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Abstract
Background  While increasing evidence suggests that alterations in the gut microbiota and metabolites are 
associated with ovarian cancer (OC) risk, whether these associations imply causation remains to be identified.

Methods  We conducted a two-sample Mendelian randomization (MR) study utilizing a large-scale genome-wide 
association study (GWAS) to explore the causal effects of the gut microbiota of 196/220 individuals and 1,400 plasma 
metabolites on OC and epithelial ovarian cancer (EOC) subtypes. Data on the gut microbiota were obtained from 
the MiBioGen consortium of 18,340 subjects and the Dutch Microbiome Project of 7,738 volunteers. Data on plasma 
metabolites were derived from a GWAS of plasma metabolites in 8,299 participants. Ovarian cancer (n = 25,509) and 
EOC subtypes were obtained from the Ovarian Cancer Association Consortium (OCAC). Metabolites and associated 
targets were analyzed via network pharmacology and molecular docking.

Results  At the genus and species levels, we identified seven risk factors for the gut microbiota: the genus Dialister 
(P = 0.024), genus Ruminiclostridium5 (P = 0.0004), genus Phascolarctobacterium (P = 0.0217), species Bacteroides 
massiliensis (P = 0.011), species Phascolarctobacterium succinatutens (P = 0.0212), species Paraprevotella clara (P = 0.0247) 
and species Bacteroides dorei (P = 0.0054). In addition, five gut microbes at the genus and species levels were found to 
be protective: genus Family XIII AD3011 group (P = 0.006), genus Butyrivibrio (P = 0.0095), genus Oscillibacter (P = 0.0206), 
species Roseburia hominis (P = 0.0241), and species Bifidobacterium bifidum (P = 0.0224). For plasma metabolites, we 
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Introduction
Ovarian cancer (OC), which accounted for 13,940 deaths 
in the United States in 2020, is the second most preva-
lent cause of gynecologic cancer death in females globally 
and is the deadliest gynecologic tumor [1, 2]. Approxi-
mately 50-70% of these cases are epithelial ovarian cancer 
(EOC). Lack of early diagnosis criteria leads to the major-
ity of patients being in advanced stages upon diagnosis 
[3], with the 5-year survival rate of patients of EOC less 
than 30% [4]. Hence, urgent attention needs to be given 
to new ways of preventing and treating OC.

Increasing evidence suggests that the gut microbiota is 
associated with metabolism, immunity, and cancer [5, 6], 
and regulation of gut microbes can contribute to the dis-
ease treatment [7]. Recently, the communication pathway 
between the gut and ovarian axes has attracted our atten-
tion [8–10], with mechanisms of action that include sex 
hormone secretion and metabolism, regulation of inflam-
mation and oxidative stress [11]. The gut microbiota 
hydrolyzes bound estrogen into biologically active free 
estrogen by producing β-glucuronidase. Free estrogen 
can activate estrogen receptors to trigger downstream 
signaling pathways, including MAPK, NF-κB, IGF-1, and 
EGF, which play important roles in regulating the pro-
liferation and differentiation of ovarian epithelium [12]. 
Significant change of gut microbiota composition have 
also been observed in ovarian cancer patients [13–15]. 
For example, in EOC patients, the relative abundances of 
Bacteroidetes (especially Bacteroides and Prevotella) and 
Proteobacteria are increased, but the abundances of Fir-
micutes and Actinobacteria are decreased compared with 
those in healthy control people [14], indicating that the 
gut microbiota may serve as biomarker for the early iden-
tification and diagnosis of OC and provide evidence for 
potential therapeutic strategies. Nonetheless, traditional 
observational studies are susceptible to confounding 
factors in addition to the constraints of limited sample 
sizes. Ethical concerns further impede comprehensive 
randomized controlled studies involving all strains of 
bacteria, especially potentially detrimental bacteria. Fur-
ther insights into the causal relationship between the gut 
microbiota and OC require more detailed evidence and 
research.

Metabolomics can reveal correlations between metab-
olites or metabolic pathways in relation to physiological 
and pathological changes, thus providing new insights 
into disease mechanisms [16, 17]. A varity of metabolic 
compounds including organic acids and their derivatives, 
ceramides and sphingolipids have been reported to be 
associated with the occurence of OC [18, 19]. For exam-
ple, Zeleznik [18] reported that SMs were associated with 
an increased risk of ovarian cancer, especially in post-
menopausal women. Pseudouridine is associated with an 
increased risk of overall OC and suggests serous/poorly 
differentiated tumors, whereas the C18:1 LPC and LPC: 
PC ratios are related to a reduced risk of endometrioid/
clear cell tumors [19]. However, it is difficult to explore 
specific causal relationships in clinical practice because 
of the unavailability of large samples.

Although previous studies have identified associations 
between the gut microbiota and metabolites in OC, the 
exact causal relationships, especially between the sub-
sets of EOC, remain unclear. Mendelian randomization 
(MR) can circumvent the drawbacks of traditional obser-
vational studies by using genetic variants as instrumen-
tal variables (IVs) to assess potential causal relationships 
between exposures and outcomes [20]. MR simulates a 
scene resembling that of a randomized controlled test, as 
single nucleotide polymorphisms (SNPs) are randomly 
assigned at embryo conception, thus reducing confound-
ing factors [21]. Notably, there are no relevant MR studies 
investigating the correlation between the gut microbiota 
and metabolites and OC and EOC subtypes.

Therefore, we aimed to assess the genetic associa-
tions between the gut microbiota and plasma metabo-
lites in patients with OC and EOC via a two-sample MR 
approach utilizing publicly available large-scale GWAS 
summary statistics, validated by network pharmacology 
and molecular docking, to provide practical and targeted 
guidance for the early detection, treatment and preven-
tion of OC.

Materials and methods
Study design
A two-sample MR approach was employed to evalu-
ate the potential causal relationships between the gut 

revealed five positive and four negative correlations with OC. Among these, caffeic acid and caffeine metabolites and 
sphingomyelin and ceramide metabolites were identified as risk factors, whereas phenylalanine metabolites, butyric 
acid metabolites, and some lipid metabolites were recognized as protective factors. A series of sensitivity analyses 
revealed no abnormalities, including pleiotropy and heterogeneity analyses.

Conclusion  Our MR analysis demonstrated that the gut microbiota and metabolites are causally associated with 
OC, which has significant potential for the early detection and diagnosis of OC and EOC subtypes, providing valuable 
insights into this area of research.
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microbiota and metabolites and between OC and EOC 
subtypes via summary statistics from GWASs. Ethical 
approval for each of the GWAS included in this study 
is available through the corresponding original article. 
The correctly designed MR study should rely on three 
assumptions: (1) genetic variants must be strongly cor-
related with the exposure factors (gut microbiota and 
metabolites in this study); (2) genetic variants are inde-
pendent of confounders; and (3) genetic variants must 
not be directly related to the outcome (ovarian cancer in 
this study) but only influence the outcome through their 
effect on the exposure. The MR design flowchart for this 
study is shown in Fig. 1.

Sources of data on exposure
Genetic instrumental variables for the gut microbiota 
were acquired from the MiBioGen consortium [22], 
which performs the most extensive genome-wide meta-
analysis by combining human genome-wide genotypes 
with discriminating 16  S rRNA sequencing data. This 
comprehensive analytic study was conducted on 18,340 
individuals from 24 cohorts, which were primarily of 
European ancestry. After excluding 15 unknown bacte-
rial classes, 9 phyla, 16 orders, 20 orders, 32 families, and 
119 genera were defined, but these GWAS data lacked 
species-level gut microbiota data. Therefore, we inte-
grated data from the Dutch Microbiome Project (DMP) 
to enhance our analysis [23]. DMP initiated and reported 

a large-scale GWAS of the gut microbiota of 7,738 vol-
unteers from the Netherlands by applying macrogenomic 
sequencing, which allowed bacterial identification at a 
species-level resolution. The GWAS summary data for 
DMP included 5 phyla, 10 orders, 13 orders, 26 families, 
48 genera, and 105 species.

We obtained 1,400 metabolite-associated genome-
wide summary data points from the IEU database ​(​​​h​t​t​p​
s​:​/​/​w​w​w​.​e​b​i​.​a​c​.​u​k​/​g​w​a​s​/​​​​​) with the IDs GCST90199621–
GCST90201020, including 1,091 plasma metabolites and 
309 metabolite ratios from 8,299 European individuals 
[24]. In this study, 850 known metabolites out of 1,091 
plasma metabolites were classified into 8 major metabolic 
groups: lipids (395), amino acids (210), xenobiotics (130), 
nucleotides (33), cofactors and vitamins (31), carbohy-
drates (22), peptides (21), and energy (8); the remaining 
metabolites were partially characterized molecules (21) 
and unknown molecules (220).

Outcome data sources
Summary data on OC and EOC typing contained in this 
study were obtained from a GWAS conducted by the 
Ovarian Cancer Association Consortium (OCAC, ​h​t​t​
p​​:​/​/​​o​c​a​c​​.​c​​c​g​e​​.​m​e​​d​s​c​h​​l​.​​c​a​m​.​a​c​.​u​k​/). The consortium ​c​o​
m​p​r​i​s​e​d 25,509 women with OC and 40,941 controls of 
European ancestry who had passed quality control [25]. 
The database includes 63 genotyping projects/case‒con-
trol sets that represent participants of European ancestry 

Fig. 1  Flowchart of the MR study
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recruited from 14 countries. We analyzed 40,941 con-
trols and 22,406 patients with invasive EOC, including 
the following tissue types: high-grade serous carcinoma 
(HGSC, n = 13,037), low-grade serous carcinoma (LGSC, 
n = 1,012), mucinous ovarian cancer (MOC, n = 1,417), 
endometrioid ovarian cancer (EMOC, n = 2,810) and 
clear cell ovarian cancer (CCOC, n = 1,366). Ethical 
approval for all OCAC studies was granted by the rel-
evant research ethics committees, and written informed 
consent was obtained from all participants in these 
studies.

Pathway enrichment analysis of metabolites
Metabolic pathway analysis was performed via the web-
based tool MetaboAnalyst 6.0 (​h​t​t​p​​s​:​/​​/​w​w​w​​.​m​​e​t​a​b​o​a​n​a​l​y​
s​t​.​c​a​/). The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database was used in this study, and the signifi-
cance level was set at P < 0.05.

Statistical analysis
Overall, data from 196/220 gut microbiota at six lev-
els (phylum, order, order, family, genus, and species) 
and 1400 metabolites, including 1091 metabolites and 
309 metabolite ratios, were used as the exposure data. 
To guarantee the correctness and accuracy of the study 
results on the causal relationship between exposure and 
OC and EOC subtypes, IVs were selected via the follow-
ing procedures for quality control: (1) P values less than 
the locus-wide significance level (1 × 10− 5) were selected 
as IVs strongly associated with the gut microbiota and 
metabolites. (2) To ensure independence between the 
included IVs, linkage disequilibrium (LD) between the 
included SNPs was assessed via the clumping approach 
(R2 < 0.001 and clumping distance = 10,000 kb). (3) SNPs 
with palindromes and ambiguous alleles were removed. 
The final screened SNPs were used as IVs to harmo-
nize with the outcome GWAS summary statistics. (4) 
The F statistic of each SNP was calculated to determine 
the statistical strength. SNPs with F statistics < 10 were 
ignored to avoid weak IV bias [26]. (5) SNPs that were 
highly linked with the result (defined as a p value for the 
outcome less than 1 × 10 − 5) were manually examined 
and eliminated from the harmonized data. (6) The MR-
PRESSO test was applied to monitor potential horizontal 
pleiotropy and detect outliers. After removing outliers, 
the remaining SNP list was used for subsequent MR 
analysis. (7) To preserve the stability of our results, we 
retained only IVs for at least three SNPs.

In our study, the inverse variance weighting (IVW) 
method was used as the primary method for assessing 
the causal relationship between exposure and outcome, 
with the weighted median (WM) and MR‒Egger meth-
ods used as supplements. IVW assumes that all IVs are 
valid without pleiotropy, and it performs a meta-analysis 

of Wald ratio estimates for each SNP [27, 28]. With at 
least 50% of the IVs being valid, the weighted median still 
provides a reliable causal estimate despite the presence 
of heterogeneous horizontal pleiotropy [29]. MR‒Egger 
is based on regression modeling in a similar way to IVW 
but allows for the possibility of pleiotropy [30, 31]. Even 
if all selected IVs are invalid, the MR‒Egger method still 
produces unbiased estimates, with an intercept that is 
also used to detect horizontal pleiotropy [30]. The results 
were considered reliable and were subjected to subse-
quent sensitivity analyses only if the results of the IVW 
method reached a threshold of p < 0.05 and if the three 
methods estimated the effect in the same direction [32].

We performed several sensitivity analyses to ensure 
the stability of the MR results. As mentioned previously, 
we used MR PRESSO as a sensitivity analysis technique 
for detecting horizontal pleiotropy [33]. The MR‒Egger 
intercept was also calculated to identify potential hori-
zontal pleiotropy [30, 31]. Close-to-zero MR‒Egger inter-
cepts indicated that none of the selected genetic variants 
exhibited pleiotropic effects. Cochran’s Q test was used 
to evaluate the heterogeneity among available SNPs [27]. 
In addition, leave-one-out analyses were carried out to 
assess the validity of causal inferences and to determine 
whether the causal signal was driven by a single SNP or 
bias [34].

A rigorous Bonferroni correction was applied to 
address the problem of multiple comparisons of the gut 
microbiota. A significance threshold of PIVW values less 
than 0.025 (0.05/2, two MR analyses of the gut micro-
biota) was used to identify the prominence of the causal 
influence of the gut microbiota on OC and EOC typing. 
Given the high false-positive rate of the Bonferroni cor-
rection, we performed a false discovery rate (FDR) cor-
rection on the primary IVW results of 1400 metabolites 
via the Benjamini–Hochberg procedure [35]. A signifi-
cance threshold of an FDR < 0.2 suggests a substantial 
association, whereas a PIVW < 0.05 and an FDR > 0.2 
imply a suggestive association [36]. The overall statistical 
analysis was performed in the R program (version 4.1.3) 
with the two sample MR package (version 0.5.6).

Network pharmacology analysis
We validated the metabolites via PubChem (​h​t​t​p​​s​:​/​​/​p​u​
b​​c​h​​e​m​.​​n​c​b​​i​.​n​l​​m​.​​n​i​h​.​g​o​v​/). Swiss Target Prediction (​h​t​t​
p​​:​/​/​​w​w​w​.​​s​w​​i​s​s​​t​a​r​​g​e​t​p​​r​e​​d​i​c​t​i​o​n​.​c​h​/) was further used to 
obtain relevant targets for the metabolites. The keyword 
“ovarian cancer” was obtained by searching the follow-
ing databases: the GeneCards ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​e​n​e​c​a​r​d​s​.​o​
r​g​/​​​​​)​, OMIM (https://omim.org/), TTD ​(​​​h​t​t​p​s​:​/​/​d​b​.​i​d​r​b​l​a​
b​.​n​e​t​/​t​t​d​/​​​​​) and CTD (https://ctdbase.org/) databases for 
disease targets. Targets of protective and risky metabo-
lites were crossed with disease targets and imported into 
the STRING database (https://cn.string-db.org/). The 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
https://www.genecards.org/
https://omim.org/
https://db.idrblab.net/ttd/
https://db.idrblab.net/ttd/
https://ctdbase.org/
https://cn.string-db.org/
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obtained data were entered into Cytoscape software to 
construct the PPI network. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis 
of the core targets was performed via the annotation, 
visualization and integrated discovery database DAVID 
(https://david.ncifcrf.gov/). A ​“​m​e​t​a​b​o​l​i​t​e​-​t​a​r​g​e​t​-​p​a​t​h​w​a​
y​” network was subsequently constructed via Cytoscape 
software for visualization and analysis.

Molecular docking
Molecular docking of each metabolite to its correspond-
ing core target. SDF structure files of metabolites were 
downloaded from the PubChem database, and PDB files 
of core protein receptors were downloaded from the 
RSCB PDB (https://www.rcsb.org/) database. Metabolite 
and protein structure files were processed via AutoDock 
software. AutoDock Vina was run to dock the processed 
metabolites to the target proteins 10 times, and the low-
est binding energy of each docking was used as the final 
result. The results were also visualized and analyzed by 
PyMOL and software.

Results
Selection of instrumental variables
In this study, we set the suggested significance at 
p < 1 × 10− 5. After LD clumping and harmonization, we 
identified 6,693 and 34,843 SNPs associated with the 
gut microbiota and metabolites, respectively. SNPs with 
ambiguous or palindromic alleles were removed. More-
over, SNPs that had substantial associations with out-
comes and F statistics < 10 were eliminated. On the basis 

of the MR-PRESSO results, SNPs exhibiting pleiotropy 
were discarded. As shown in Supplementary Tables A1-
A6 and B1-B6, 4,177 and 32,389 SNPs were selected for 
the MR analysis of the gut microbiota and metabolites 
in the OC and EOC subtypes, respectively. The results of 
the detailed MR analyses of all included gut microbiota 
and metabolites associated with OC and EOC subtyping 
are shown in Supplementary Tables C1-C3, respectively.

Causal associations of the gut microbiota with OC and EOC 
subtypes
Drawing on the GWAS for gut microbiota data from the 
MiBioGen consortium and DMP, we identified 21 causal 
relationships of the gut microbiota with OC and EOC 
subtyping (Fig. 2 and Table C4), 13 of which were at the 
genus and species levels. The findings revealed suggestive 
correlations, identifying 9 negative correlations as poten-
tial protective factors. A greater abundance of the genus 
Family XIII AD3011 group (OR = 0.875, 95% CI = 0.755, 
0.974; P = 0.018) was predicted to be adversely corre-
lated with OC, with a notable protective effect. Similarly, 
the abundances of the genus Family XIII AD3011 group 
(OR = 0.809, 95% CI = 0.695, 0.941, P = 0.006) and species 
Roseburia hominis (OR = 0.828, 95% CI = 0.703, 0.976, 
P = 0.024) were negatively associated with the HGSC; 
the abundance of the genus Collinsella (OR = 0.517, 95% 
CI = 0.305, 0.876, P = 0.014) was inversely correlated with 
the LGSC; the abundance of the species Bifidobacterium 
bifidum (OR = 0.884, 95% CI = 0.796, 0.983, P = 0.022) was 
adversely associated with the EMOC; and the abundance 
of the genus Oscillibacter (OR = 0.715, 95% CI = 0.538, 

Fig. 2  Forest plot of the causal relationships of the gut microbiota with OC and EOC subtypes estimated via the IVW method
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0.950, P = 0.021) and the genus Butyrivibrio (OR = 0.788, 
95% CI = 0.659, 0.944, P = 0.009) were negatively corre-
lated with the CCOC.

Twelve positive causal associations were identified as 
potential risk factors, as shown in Fig. 2: the abundance 
of the phylum Firmicutes was strongly related to the risk 
of OC (OR = 1.186, 95% CI = 1.043, 1.349, P = 0.009) and 
HGSC (OR = 1.235, 95% CI = 1.061, 1.439, P = 0.007); 
the abundance of the genus Dialister (OR = 1.115, 
95% CI = 1.015, 1.226, P = 0.024) and the abundance of 
the species Bacteroides massiliensis (OR = 1.154, 95% 
CI = 1.034, 1.288, P = 0.011) were positively correlated 
with OC; and the abundance of the genus Ruminiclos-
tridium5 (OR = 2.483, 95% CI = 1.503, 4.101, P < 0.001) 
and the abundance of the species Paraprevotella clara 
(OR = 1.317, 95% CI = 1.036, 1.674, P = 0.0247) were 
directly associated with the LGSC; the genus Phasco-
larctobacterium (OR = 1.272, 95% CI = 1.036, 1.562, 
P = 0.022), species Phascolarctobacterium succinatutens 
(OR = 1.272, 95% CI = 1.037, 1.562, P = 0.021) and spe-
cies Bacteroides dorei (OR = 1.450, 95% CI = 1.116, 1.884, 
P = 0.005) were positively correlated with MOC; genus 
Collinsella (OR = 1.701, 95% CI = 1.145, 2.529, P = 0.009) 
was predictively associated with CCOC. Higher abun-
dance of these gut microbes indicates a higher risk of 
developing OC and EOC typing. The scatterplot (Fig. S1) 
depicts the causal relationship between the gut microbi-
ota and patient outcomes.

Causal relationships of plasma metabolites with OC and 
EOC subtypes
Among all included metabolites, a total of 11 causal asso-
ciations were established after FDR correction (Fig.  3 
and Table C5). Butyric acid included caffeine and caffeic 
acid metabolites (5-acetylamino-6-amino-3-methyluracil 
(OR = 1.116, 95% CI = 1.060, 1.174, P < 0.001), 5-acetyl-
amino-6-formylamino-3-methyluracil (OR = 1.071, 95% 
CI = 1.031, 1.113, P < 0.001), 3-(3-hydroxyphenyl) propio-
nate (OR = 1.602, 95% CI = 1.243, 2.065, P < 0.001)), sphin-
golipid and ceramide metabolites (ceramide (d18:1/14:0, 
d16:1/16:0 (OR = 1.122, 95% CI = 1.055, 1.194, P < 0.001)), 
hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) 

(OR = 1.122, 95% CI = 1.036, 1.160, P = 0.001)), phenyl-
alanine metabolites (N-lactoyl phenylalanine (OR = 0.849, 
95% CI = 0.769, 0.937, P = 0.001)), butyric acid metabolite 
(2R,3R-dihydroxybutyrate (OR = 0.905, 95% CI = 0.857, 
0.955, P < 0.001)) and other lipid metabolites (Lino-
lenoylcarnitine (C18:3) (OR = 0.876, 95% CI = 0.810, 
0.947, P < 0.001) and 1-(1-enyl-palmitoyl)-GPC (p-16:0) 
(OR = 0.677, 95% CI = 0.554, 0.826, P < 0.001)).

Caffeic acid and caffeine metabolites as well as sphingo-
myelin and ceramide metabolites were recognized as risk 
factors, whereas phenylalanine metabolites, butyric acid 
metabolites, and other lipid metabolites were identified 
as protective factors. The scatter plot (Fig. S2) shows the 
causal relationships between metabolites and outcomes.

Given that HGSC, LGSC, MOC, and EMOC typing 
was inconclusive after FDR correction, we proceeded 
to analyze KEGG pathways for plasma metabolites with 
potential associations and integrate the results. As shown 
in Fig.  4, each subtyping method revealed interrelated 
metabolites as well as enrichment pathways. Among the 
top-ranked pathways were arginine biosynthesis, argi-
nine and proline metabolism, glyoxylate and dicarboxyl-
ate metabolism, propanoate metabolism, and starch and 
sucrose metabolism.

Sensitivity analysis
The F statistics of all the chosen IVs were greater than 
10, indicating that there was no weak IV bias (Supple-
mentary Tables A1–A6, B1–B6). Both the MR–PRESSO 
global test and the MR Egger intercept p values were 
greater than 0.05, suggesting the absence of horizontal 
pleiotropy and potential outlier IVs. No obvious evidence 
of general heterogeneity was shown by Cochran’s Q test 
(all p > 0.05). Furthermore, as shown by the leave-one-out 
test (Supplementary Fig. S3 and S4), no single SNP signif-
icantly affected the MR estimate, which further supports 
the stability of our findings.

Network pharmacology and molecular docking
A total of four metabolites were identified and success-
fully predicted as targets, namely, 2R,3R-dihydroxybutyr-
ate and N-lactoyl phenylalanine, which have protective 

Fig. 3  Forest plot of the causal relationships of plasma metabolites with OC and EOC subtypes estimated via the IVW method
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effects, and 5-acetylamino-6-amino-3-methyluracil and 
3-(3-hydroxyphenyl) propionate, which are potentially 
at risk. A Venn analysis of the targets associated with 
metabolites and OC is shown in Fig. 5A, which revealed 
a total of 26 protective metabolite targets and 18 risk 
metabolite targets associated with OC. PPI analysis of 
these targets revealed that CTNNB1 and PTGS2 are 
located in the core region of the protective metabo-
lite network, whereas PARP1 and EGFR are in the core 
region of the dangerous metabolite network (Fig. 5C, D), 
revealing that these core targets play important regula-
tory roles. KEGG analysis revealed that protective tar-
gets (Fig. 5E) were enriched mainly in cancer pathways, 
the NF‒kappa B pathway, the adhesion plaque pathway 
and the TNF signaling pathway. The risk factors (Fig. 5F) 
were enriched in various cancers, including breast can-
cer, colorectal cancer and bladder cancer. The “metabo-
lite-target-pathway” network allows for a more intuitive 
view of these connections (Fig. 5B). We then performed 
molecular docking of the metabolites with the corre-
sponding relevant core targets (Fig.  6). Visualization of 
the receptor‒ligand interactions revealed that all the 
docking complexes were able to form 1–3 hydrogen 
bonds while possessing low binding energies, which are 
essential for the formation of stable complexes. These 
findings demonstrate that metabolites may have protec-
tive or pathogenic effects on OC through relevant targets.

Discussion
This study represents seminal MR research on the poten-
tial causal relationships between the gut microbiota and 
plasma metabolites and between OC and EOC subtypes 
on the basis of large-scale GWAS summary data. Our 
results demonstrated that specific gut microbes and 
metabolites exert potentially beneficial or deleterious 
effects on OC and EOC subtypes.

With technological advances and cost reductions in 
sequencing and metabolomics, interest in the role of the 
gut microbiota and metabolites in cancer has recently 
increased, which may provide prospective answers for 
cancer diagnostics, prevention, and treatment in the 
future [37, 38].

A high abundance of the Family XIII AD3011 group at 
the genus level was a protective factor against OC, and 
Dialister was a risk factor in our study. At the species 
level, the abundance of Bacteroides massiliensis from the 
genus Bacteroides was positively correlated with OC. The 
relative abundance of bacteria (B. massiliensis) with the 
β-glucuronidase gene has been reported to be greater in 
prostate cancer patients [39]. The uncoupling activity of 
β-glucuronidase leads to increased levels of free estro-
gen in the blood, resulting in dysregulation of endocrine 
homeostasis, which is one of the carcinogenic factors of 
OC [13, 40]. Free radicals activated by reactive metabo-
lites from estrogen and cytochrome P450 enzymes can 

Fig. 4  KEGG pathway enrichment analysis of the potentially associated metabolites in the OC and EOC subtypes
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cause mutations. The accumulation of mutations leads 
to tumor transformation of proliferating cells [41, 42]. In 
cancer cells, estrogen induces the expression of extracel-
lular signal-regulated kinase (ERK), phosphatidylinositol 
3-kinase (PI3K), and epidermal growth factor receptor 

(EGFR), thus increasing cell proliferation. Estrogen also 
has the ability to produce purine sites in DNA to cause 
mutations and stimulate tumorigenesis [43]. In addition, 
the abundance of B. massiliensis was associated with a 
shorter progression-free survival zone in patients with 

Fig. 5  Venn analysis of protective metabolites, risk metabolites and ovarian cancer targets. B “Metabolite‒target‒pathway” network diagram. C PPI analy-
sis of protective targets. D PPI analysis of risk targets. E KEGG pathway enrichment analysis of protective targets. F KEGG pathway enrichment analysis of 
risk targets
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melanoma [44] and was also a tumor tissue-specific bac-
terial biomarker for CRC [45]. The abundance of B. mas-
siliensis was also found to be positively correlated with 
lipid metabolism biomarkers (e.g., TC, LDL, NEFA, and 
TG) and with insulin resistance [46], which could pro-
mote the proliferation of OC cells and reduce their sensi-
tivity to cisplatin [47].

The high abundance of the Family XIII AD3011 group 
was a protective factor against HGSC at the genus level, 
and Roseburia hominis was identified at the species level. 
R. hominis acts as a major butyrate-producing bacterium 
[48], producing butyrate to maintain intestinal health 
and alleviate inflammatory bowel disease, diabetes, and 
colon cancer [49], as well as a potential preventive and 

Fig. 6  Diagram of the molecular docking patterns of metabolites with target proteins (2D and 3D)
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therapeutic agent for cancer by functioning as a histone 
deacetylase inhibitor [50]. Butyrate has been shown to 
enhance the antitumor effects of CD8 + T cells in experi-
mental animal models of colorectal cancer and pancre-
atic cancer [51, 52]. At the genus level, a high abundance 
of Collinsella was a protective factor for LGSC, whereas 
Ruminiclostridium5 was a risk factor. Moreover, the 
abundance of Paraprevotella clara at the species level 
was a risk factor for LGSC, but this genus has been less 
studied and has potential research value. Notably, the 
genus Collinsella was identified as having dual roles as 
a protective agent for LGSC and as a potential risk fac-
tor for CCOC. By inhibiting cytokine storm syndrome, 
Collinsella can produce ursodeoxycholate to prevent 
COVID-19 infection [53]. In contrast, another study sug-
gested that Collinsella could lead to a loss of intestinal 
barrier integrity, which is associated with rheumatoid 
arthritis in humans [54]. It is possible that the differ-
ence in the category of the species led to this result. A 
high abundance of Phascolarctobacterium succinatutens 
and Bacteroides dorei are risk factors for MOC at the 
species level. Both are recently discovered species iso-
lated from the human gut and are of potential interest 
for research [55, 56]. The findings of a large cohort study 
from Finland supported the association of B. dorei with 
the development of type 1 diabetes in children at high 
risk of autoimmunity [57]. At the species level, a high 
abundance of Bifidobacterium bifidum was a protective 
factor against EMOC. B. bifidum, the most common pro-
biotic in the human body, helps maintain the balance of 
the intestinal flora, promotes immunity and is used in 
the food market worldwide [58]. Recently, research has 
revealed that B. bifidum is the second most predominant 
strain found in breastfed infants [59], and it has strong 
antitumor effects [60]. Furthermore, the administration 
of probiotic supplements consisting of B. bifidum and 
other probiotics had significant beneficial effects on men-
tal health parameters, hormones, inflammation and oxi-
dative stress in women with polycystic ovary syndrome 
[61]. It has been shown that B. bifidum produces indole 
compounds [62], improves fat metabolism and inflam-
mation, and interacts with estrogen receptors to inhibit 
the growth of ovarian cancer [63]. Finally, at the genus 
level, high abundances of Oscillibacter and Butyrivibrio 
were protective factors against CCOC. Oscillibacter is 
an enigmatic genus of bacteria that has never been cul-
tured; however, it has recently been hypothesized by 
researchers to be a producer of the short-chain fatty acid 
butyrate [64]. Butyrate not only improves the efficacy of 
anti-PD-1 against tumors by activating cytotoxic CD8 
T + cells [51, 52], but also induces iron death in endo-
metrial cancer cells [65]. However, Byrivibrio species are 
more important producers of butyrate, and Butyrivibrio 
species also produce acetic acid and lactic acid [66], all 

of which have antitumor effects. Acetate metabolism is 
an important metabolic pathway in many cancers and 
is controlled by acetyl coenzyme A synthase 2 (ACSS2). 
Targeting ACSS2 to inhibit acetate conversion promotes 
anti-tumor immune responses and enhances the effi-
cacy of chemotherapy in preclinical breast cancer mod-
els [67]. Therefore, gut microbiota-derived metabolites 
are key hubs connecting the gut microbiome and cancer 
progression, and deciphering the specific link between 
the two is of great importance [68]. In one study, the gut 
microbiota-derived metabolites propionate, KYNA, and 
indole-3-carboxaldehyde were shown to protect patients 
from the side effects of radiotherapy, thereby improving 
survival [69]. 5-Fluorouracil (5-FU) plays an important 
role in the treatment of colon cancer, and the conversion 
of 5-FU to inactive dihydrofluorouracil by the enzyme 
dihydropyrimidine dehydrogenase in Escherichia coli 
significantly reduces the effectiveness of treatment [70]. 
Overall, the gut microbiota operates as a complex ecosys-
tem, and further research is essential to reveal the exact 
role that each specific bacterium plays in these causal 
relationships.

To determine the potentially critical role of metabo-
lites in OC and EOC subtypes, we performed MR anal-
yses to investigate any potential links between them. 
Interestingly, higher levels of genetically predicted 
2R,3R-dihydroxybutyrate, a form of butyrate, exhibited a 
protective effect against OC. Similarly, the KEGG path-
way of metabolites was highly enriched in glyoxylate 
and dicarboxylic acid metabolism as well as propionate 
metabolism. In addition to these findings, short-chain 
fatty acids (SCFAs), especially acetate, propionate and 
butyrate [71], have shown powerful antitumor effects 
[51, 52, 72, 73]. SCFAs also play important physiological 
roles as intracellular signaling factors, maintaining meta-
bolic homeostasis by binding to SCFA receptors [74]. 
The KEGG pathway was also highly enriched in arginine 
biosynthesis as well as arginine and proline metabo-
lism, implying that these amino acids play important 
roles in the development of OC. Curiously, it has been 
reported [75] that hepatocellular carcinoma cells have 
an increased demand for and dependence on arginine. A 
large amount of arginine and its binding protein RBM39 
can regulate the metabolic reprogramming of hepatocel-
lular carcinoma cells to promote growth and proliferation 
by promoting the uptake of arginine through positive 
feedback. Similarly, proline metabolism is associated 
with ATP production, protein and nucleotide synthesis, 
and redox homeostasis in tumor cells [76]. Our study also 
revealed that high levels of N-lactoyl phenylalanine were 
a significant protective factor against OC. A recent paper 
published in Nature reported that N-lactoyl phenylala-
nine, a circulating signaling metabolite, selectively inhib-
ited feeding and obesity in mice fed a high-fat diet [77], 



Page 11 of 13Guo et al. Journal of Ovarian Research           (2025) 18:27 

whereas obesity and high-fat status are important risk 
factors for OC [78]. Thus, we believe that N-lactoyl phe-
nylalanine has beneficial biological effects in the treat-
ment of OC.

Furthermore, high levels of sphingomyelin (SM)- and 
ceramide (Cer)-related metabolites were found in our 
study to be correlated with a high risk of OC. Cer is a 
pro-apoptotic signaling molecule in OC [79, 80] with 
potential metastasis inhibitory properties [81]. Cer lev-
els are very low in ovarian tumors [79, 82], and the main 
source is SM metabolism, which appears to be greater in 
ovarian tumors than in normal tissues [83]. Cer and its 
metabolites, however, have dynamic opposite effects on 
cancer biology, a phenomenon known as “sphingolipid 
rheology“ [84, 85]. Cer promotes apoptosis and inhibits 
the proliferation and migration of cancer cells, while its 
downstream metabolite sphingosine 1-phosphate pro-
motes cell proliferation and angiogenesis [84, 85]. SM 
controls the balance between cell proliferation and apop-
tosis and often has cancer-specific effects [84].

In this study, we found that specific gut microbes and 
metabolites were associated with the risk of OC, as this 
may contribute to the development of new biomarkers 
for the early identification and diagnosis of OC, which 
is crucial for improving patient survival and treatment 
success since patients with ovarian cancer detected at an 
early stage have higher chances of being cured. It will also 
help develop targeted dietary or probiotic interventions 
to modulate the gut microbiota to reduce the risk of OC. 
The findings also identified potential targets of specific 
metabolites for the treatment of OC, as well as signal-
ing pathways and biological processes associated with 
the metabolites, which could help in drug development. 
Although our study is the first two-sample MR analysis 
to explore the causal effects of the gut microbiota and 
metabolites between OC and EOC subtypes, several limi-
tations must be considered in utilizing the largest avail-
able GWAS dataset. First, although most participants in 
the GWAS summary data were of European ancestry, 
a small portion of the gut microbiota data came from 
other ethnic groups, which may have biased our findings. 
Hence, the generalizability of our findings to different 
racial backgrounds may be limited. Second, despite the 
use of the largest available GWAS dataset of gut micro-
biota and metabolites, the sample size remains relatively 
small. Third, cancer patients tend to be more likely to be 
elderly, but our study did not take age differences into 
account. Finally, integrated multi-omics analysis includ-
ing microbial gene and module analysis should likely bet-
ter explain the potential link between gut microbes and 
plasma metabolites as well as their mechanisms of risk 
and protection for OC, which is a limitation of our work 
and the focus of our next steps.

Conclusion
In summary, our study supports the potential causal 
influence of the gut microbiota and metabolites on the 
relationship between OC and EOC subtypes. The iden-
tification of beneficial and harmful gut microbes and 
metabolites associated with OC and EOC subtypes pro-
vides valuable insights for early identification and diag-
nosis. Deeper studies are needed to validate the causal 
effects of the gut microbiota and metabolites on OC and 
EOC subtyping, as well as the underlying mechanisms 
driving these relationships.
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