chl a610)
have a more complex effect on the Chl excitation, sometimes
red-shifting and sometimes blue-shifting it, according to the
protein conformation that is examined. These predictions are
also compared with the target values ϵP:R (Figure 9d, blue
points), showing that both the average and the spread of ϵP̂:R
match those of the target, further proving the reliability of the
model in estimating the shift.
We note that, contrary to the time required to compute ϵP:R

with EE-QM/MM, the estimation of ϵP̂:R is extremely rapid. As
such, it allows estimating, for example, the influence of each
protein residue on the excitation energy of every Chl
embedded in the protein, which would not be feasible in
reasonable time with a straightforward QM/MM method.
4.5. Absorption Spectrum of CP29-WT and CP29-

H111N. As a second application, we showcase the ML-
accelerated calculation of optical spectra for a whole LHC. We
consider the minor LH complex CP29, and in particular the
wild-type (WT) complex53 CP29-WT and its mutant CP29-
H111N, where asparagine replaces H111, the axial ligand of
Chl a603. Guardini et al.61 have shown that this pair of LHCs
is particularly interesting, as the mutation induces an alteration
of the local environment of Chl a603 which is reflected in the
absorption spectrum61 (Figure 10b). We have previously
confirmed their insights with MD simulations and QM/
MMPol calculations.7

Our ML sequential strategy can be employed to obtain the
very same quantitative estimates, with some key advantages.
The computational cost is reduced by orders of magnitude,
which means that we are not limited to characterize only the
most important Chls, but instead the effect on all the other
Chls can be estimated rapidly and with good accuracy.
Furthermore, due to the reduced computational cost, we can
obtain results that are far more statistically robust. A total of
6000 frames (3000 for CP29-WT, 3000 for CP29-H111N)
have been employed, resulting in ∼78 000 site energies and
∼222 000 couplings. These calculations, including the polar-

Figure 10. Absorption spectrum of CP29-WT and its mutant CP29-H111N. (a) Spectrum computed with our ML model, using the Full Cumulant
Expansion formalism. (b) Experimental spectrum from ref 61. The spectrum of CP29-WT is shown in yellow, while the spectrum of CP29-H111N
is shown in blue. The difference spectrum is reported as a black dashed line. The wavelengths of the minimum and maximum in the difference
spectrum are reported.
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ization contribution, required approximately 3 days to
complete on a single machine with four Intel Xeon Gold
5118 CPUs @2.30 GHz, while calculations excluding polar-
ization required less than 3 h. As noted also in ref 30, the
polarization contribution is the most expensive part: the EE
ML model requires ∼0.1 s per calculation, while the
polarizable ML model requires ∼3.5 s.
Figure S5 shows the site energies, as computed with the

polarizable ML model herein developed, and the electronic
couplings, computed with the model presented in ref 30, for
CP29-WT and CP29-H111N. Our ML estimates confirm the
increased coupling in the Chl a603−a609 pair7,61 and further
show that smaller but significant effects are found for the
coupling between Chls a603 and a616.
Finally, we have computed the absorption spectra of both

CP29-WT (Figure 10a, yellow line) and CP29-H111N (Figure
10a, blue line), as well as their difference spectrum (Figure 10a,
black dashed line). Details on the calculation of the absorption
spectra are provided in the Supporting Information. The
spectrum has been computed employing the Frenkel
Hamiltonians estimated with our polarizable ML model, and
computing the multichromophoric lineshape with the full
cumulant expansion formalism.62,63 The computed spectrum
reproduces well the experimental one61 (Figure 10b) and
shows the two characteristic peaks in the difference mutant-
minus-WT spectrum (∼668 nm and ∼686 nm in our estimate,
∼675 nm and ∼686 nm in the experimental spectrum). The
estimated shift, which is slightly exaggerated compared to the
experimental one, is compatible with the QM/MMPol one
obtained in ref 7 with TD-DFT M062X/6-31G(d). This shows
that our ML estimates can reliably be employed in models that
start from excitonic Hamiltonians to produce spectra, with the
same accuracy as the target QM method.

5. CONCLUSIONS
In this work, we have presented a ML-based strategy for the
description of excitonic Hamiltonians of embedded multi-
chromophoric systems along a molecular dynamics simulation.
By building on the coupling model recently developed by us,
here we complete the description by developing a Gaussian
process ML model for the estimation of excitation energies
including both electrostatic and polarization effects of the
embedding environment.
We employed our model for the estimation of site energies

of Chls a and b in light-harvesting complexes. While the model
training was based on the LHCII complex of higher plants, the
tests on different LHCs showed small errors and high
correlation with the target excitation energies. The model
trained on LHCII showed a remarkable performance also on
an out-of-sample test case such as Chl a in methanol. The
ability of our ML model to extrapolate to different cases
indicates the robustness of our physics-based learning strategy.
We also note that we trained our models on relatively small
datasets, demonstrating that a quite good accuracy can be
obtained with a reasonable number of QM calculations.
The utility of our ML model has been showcased in two

examples: First, we obtained a fast estimation of the effect of
protein residues on the site energy of the Chls, which opens up
the possibility to quickly determine the importance of each
residue in the spectral tuning of the chromophore’s excitation.
Then we computed exciton Hamiltonians for 3000 MD frames
of the wild-type CP29 complex and its H111N mutant. This
allowed us to accurately compute the absorption spectra for

the two complexes and compare the difference spectrum with
the experiments, reproducing the experimental results.
The ML models presented here can help with computing

excitation energies and couplings in LHCs different from the
ones analyzed here, with considerable accuracy and time
savings. Indeed, LHCs are bound to many chromophores, and
relying on QM calculations to compute exciton properties is
too expensive to obtain proper statistics. Furthermore, as
conformational changes of LHCs are connected to their
function, having a fast method to compute exciton properties
of these complexes comes in handy when analyzing multiple
conformations from MD simulations, e.g., by connecting
specific conformations to weakened or enhanced interactions
of the chromophores. As we have showcased in the case of a
particular LHC mutant, our models also provide a quantitative
way to rapidly screen the excitation properties of mutants. This
makes it possible to analyze known mutants as well as
providing a rational basis with which mutants can be devised in
silico, i.e., by inserting mutations and then rapidly assessing
their impact on the exciton properties of the bound pigments.
Another interesting application to be explored in the future is
the ML determination of spectral densities from QM/MM
trajectories.15,64

This approach provides a fast and accurate estimation of
excitonic Hamiltonians for an arbitrary number of MD
structures. While in this work we focused on Chls a and b in
light-harvesting complexes, the remarkable performance on
several tests makes our model a promising tool for accelerating
calculations also for other protein-embedded chromophores.
Finally, the learning approach showcased here is by no means
limited to light-harvesting complexes but can be employed in
far more general settings.
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