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Abstract

Redundancy needs more precise characterization as it is a major factor in the evolution and 

robustness of networks of multivariate interactions. We investigate the complexity of such 

interactions by inferring a connection transitivity that includes all possible measures of path 

length for weighted graphs. The result, without breaking the graph into smaller components, 

is a distance backbone subgraph sufficient to compute all shortest paths. This is important for 

understanding the dynamics of spread and communication phenomena in real-world networks. 

The general methodology we formally derive yields a principled graph reduction technique and 

provides a finer characterization of the triangular geometry of all edges—those that contribute to 

shortest paths and those that do not but are involved in other network phenomena. We demonstrate 

that the distance backbone is very small in large networks across domains ranging from air traffic 

to the human brain connectome, revealing that network robustness to attacks and failures seems to 

stem from surprisingly vast amounts of redundancy.
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1. Introduction: Redundancy in the triangular organization of complex 

networks

Humans excel at the activity of associating objects and concepts. Indeed, significant 

scientific advances have come from characterizing multivariate associations as complex 
networks [1]. Examples include: interactions between suppliers and consumers in an 

electrical grid, friendships and trust relationships among people, correlations in gene 

regulation data, connections among neurons, and many others [2]. Several sophisticated 

mathematical methods have been used to model multivariate associations, including 

hypergraphs [3], relations [4, 5], simplicial complexes [6], and dynamical systems theory 

[7]. In network science, complex networks have been studied mostly using graph theory 

[1, 8]. Graphs are intuitive and algorithmically simpler than the alternatives and have been 

used to model the Internet [9], the World Wide Web [10], collaboration networks [11, 

12], biological networks [13], the human brain [14] and many other types of multivariate 

associations and interactions [2].

Most advances in network science have come from the study of patterns of connectivity 

(network structure) that has provided many insights into the organization of complex 

systems. Much remains to be understood, however, about how the structure of networks 

affects the dynamics and robustness of complex systems [1, 8]. For instance, in human 

brain networks we do not know how synaptic connectivity leads to the dynamical patterns 

of functional connectivity responsible for behaviour [14]. In systems biology, we know 

much about the connectivity patterns of gene and protein regulatory networks from existing 

models [15]; however, we also know that the structure of interactions from these models 

is not sufficient to predict regulatory dynamics or derive control strategies that allow us 

to, for instance, revert a diseased cell to a healthy state [16]. Similar issues arise with the 

large-scale collection of social behaviour data from social media and mobile devices, which 

has sparked much additional interest in network science [17, 18]. The structure of social 

interactions can help us understand aspects of health and disease, such as the spread of 

pandemics [19, 20] and detection of drug interactions [21], but understanding the dynamical 

processes of these networks is required for us to be able to predict and control biomedical 

phenomena.

We address the link between structure and dynamics by exploring important patterns of 
redundancy that contribute to how structure affects dynamics in networks. Redundancy 

is thought to be a major factor in the evolution of complex systems [22], but a precise 

characterization of how it affects complex network dynamics is still lacking. A full 

understanding of the interplay between network structure and dynamics requires a study 

of multivariate dynamics [16] and its redundancy [23]. However, most often we do not 

possess enough time-resolved data or computational power to precisely characterize the 

multivariate dynamics of large networks. In these cases, network structure is still very 
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useful to understand the dynamics of spread and communication phenomena, which can 

be inferred from shortest paths between variables. Therefore, we focus on transitivity in 

network connectivity, which leads to much redundancy in the computation of shortest paths.

We formally develop a general methodology to infer transitivity that includes all possible 

measures of distance and path length for weighted graphs and show using real-world 

examples that their triangular organization induces substantial redundancy in shortest-path 

computation in networks across many domains. Such redundancy is very large in networks 

ranging from air traffic to the human brain connectome, which makes transport and 

communication on these networks robust to attacks and failures. The general methodology 

provides a finer characterization of the behaviour of shortest paths on networks than existing 

measures in network science, such as betweeness centrality, do. The methodology also 

reveals that the edges that do not participate in the shortest paths of real-world networks 

tend to vary widely in how much they distort a given triangular geometry, which suggest a 

complex robustness mechanism.

Weighted graphs, where every edge is denoted with a positive real number, are often used 

to capture distance associations between linked nodes within a set of node variables. These 

networks are useful as knowledge graphs for big data inference to, for example, infer drug 

interactions from social media and electronic health records using shortest-path calculations 

[17, 21, 24] or automate fact-checking using the Wikipedia knowledge graph [25]. We have 

shown that such distance graphs obtained from real-world data are typically not metric, but 

rather semi-metric [26], in that the triangle inequality of metric spaces is not observed for 

every edge in the graph. That is, the shortest distance between at least two nodes in the graph 

is not the direct edge between them but rather an indirect path via other nodes.

Mathematically there are infinite ways to compute shortest-paths on these distance graphs, 

each isomorphic to a particular transitive closure [26]. For instance, computing the most 

typical shortest path measure (e.g. via Dijkstra’s algorithm), where the path length is the 

sum of the constituent edge weights (distances), is isomorphic to the particular transitive 

closure we refer to as the metric closure. It enforces the triangle inequality on the closed 

graph thus: if an edge in the original graph is semi-metric, its weight is replaced by the 

length of the shortest indirect path between the nodes it links [26]. This generalizes to all 

forms of computing path length, whereby some distance edges obey a generalized triangle 

inequality—those we refer to as triangular edges—but many others do not—those we refer 

to as semi-triangular edges. Interestingly, the triangular edges constitute an invariant sub-
graph of the original graph that does not change with the computation of a given transitive 

closure computation and is sufficient to compute all shortest paths.

We refer to this subgraph as the distance backbone of a complex network (conceptualized 

as a weighted distance graph). The amount of redundancy in the network is defined by the 

size of the backbone subgraph in relation to the size of the original graph. Edges not on 

the distance backbone are superfluous in the computation of shortest paths, as well as in all 

network measures derived from shortest paths (e.g. efficiency and betweenness centrality). 

Moreover, because distance backbones preserve all shortest-path connectivity, we show that 
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they contain all network bridges and do not break networks into constituent components as 

other network reduction and backbone techniques (e.g. thresholding) do.

We show that there is typically massive redundancy in graphs obtained from various types of 

data ranging from topical spaces of large document corpora to brain networks. For instance, 

the knowledge graph of more than 3 million concepts extracted from Wikipedia that has 

been used for automated fact-checking is 98% semi-metric [25]. This means that its metric 

backbone contains only 2% of the original edges and those are sufficient to compute all 

shortest-paths of the original graph used to infer factual associations. In social contact 

networks, the metric backbone is typically between 8% and 30%. Moreover, the relative size 

of the backbone in human brain (fMRI) networks has been shown useful in distinguishing 

healthy cohorts from autistic, depressive, and psychotic ones [27, 28].

Finally, we show that while semi-triangular edges are redundant in computing shortest paths, 

they distort the triangular geometry of the resulting distance backbone to varying degrees. 

Therefore, the amount of redundancy in a graph together with the distribution of this 

topological distortion provide a nuanced characterization of all edges and their importance 

for robustness of shortest paths in a network. Altogether, our distance backbone analysis 

contributes to a better understanding of information transmission in complex networks. 

Following, we introduce the necessary mathematical background.

2. Background: closure of proximity and distance graphs

A graph P(X) is a binary relation of set X with itself that characterizes the network of 

interactions amongst its n = X  variables x. The nodes (or vertices) of P  are each of the 

variables x, and the edges (or links) between two variables xi and xj are denoted by pij. In the 

simplest case, p ∈ 0, 1 , the variables are either related (1) or not (0).

To characterize network interactions in a more natural way, it is very often important to 

consider intensity [11, 29–33] by allowing edges to be weighted. Weights can denote a 

proximity (also known as similarity or strength) or a distance (also known as dissimilarity) 

between nodes. Proximity is proportional and distance is inversely proportional to the 

intensity of the interaction. In the case of proximity, without loss of generality, edge weights 

can be normalized to the unit interval: p ∈ [0, 1][4, 26]. Thus proximity graphs P(X) can be 

represented by adjacency matrices P  of size n × n, where entries denote the edge weights 

pij = P i, j , ∀xi, xj ∈ X. When P(X) is an undirected graph, P  is a reflexive and symmetric 

matrix (pii = 1 ∧ pij = pji, ∀xi, xj ∈ X).

2.1 Transitive closure

Transitivity is an important concept in complex networks because it allows for the inference 

of indirect associations from data [34, 35]. The transitive closure in proximity graphs and 

(indirect) shortest paths in distance graphs are isomorphic means to infer the propensity 

of variables that do not interact directly to affect one another indirectly via network 

interactions. Because many forms of transitivity can be defined, there are many distinct 

ways to compute such indirect interactions in networks.
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Weighted graphs P(X) obtained from real-world data using various measures of proximity 

(e.g. co-occurrence, correlation, mutual information, and transfer entropy) are typically not 

transitive. That is, at least one pair of nodes, xi and xj, are linked more strongly via a third 

node, xk, than they are directly. To study the transitivity of a weighted graph, we need 

to compute the strength of interaction between any two nodes given all possible indirect 

paths between them. There are, however, infinite ways to numerically integrate the weights 

on the indirect paths. Menger [36] first generalized transitivity criteria in the context of 

probabilistic metric spaces by introducing triangular norm (t-norm) binary operations.

Later, Zadeh used t-norms to generalize logical operations in multi-valued logics such as 

Fuzzy logic [37], as follows. A t-norm ∧ : 0, 1] × 0, 1] 0, 1 , is a binary operation with 

the properties of commutativity (a ∧ b = b ∧ a), associativity (a ∧ (b ∧ c) = (a ∧ b) ∧ c), 

monotonicity (a ∧ b ≤ c ∧ d iff a ≤ c and b ≤ d), and identity element 1 (a ∧ 1 = a). 

In other words, the algebraic structure ( 0, 1 , ∧) is a monoid [38], and ∧ generalizes 

conjunction in logic to deal with truth values in the unit interval (a, b ∈ 0, 1 ) (for a 

thorough review, see [4]). Similarly, a t-conorm ∨ generalizes disjunction and has the 

same properties as a t-norm, but its identity element is 0 (a ∨ 0 = a) [4]. To obtain dual 
t-norm/t-conorm pairs, we can derive a t-conorm from a t-norm via a generalization of De 

Morgan’s laws: a ∨ b = 1 − ((1 − a) ∧ (1 − b)).

To compute the transitivity of a graph P(X), we use the composition of binary relations 
based on the algebraic structure ( 0, 1 , ∧, ∨) via the logical composition of the graph’s 

adjacency matrix with itself (P ∘ P). The calculation procedure is similar to a matrix 

product, except that summation and multiplication are replaced by the t-conorm and t-norm, 

respectively [4, 39]:

P ∘ P = ∨
k

∧ (pik, pkj) = p′ij .

The most commonly used generalized disjunction (t-conorm) and conjunction (t-norm) pair 

is: ∨ ≡ maximum, ∧ ≡ minimum . Thus, the standard graph composition is referred to as 

the max-min composition:

P ∘ P = max
k

min(pik, pkj) = p′ij .

The transitive closure PT (X) of a graph P(X) can then be defined as:

PT = ∪
η = 1

k
Pη,

(2.1)

where Pη = P ∘ Pη − 1, for η = 2, 3, …, and P1 = P  [4]. Furthermore, P ∪ Q denotes the 

union of two graphs defined on same node set X and is defined by the disjunction of their 

respective adjacency matrix entries: pij ∨ qij, ∀xi,xj∈X, where ∨ denotes the same t-conorm used 
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in the composition. In the most general case, κ ∞[38], but when ∨ = maximum, with any 

t-norm ∧, we have κ ≤ X − 1 [4]. In other words, in the latter case the transitive closure 

converges in finite time and is easily computed via formula 2.1 [26].

Because each t-conorm/t-norm pair employed defines a different graph composition, 

different criteria for transitivity can be computed [4, 26, 36]. A graph P(X) is transitive 

for a t-conorm/t-norm pair ∨ , ∧  if and only if:

pij ≥ ∨
k

∧ (pik, pkj), ∀xi, xj, xk ∈ X .

2.2 Distance closure isomorphism

The study of complex networks, including such phenomena as community structure [40], 

node and edge centrality [41] and link prediction [42], is based heavily on a notion 

isomorphic to transitive closure of a proximity graph P(X): computation of all shortest paths 

of a distance graph D(X), typically via the Dijkstra algorithm [43]. In this type of weighted 

graph, the adjacency matrix is denoted by D, edge weights dij ∈ 0, ∞  denote the intuitive 

notion of distance and are anti-reflexive (dii = 0) and symmetric (dij = dji)1.

The two types of graphs and their closures can be defined as isomorphic via a non-linear 

(strictly monotonic decreasing) map φ, since proximity edges are constrained to [0, 1] while 

distance edges are in [0, +∞] [26]. The isomorphism between proximity graphs P(X) and 

distance graphs D(X) must observe the following constraint ∀xi, xj , xk ∈ X:

f
k

g(φ(pik), φ(pkj) = φ ∨
k

∧ (pik, pkj) ,

(2.2)

where f, g  is a pair of binary operations such that f, g : 0, + ∞] × 0, + ∞] 0, + ∞ . 

These operations are the t-conorm and t-norm isomorphic counterparts in distance graphs, 

so they also form monoids ( 0, + ∞ , f) and ( 0, + ∞ , g), each with properties of 

commutativity, associativity, monotonicity and identity element (+∞ for f and 0 for g). 

Thus, f and g have been named a td-conorm and td-norm, respectively [26], where td 

is ‘triangular distance’. Though an infinite number of maps satisfy the isomorphism the 

simplest, which we use here unless otherwise noted, is the familiar distance function:

φ : dij = 1/pij − 1.

(2.3)

Constraint 2.2 also leads to the equations that define each operation in terms of its 

isomorphic counterpart, where ϕ−1 is the inverse function of ϕ:

1Here, we only consider the standard definition of distance as a symmetric and anti-reflexive function [44]. The methodology, 
however, is extendable to non-symmetric graphs (see [26] for details).
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g(dik, dkj) = φ( ∧ (φ−1 dik , φ−1 dkj ))
f(dik, dkj) = φ( ∨ (φ−1 dik , φ−1 dkj ))
∨ (pik, pkj) = φ−1(f(φ pik , φ pkj ))
∧ (pik, pkj) = φ−1(g(φ pik , φ pkj )) .

(2.4)

As depicted in Fig. 1A, given a (strictly monotonic decreasing) map φ, the transitive 

closure PT (X) of graph P(X) possesses an isomorphic distance closure DT (X) of graph 

D(X), and vice-versa. This means that every transitive closure criterion established by a 

∨ , ∧ -composition for proximity graphs yields an isomorphic distance closure criterion 

for distance graphs established by an f, g -composition [26]. Therefore, there are infinite 

ways to algebraically compute indirect associations between nodes in a distance graph and 

shortest path computation is just one possibility. In the range of all possibilities, many are 

meaningful and useful for complex network applications, including diffusion distances and 

the class of shortest-path distance closures we focus on below [26].

2.3 Shortest-path distance closures

The most common distance closure is the metric closure, where in our formulation, 

f(z, w) = min(z, w) and g(z, w) = z + w, for z, w ∈ 0, + ∞ . This type of closure 

computes the shortest path between all nodes x in a distance graph D(X): operation g ≡ +
is used to compute path length by summing the edge distance weights of each path, 

and operation f ≡ min is used to select the shortest path length.2 The metric closure is 

equivalent to the All Pairs Shortest Paths (APSP) problem [45]. It is typically computed 

via the Dijkstra algorithm [46] but it can also be computed algebraically with the matrix 

composition of distance closure or the isomorphic transitive closure (formula 2.1), also 

known as the distance product [45]. Once the metric closure of distance graph D(X) is 

computed the resulting graph DT, m(X) is guaranteed to be metric: every edge weight obeys 

the triangle inequality or dij
T , m ≤ dik

T , m + dkj
T , m, ∀xi, xj, xk ∈ X. This means that the shortest 

distance between any two nodes in DT, m(X) is the direct edge weight that links them and no 

indirect path adds up to a shorter distance.

Another noteworthy distance closure is the isomorphic counterpart of the max–min transitive 

closure of proximity graphs, ∨ , ∧ ≡ max, min . For any strictly monotonic decreasing 

map φ, this transitive closure is equivalent to the ultra-metric closure, DT, u(X), of distance 

graph D(X), defined by operations f, g ≡ min, max . Instead of the triangle inequality, 

this closure enforces a stronger inequality: dij
T , u ≤ max dik

T , u, dkj
T , u , ∀xi, xj, xk ∈ X [26]. In this 

case, instead of computing path length by summing the edges in a path (as in the metric 

closure), path length is the ‘weakest link’ in the path, either the largest distance edge-weight 

or the smallest proximity edge-weight. In other words, the shortest path between any two 

2Using the simple map of eq. 2.3, the isomorphic counterpart of metric closure in proximity graphs becomes the transitive closure 
based on ∨ (a, b) = max(a, b) and ∧ (a, b) = ab/(a + b − ab) for a, b ∈ 0, 1  [26].
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nodes in the original distance graph is computed as the minimax path [47], which leads to an 

ultra-metric distortion of the original graph topology [48].

The metric and ultra-metric closures are special cases of the class of shortest-path distance 
closures [26] in which the t-conorm is fixed to ∨ ≡ max in the transitive closure of 

proximity graphs, or equivalently, the td-conorm is fixed to f ≡ min in the distance closure 

of distance graphs. This ensures that the closure converges in finite time and is easily 

computed via eq. 2.1 [4, 26]. While there is an infinite set of such closures, because 

f ≡ min, every possible closure results from choosing the shortest path between every pair 

of nodes. What changes is how one computes the length of a path between xi and xj via m
indirect (non-repeating) nodes:

ℓij = g dik1, dk1k2, …, dkmj .

(2.5)

The canonical metric closure computes path length as the sum (g ≡ +) of all edges in the 

path. The ultra-metric closure computes path length by selecting the weakest link (g ≡ max).

As an illustration, imagine we are interested in computing influence on a social network 

where nodes are people and edge weights denote social distance: small edge-weights 

indicate people are socially near (thus, they can influence each other a lot), and large edge 

weights indicate they are socially distant. We can compute how indirectly connected people 

may influence one another by computing a distance closure. The metric closure, in effect, 

accounts for each edge on an indirect path between two people in the network as an additive 

cost: It sums the distances edge-weights on the path to measure indirect social influence. 

The ultra-metric closure, on the other hand, assumes that indirect social influence depends 

only on the weakest link on the path between two people: the largest distance edge-weight 

on the path is the measure of indirect social influence.

Beyond these two well-known closures, we can compute path length in infinite other ways 

by setting g in eq. 2.5 to any td-norm that obeys the isomorphism constraint of eq. 2.2. For 

instance, path length could be computed by the Euclidean distance, g ≡ dik
2 + dkj

2 1/2, a more 

general Minkowski metric, g ≡ dik
r + dkj

r 1/r[49] or even an operation that does not sum 

edge weight contributions, like a product, g ≡ dik + 1 · dkj + 1 − 1. Indeed, we can use 

the isomorphic counterpart of any of the many families of known t-norms [4]. Thus, there 

are also infinite ways to compute indirect associations in complex networks via the general 

shortest-path distance closure, which we denote by DT, g(X); see Fig. 1B for an example. 

For a given td-norm g, the generalized average shortest-path length (as defined by eq. 2.5) is 

denoted by dij
T , g ∀xi, xi ∈ X, that is, by the mean value of all entries of the adjacency matrix 

of distance closure graph DT, g3.

3This assumes a connected graph; otherwise, one ignores the infinite entries of the adjacency matrix.
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The study of desirable axiomatic characteristics of distance closures—including several 

specific cases in addition to metric and ultra-metric closures, such as diffusion distance 

closures—has been pursued by authors Simas and Rocha [26]. Here, we focus on an 

invariant subgraph of all shortest-path distance closures (those with f ≡ min), which allows 

us to uncover structural redundancy and shortest-path robustness in graph models of real-

world complex networks.

3. Results

3.1 Distance backbone: the general case

The distance backbone of a distance graph D(X) is defined as its invariant subgraph Bg(X) in 

the computation of a (shortest-path) distance closure DT, g(X) using the binary operation pair 

f ≡ min, g . The edge weights of the distance backbone graph are given by:

bij
g =

dij, if dij = dij
T , g

+∞, if dij > dij
T , g, ∀xi, xj ∈ X,

(3.1)

where bij
g = + ∞ means that there is no direct edge between xi and xj in the distance 

backbone graph—the direct distance is infinite. The edge weights of D(X) that do not 

change after computation of the distance closure DT, g(X) are those that obey the generalized 
triangle inequality imposed by f ≡ min, g :

dij ≤ g dik
T , dkj

T , ∀xi, xj, xk ∈ X .

(3.2)

The edges weights that do become smaller with the distance closure, and only these, break 

this inequality in D(X) and are not included in the distance backbone. When an edge dij

of D(X) breaks the generalized triangle inequality, it means that the length of at least one 

indirect path between xi and xj, as computed by eq. 2.5, is shorter than the direct distance: 

ℓij = dij
T , g < dij. Figure 2 depicts the process of computing the distance backbone for any 

td-norm g and an example (two additional examples are shown in Supplementary Figs 9 and 

10).

It is only in weighted distance graphs—where weights discriminate and characterize 

degree of association between nodes as distance—that the concept of distance backbone 

is meaningful and useful, as summarized by the following theorem (proof in Supplementary 

material):

THEOREM 1 (Backbone of non-weighted graphs) If D(X) is a standard, non-weighted graph, 

then its distance backbone for any td-norm g is the entire graph: Bg(X) ≡ D(X).

Edges of D(X) that obey the generalized triangle inequality are called triangular, and those 

that do not are called semi-triangular, analogous to semi-metrics that relax the standard 
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triangle inequality [44]. Interestingly, semi-triangular edges are not necessary to compute 

the distance closure DT, g(X) as they cannot appear in a (generalized) shortest path. Thus, 

triangular edges alone define the backbone and are sufficient to compute the closure, as the 

following theorem attests (proof in Supplementary material)4:

THEOREM 2 (Backbone Sufficiency) Given a distance graph D(X) defined on (node) variable 

set X, its shortest-path distance closure defined by any td-norm g is equivalent to the same 

closure of its distance backbone subgraph: DT, g(X) ≡ BT, g(X).

From Theorem 2, it follows that if the original graph D(X) is connected, then the distance 

backbone graph is also connected for any td-norm g and it must contain all bridge edges 

(proofs in Supplementary material).

COROLLARY 1 (Backbone Connectivity) Given a connected distance graph D(X), its distance 

backbone graph Bg(X) is also a connected graph for any td-norm g.

COROLLARY 2 (Backbone Contains All Bridges) Given a distance graph D(X), all its bridge 

edges are included in its distance backbone graph Bg(X) for any td-norm g.

These are very useful results because many graph reduction techniques, such as thresholding 

and other backbones, do not necessarily preserve graph connectivity or bridge edges 

(see Section 4). Figure 2 exemplifies the backbone sufficiency theorem and connectivity 

corollary for any td-norm g (as do Supplementary Figs 9 and 10).

The proportion of semi-triangular edges is therefore the proportion of edges in graph D(X)
that are not necessary to compute shortest-paths according to the distance closure defined by 

f ≡ min, g . This measure of edge redundancy is given by:

σg(D) = dij : dij > dij
T , g

dij
, ∀xi, xj ∈ X:i > j .

(3.3)

Similarly, the proportion of triangular edges in graph D(X) is simply the relative size of its 

distance backbone Bg(X):

τg(D) = dij : dij = dij
T , g

dij
= bij

g

dij
, ∀xi, xj ∈ X:i > j .

(3.4)

It follows that τg = 1 − σg. Since distance graphs are symmetric (dij = dji), and edges are 

nondirected, in formulae 3.3 and 3.4, we count each edge only once and do not tally 

4Naturally, there is an isomorphic transitive backbone of proximity graph P(X) via eq. 2.2. Edges in the transitive backbone are 
transitive according to the criterion established by ∨ ≡ max, ∧ . Edges not on the backbone break this transitivity criterion, and 
we can refer to them as semi-transitive; see also transitive reduction in Section 4.
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reflexive edges dii. That is, we tally only the lower diagonal entries of the adjacency matrix: 

di, j : i > j.

Operation g instantiates a specific length measure for indirect paths on a distance graph D(X)
that results in a specific shortest-path distance closure DT, g(X). Each such closure induces 

a topological distortion [26] of the original graph obtained from multivariate associations 

observed in real-world data, whereby semi-triangular edges are forced to conform to the 

respective triangle inequality given by eq. 3.2.

However, only the semi-triangular edges get distorted; the triangular edges and the distance 

backbone they compose remain invariant. Therefore, σg also denotes the proportion of 

edges topologically distorted by a distance closure, whereas τg denotes the proportion of 

topologically invariant edges.

A measure of semi-triangular edge distortion is easily obtained via a ratio of the direct 

distance over the shortest indirect path length between nodes xi and xj:

sij
g = dij

dij
T , g , ∀xi, xj ∈ X:i ≠ j .

(3.5)

If an edge dij is triangular, sij
g = 1, meaning there is no distortion. If an edge is semi-

triangular, sij
g > 1 and the larger the ratio, the more the edge breaks the general triangle 

inequality and, thus, the more distorted it will be in the distance closure. Figure 3 depicts 

how measures 3.3–3.5 relate to triangular and semi-triangular edges.

3.2 Metric backbone

The general distance backbone (eq. 3.1) is based on the generalized triangle inequality (eq. 

3.2). However, most research on complex networks is based on the metric geometry given by 

the standard triangle inequality, obtained by setting g ≡ + in (eq. 3.2):

dij ≤ dik + dkj, ∀xi, xj, xk ∈ X .

(3.6)

In this case, the distance closure becomes the metric closure DT, m(X), used to compute 

standard shortest paths on distance graphs. Path length is computed by summing edge 

weights (g ≡ + in eq. 2.5), typically using Dijkstra’s algorithm in the APSP.

Via the metric closure, we obtain a metric backbone Bm(X) by setting g ≡ + in (eq. 3.1). 

This backbone contains all the edges of the original distance graph D(X) that are metric, 

those that satisfy the standard triangle inequality (eq. 3.6); edges not on the backbone are 

semi-metric [50–52]. Figure 4 shows the process of computing the metric backbone based 

on the general case of Fig. 2 and an example. Notice that since the original example graph 
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is connected (Top, left), its backbone is also a connected graph (Bottom, left) and the metric 

closure is a complete graph (Bottom, right), which exemplifies Corollary 1 for g ≡ +.

As shown above for the general distance backbone, semi-metric edges do not contribute to 

shortest-path computation and are thus redundant for that purpose (Theorem 2). This is seen 

in the example in Figure 4 where edges dik and djk are semi-metric and do not contribute to 

any shortest-path computed for the metric closure DT, m(X). Accordingly, by setting g ≡ +
in formulae 3.3 and 3.4, we obtain the semi-metric edge redundancy and the relative size 
of the metric backbone of graph D(X), denoted by σm(D) and τm(D)—also known as the 

proportions of semi-metric and metric edges, respectively. The distance graph in Fig. 4 is 

thus σm(D) ≈ 29% redundant for shortest-path calculation with a metric backbone Bm(X)
that comprises τm(D) ≈ 71% of the original graph D(X). A measure of semi-metric edge 
distortion, sij

m, is similarly obtained by setting g ≡ + in eq. 3.5. If an edge dij is metric, 

sij
m = 1, meaning there is no distortion. If the edge is semi-metric, sij

m > 1, and the larger the 

ratio, the more the edge breaks the triangle inequality (eq. 3.6) and the more distorted it will 

be in the metric closure. Supplementary Fig. 12 depicts how sij
m relates to the semi-metric 

redundancy and size of backbone measures.

3.3 Ultra-metric backbone

Given the family of shortest-path distance closures, other specific cases of distance 

backbones are meaningful. For instance, with the ultra-metric closure DT, u(X), we compute 

path length as the weakest edge in the path by using g ≡ max, also known as the minimax 
path [47] (Section 2.2). This means that the closure now enforces the stronger ultra-metric 
triangle inequality, dij ≤ max(dik, dkj). By setting g ≡ max in eqs. 3.1 and 3.2, we obtain 

the ultra-metric backbone Bu(X), which contains all the edges of the original distance 

graph D(X) that are ultra-metric. Figure 5 shows the process of computing the ultra-metric 

backbone on the same example graph as Fig. 4.

Edges that are not in the ultra-metric backbone may be referred to as semi-ultra-metric, or 

simply semi-triangular as in the general case. Via formulae 3.3 and 3.4 with g ≡ max, we 

obtain the proportion of semi-ultra-metric edges and the proportion of ultra-metric edges in 

graph D(X), denoted by σu(D) and τu(D), respectively. The distance graph in Fig. 5 is thus 

σu(D) ≈ 43% redundant, for the purpose of shortest minimax-path calculation, with an ultra-

metric backbone Bu(X) that comprises τu(D) ≈ 57% of the original graph D(X). A measure 

of semi-ultra-metric edge distortion, sij
u , is similarly obtained via eq. 3.5. Supplementary Fig. 

13 depicts how sij
u  relates to ultra-metric redundancy and size of backbone measures.

Since the ultra-metric triangle inequality enforces a stronger transitivity criterion, edges 

not on the ultra-metric backbone may still be metric and thus included in the metric 

backbone Bm(X). For instance, in Fig. 5, edge dij is not on the ultra-metric backbone but 

is a metric edge. The ultra-metric backbone is thus a subgraph of the metric backbone: 

Bu X ⊆ Bm X ⊆ D x . Conversely, by Theorem 2, the ultra-metric backbone is sufficient 
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to compute the ultra-metric closure (all semi-ultra-metric edges are redundant for this 

purpose) but not to compute the metric closure.

3.4 Other backbones

The metric and ultra-metric backbones are based on well-known triangle inequalities, with 

the ultrametric based on the strongest triangle inequality in the family of shortest-path 

distance closures [26]. Other criteria for triangle inequality can, however, be defined by 

setting g to other binary operators in eq. 3.2 and in all formulae 2.5 to 3.5. As discussed in 

the Section 2.2, g can yield other well-known path length measures such as the Euclidean 

distance and the more general Minkowski metric, which lead to a Euclidean backbone and 

the family of Minkowski backbones associated with pathfinder networks [49] (see Section 

4.1).

We can go much beyond such familiar distances by exploring the space of t-norms ˆ in 

the isomorphism of formulae 2.2 and 2.4. These generalized logical conjunctions are well 

known and many families exist to be explored by the complex networks field [4, 26]. This 

space, naturally, includes all the familiar distances. For instance, the isomorphic counterpart 

g+ ≡ dik + dkj used to compute the metric backbone is the well-known Hamacher t-norm 

[53]: ∧ (pik, pkj) = pik · pkj/(pik + pkj − pik · pkj) for proximity weights pik, pkj ∈ 0, 1 . It is a 

special case of the Dombi family of t-norms [54] that is isomorphic to the Minkowski metric 

family in our framework [26].

Interestingly, all of the above use distances that sum the contribution of each distance 

edge weight (or the powers of them) on a path, but we can consider others that do 

not.5 For example, under our isomorphism the product t-norm ∧× ≡ pik · pkj  leads to 

a td-norm also based on product: g× ≡ dik + 1 · dkj + 1 − 1. Such an operation under 

shortest-path distance closure (f ≡ min) yields a product backbone that considers length to 

be proportional to the product of the edge weights on a path.6

Naturally, based on application, we can consider many other algebraic families of t-norms 

to define distance backbones. For instance, a t-norm that computes the hyperbolic product 

of proximity weights yields isomorphic distance weights that become log-normalized after 

closure, a common technique in structural brain networks. However, resulting distance 

weights (path length) are bound by the ultra-metric length function gmax and the drastic 

td-norm:

gdrastic dik, dkj =
dik when dkj = 0
dkj when dik = 0
+∞ otherwise .

5The ultra-metric gmax ≡ max(dik, dkj) is also an example of a distance that does not sum edge weights to compute the path length, 
even though it can be approximated by the Minkowski metric when r + ∞.
6Because 0 is the identity element for td-norms, one cannot consider a more direct distance product such as g ≡ (dik · dkj) for 
path length. However, as defined, g× preserves this desirable property for computing path length: g× (dik, dkj) = dik if dkj = 0 and 
g×(dik, dkj) = dkj if dik = 0. In other words, if an edge has 0 distance, it does not affect the length of a path in which it appears.
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That is, all possible td-norms g in our distance backbone framework obey:

g dik, dkj ∈ gmax dik, dkj , gdrastic dik, dkj , ∀dik, dkj ∈ [0, + ∞],

(3.7)

as previously shown for all isomorphic t-norms [4]. For instance, the following relationship 

is straightforward: gdrastic ≥ g× ≥ g+ ≥ gmax.

3.5 Triangular geometry and the robustness of complex networks

Our formulation of distance backbones shows that running the APSP algorithm on a distance 

graph D(X) (the metric closure, as is commonly done in complex networks, enforces 

a topological distortion of the original graph whereby semi-metric edges are forced to 

satisfy the triangle inequality. The only edges invariant to this closure are on the metric 

backbone. These observations of the common metric closure lead to two key conclusions 

that generalize to any distance backbone produced from the general shortest-path distance 

closure:

(1) Semi-triangular distortion.—Only the distance backbone edges of the original 

graph exist in the triangular space enforced by a given distance closure—the monoid 

dij ∈ 0, + ∞ , g  plus the generalized triangle inequality axiom of eq. 3.2. The semi-

triangular edges break this geometry, and the semi-triangular distortion sij
g  (eq. 3.5) measures, 

as a division factor, how much they must be distorted to fit the topology of the triangular 

space enforced by the distance closure. The distance backbone thus comprises triangular 

edges that function, metaphorically, as wormholes that minimize the (semi-triangular) 

distance edges via indirect shortest paths. This can be seen in the metric backbone example 

of Fig. 4. Nodes xj and xk are sjk
m = 4.5 farther apart via their semi-metric direct edge than 

via an indirect path on the backbone that goes through xm. In this sense, the shortest distance 

between xj and xk via xm exists on the metric backbone subgraph that obeys the triangle 

inequality; it exists ‘on the metric geometry’. In contrast, the direct edge djk exists outside 

this metric geometry and is distorted (divided by sjk
m = 4.5) when the metric closure (APSP) 

is computed.

(2) Semi-triangular redundancy.—Edges on a distance backbone are sufficient to 

compute all shortest paths according to a path length measure defined by the chosen 

distance closure (Theorem 2). Thus, semi-triangular edges are redundant for shortest path 

computation and σg(D) (eq. 3.3) measures the amount of such semi-triangular redundancy in 

D(X). The value of this measure varies among large complex networks built from empirical 

data, but it is typically very large as shown below for metric and ultra-metric redundancy 

(Table 1).

The concept of metric and semi-metric edges, as well as their proportion in a distance graph, 

relates directly to several key concepts in the study of complex networks. Edge betweeness 
centrality is defined as the number of shortest paths that pass through an edge in a graph 

[58]. Since the only edges that contribute to shortest paths are on the metric backbone, it is 
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clear that betweeness centrality is positive for metric edges and null for semi-metric edges. 

The distortion sij
m of semi-metric edges (obtained by setting g ≡ + in eq. 3.5), however, 

varies widely. In other words, among the edges that have null betweeness centrality, some 

are much more semi-metric than others depending on how strongly they break the triangle 

inequality. For instance, Fig. 6B shows that the sij
m distribution for semi-metric edges is very 

heterogeneous with a wide variation of values in a network of air traffic between more 

than a thousand U.S. Airports. The semi-metric distortion parameter sij
m thus offers a finer 

characterization of edges not on the metric backbone than does betweeness centrality—those 

edges that do not contribute to shortest paths but can contribute to other phenomena on 

networks, including modularity and diffusion. This is meaningful as it impacts shortest path 

robustness, as discussed below.

The distribution of shortest path length is also important for complex networks. We expect, 

for instance, a small mean value of such a distribution, dij
T . m , in both the Erdos–Renyi 

model of random graphs and in small-world graphs [59]. Interestingly, semi-metric edges 

do not affect this distribution at all since they do not contribute to the computation of 

shortest path length. Indeed, only the edges in the metric backbone contribute to this 

distribution. Therefore, removing a semi-metric edge from a distance graph does not change 

its distribution of shortest path length, but removing a single metric edge (one on the metric 

backbone) may increase the average shortest path length, since every edge in the metric 

backbone participates in at least one of the shortest paths. We can thus say that the shortest 

path length distribution of distance graphs is robust to semi-metric edge removal, but is 

affected by metric edge removal. Therefore, the smaller the metric backbone (small τm, large 

σm), the more robust the distribution of shortest path length of D(X) is to random edge 

removal.

For example, in the Airport traffic network depicted in Fig. 6, it is desirable to have a robust 

shortest path length distribution so that removal of an edge does not significantly increase 

the distance between cities. Indeed, the metric backbone makes up only τm(D) ≈ 16% of the 

network (Table 1). Random edge removal (meaning the interruption of all air traffic between 

two cities) will thus affect shortest paths on the network less than a sixth of the time, 

which denotes robustness to this type of disturbance. Natural networks can be even more 

robust to this type of removal. For instance, the metric backbone of a Human Connectome 

Network (HCN) [60] shown in Fig. 7 makes up only τm(D) ≈ 9% or 18% of the network, 

depending on the size of the brain parcellation used, with corresponding redundancy of 

σm(D) ≈ 91% or 82%, respectively. This means that the shortest paths on the network are 

very robust to random edge removal as they are affected only between a fifth and a tenth of 

the time. Analysis of other networks below reveals a similar phenomenon in networks across 

biological, technological and social realms.

While complex networks such as the HCN can display high robustness to random edge 

removal by being organized around very small metric backbones, the random removal of 

edges from the metric backbone itself can have varying impacts on the distribution of 

shortest path length. The impact depends on the topology of the backbone itself as well as 

the shape of the distribution of semi-metric distortion values sij
m, which are thus additional 
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robustness mechanisms available to complex systems. Removal of edges from the backbone 

tends to increase some shortest paths and thus the average shortest path length, but the 

amount of increase depends on the available alternative paths. If the backbone itself contains 

alternative paths of similar length, the impact of removal is minimal; this situation is more 

likely if the backbone preserves strong transitivity (or community structure) with a small 

number of bridges. Similarly, if there are many edges with very small semi-metric distortion 

sij
m ≈ 1 that are not on the backbone, then an edge randomly removed from the backbone is 

likely to be replaced by one with very small distortion and thus small impact on the shortest 

path distribution, as is the case for the HCN-Physical network as discussed below (see 

also Fig. 7). Conversely, if there are many semi-metric edges with large distortion sij
m ≫ 1, 

random removal of edges from the backbone is likely to have a big impact on the shortest 

path distribution and its average value. This further highlights the importance of the finer 

characterization of semi-metric edges afforded by the distortion measure and its distribution, 

but not by betweeness centrality.

Consider the Fig. 4 example; removing edge bij
m of the backbone of network D(x) results 

in minimal change to shortest paths, only affecting the shortest path between xi and 

xj : dij
T , m : 9 10. The metric backbone does not require the addition of another edge and 

the average shortest path length changes very little dT, m = 4.9 5 due to the short 

indirect distance between nodes xi and xj, via nodes xl, xk and xm. This strong transitivity 

allows the backbone to lose edge bij
m with minimal impact on the distance closure DT, m. 

In contrast, removing edge bjm
m  results in a big change to shortest paths: djm

T , m : 1 10, 

djk
T , m : 2 9, djl

T , m : 6 13. The metric backbone requires the addition of the previously 

semi-metric edge djk bjk
m = 9 and the average shortest path length changes considerably 

as well dT, m : 4.9 7.2. Another case is removing edge bil
m, which also requires adding 

previously semi-metric edge dik bik
m = 9 to the backbone, but has less impact on the 

shortest path distribution: dil
T , m : 4 13, dik

T , m : 8 9, dim
T , m : 9 10. The average shortest 

path length changes less than in previous case dT, m : 4.9 6.

The difference between the last two cases depends on the semi-metric distortion of the 

previously semi-metric edges that need to be added to the backbone after edge removal. 

While the first is a case of adding an edge with high semi-metric distortion sjk
m = 4.5 to 

the backbone, the second is the opposite sik
m = 1.125 (see Fig. 4, bottom, right). Notably, 

edges djk and dik both have null betweeness centrality in the original graph despite such 

distinct impacts on shortest paths after removal of metric edges from the backbone. This 

illustrates how, compared to betweeness centrality, the semi-metric distortion measure and 

its distribution are more characteristic of impact on and robustness of the shortest path 

length distribution.

The ultra-metric backbone is also very useful for characterizing robustness of shortest-paths 

to attacks. It derives from the strongest td-norm g (eq. 3.7), meaning that the shortest 

possible path length in a distance graph D(X) is given by the ultra-metric closure as captured 

by eq. 3.7. Therefore, edges in the ultra-metric backbone include the strongest associations 
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between node-variable pairs in the original data used to produce D(X) and constitute a 

subgraph of the metric backbone, as exemplified in Fig. 5. Because ultra-metric edges 

are defined by distance weights that are much smaller than any indirect path connecting 

their respective nodes (with length computed by any g), they are likely to be included in 

many standard shortest paths and thus observe high edge betweeness. In other words, the 

ultra-metric backbone contains the strongest pairwise associations that are most likely links 

in many paths associating multiple variables. Therefore, attacks on ultra-metric edges are 

likely to strongly impact the distribution of shortest path lengths and its average value. The 

relative size of the ultra-metric to the metric backbone (τu/τm) is thus an indication of how 

robust to attack the metric backbone and the distribution of shortest-path length in a graph 

are (see values for various networks in Table 1).

In addition to betweeness centrality and robustness of shortest path length distribution, 

the metric backbone affects all measures associated with shortest path length, such as 

efficiency, reachability, and modularity. For instance, removal of metric edges from the 

original distance graph is likely to break the graph into separate components since all 

bridges are included in the metric backbone (Corollary 2). The likelihood is particularly 

high when using thresholding or other reduction techniques that do not consider the metric 

backbone (Section 4).

Semi-metric edges, on the other hand, do not affect shortest paths and do not form bridges 

yet they fill-up the graph and impact measures that are related to local connectivity 

such as clustering coefficient, node degree, and transitivity ratio (different from transitive 

closure). Modularity in particular depends on both types of edges since metric edges include 

all bridges and semi-metric edges affect local connectivity. Similarly, the small-world 

phenomenon on weighted graphs depends on both types of edges as average shortest path 

length depends only on the metric backbone and the clustering coefficient depends on 

both types of edges. Supplementary Table 2 shows how the clustering coefficient tends to 

decrease when semi-metric and semi-ultra-metric edges are removed from various networks. 

A study of the preservation of community structure in the metric backbone is forthcoming 

[69].

3.6 Backbones of networks across domains

Using our open-source Python package, we have computed the metric and ultra-metric 

backbones of various networks across domains ranging from biology to society and 

technology (§5). The results are summarized in Table 1. Figures 6 and 7 further depict 

the metric Bm(X) and ultra-metric Bu(X) backbones of the U.S.-airports-2006 traffic network 

[55] and two distinct parcellations of a human connectome network (HCN) built from a 

cohort of five participants [60].

It is striking that more than half of the networks across all domains have metric backbones 

that contain τm ≤ 20% of the edges in the original network and almost three quarters have τm

≤ 40%. This denotes a great deal of redundancy in the computation of shortest-paths with σm

≥ 60% for most networks studied. The two smallest metric backbones found are for a large 

gene-regulatory network (GRN) of more than 8,000 genes interacting in insect intestinal 
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cells [62], and the very large knowledge network of 3.4 million Wikipedia concepts built for 

automatic fact-checking [25], with τm = 1.75% and τm ≈ 2%, respectively. It is impressive 

that such small backbones are sufficient to compute all shortest paths. For the Enterocyte 
GRN, this suggests that σm = 98.25% of all gene interactions have stronger alternative 

pathways, which adds much robustness to gene regulation. For the knowledge network, 

this means that automatic fact-checking inferences pursued via shortest-paths on Wikipedia 

(such as in [25]) can ignore 98% of concept associations in the knowledge graph.

All metric backbones, except for scientific collaboration networks (discussed below), are 

composed of fewer than τm = 50% of the original edges. An interesting case of a fairly large 

backbone is the HCN-Physical network. The graph is built from the finer parcellation of the 

human brain used to study the human connectome [60] but the edges denote the physical 

length of each connection rather than the volume of cortico-cortical axonal pathways 

captured by the HCN-Fine network (§ 5). Since the edges of HCN-Physical are constrained 

by a physical, 3D geometry, we expect a mostly metric graph except for minor variations 

due to connections being curved in the interior of the brain (forcing a 3D Euclidean space 

into a 2D metric space). Indeed this is what our analysis confirms. The metric backbone 

is about half of the original network (τm = 49.25%) but the semi-metric edges are almost 

metric with very little semi-metric distortion as shown in Figures 7D and 7E. The largest 

value of sij
m = 6.4, with mean and median values of 1.5 and 1.4, respectively.

In contrast, the HCN-Fine network has a small metric backbone (τm = 17.57%) and its 

distribution of semi-metric distortion displays a wide variation as shown in Fig. 7C and E. 

The largest value of sij
m ≈ 200, with mean and median values of 12 and 5.6, respectively. 

In other words, while the HCN-Fine network behaves like most natural networks we have 

observed—a small metric backbone with the edges outside of the backbone characterized 

by a long-tailed distribution of semi-metric distortion—the HCN-Physical network is 

essentially entirely metric with almost negligible semi-metric distortion to about 50% of 

the edges, as the box plot comparison in Fig. 7E emphasizes. 7

The networks in Table 1 also reveal that the ultra-metric backbone is most often a small 

subgraph of the original distance graph: For 68% of the networks, τu≤ 10%. Therefore, 

the edges that most affect shortest paths are difficult to damage by random attack. Of the 

networks we studied, the shortest paths of the HCN-fMRI network are the most robust to 

random attack on two counts. First, because the metric backbone is very small (τm = 5.5%), 

almost σm ≈ 95% of random attacks would be on semi-metric edges that have no effect 

on shortest paths. Second, the ultra-metric backbone is composed of only τu = 0.2% of 

the edges in the original graph, which represents only τu/τm = 3.64% of the small metric 

backbone. Thus, the edges with most impact on shortest-paths would rarely be damaged 

under random attack. Even though the meaning of shortest paths in networks built from 

fMRI correlation data is not obvious, this suggests that the functional activity of human 

7The HCN-Physical network can be seen as a real-world null model of a distance graph on Euclidean geometry with a minor 
uniformly random semi-metric distortion to edges (with a 50% chance of breaking the triangle inequality), which also explains its very 

small ultra-metric backbone (τu = 5.53%).
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brains is very robust to disturbances from the point of view of shortest-path communication 

between regions.

Very similar behaviour is observed for the social network of High School students [64], 

the knowledge networks of keywords obtained from the user profiles of a digital library 

(MyLib-Keywords), and a large set of Instagram user posts related to depression (Instagram-
depression). The robustness of shortest-paths in the social network of High School students 

means, for instance, that in the presence of an infectious epidemic, the transmission 

speed and spread would be virtually unaffected by removal of a very large number the 

social connections [69]. Similarly, in knowledge networks removal of connections between 

concepts or keywords hardly disturbs associations (inferences), such as recommendations 

[50] or adverse drug reactions [21], made through indirect paths on the backbones of those 

networks.

Sometimes, however, the ultra-metric backbone is composed of a large proportion of the 

metric backbone: τu/τm >≈ 50%. This can happen in situations where the metric backbone is 

very small (τm <≈ 15%), such as the Enterocyte GRN, HCN-Coarse, or U.S.-airports-2006 

networks. It can also happen in situations where the metric backbone is large (τm> 75%), 

such as the scientific co-authorship networks cond-mat-2003, cond-mat, and net-science, 

shown in Fig. 8. In the first case, because the metric backbone is small, random attacks are 

likely to hit semi-metric edges and thus have no effect on shortest-paths overall. However, 

directed attacks to the metric backbone are very likely to hit the ultra-metric backbone and 

thus result in a large impact to the shortest path distribution. This is seen in the examples 

in Figs 4 and 5. As discussed above, the removal of any ultra-metric edge, {bjm
u , bmk

u , bil
u, blk

u } 

has a much stronger impact on shortest paths than the removal of the metric edge bij
m. The 

U.S.-airports-2006 network shown in Fig. 6 provides a real-world example of this behaviour. 

While its metric backbone is small, it is composed of τu/τm ≈ 56% ultra-metric edges. This 

suggests that shortest-paths in the overall network would be very affected by interruptions 

to any one of more than half of the connections in the metric backbone. In other words, air 

traffic is fragile to targeted attacks on backbone connections.

A similar case is seen in the HCN-Coarse network. Its ultra-metric backbone is τu/τm ≈ 
61% of a small metric backbone. This suggests that while there is much redundancy and 

robustness in calculation of shortest-paths, the few edges that contribute to shortest-paths 

are most important. As seen in Fig. 7A, most of these edges involve regions that bridge 

the hemispheres (near the cortical midline) and are located close to the insula. These 

observations are coherent with the fact that these edges and regions channel much of the 

communication between hemispheres and into and out of the insula, a central cortical hub. 

Similar behaviour is observed in the finer brain parcellation seen in Fig. 7B, even though in 

this case the metric backbone is a little more robust to attack, as τu/τm ≈ 32%.

The case of a large metric backbone (τm> 75%) that is mostly ultra-metric (τu/τm> 80%) is 

rare in the networks we analysed. Indeed, it is only observed in scientific co-authorship 

networks, such as the one of Network Science scientists shown in Fig. 8, which are 

known to be particularly modular [67]. These networks contain many bridges between 
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largely decoupled communities, and bridges must be on the backbone (Corollary 2). Our 

results reveal that communities tend to be not only metric but ultra-metric. This means 

that the shortest path between authors in the same community is by far the direct edge 

between them (they are direct co-authors). In contrast, the other social networks we analysed 

(especially the primary and high school social contact networks) are much less metric. 

Even though these networks also have strong community structure [64, 65, 69] most social 

ties are stronger via indirect connections that break the triangle inequality. The scientific 

collaboration networks studied are therefore much more fragile to random attack than the 

other social networks. Given their very large metric and ultra-metric backbones, removal of 

a random edge is likely to strongly affect the distribution of shortest paths. This is especially 

true in the collaboration network of Network Science scientists shown in Fig. 8, where τu/τm

≈ 94%, which is the most strongly triangular ultra-metric network we analysed.

Finally, to emphasize that unlike shortest paths the clustering coefficient depends on both 

metric and semi-metric edges, Supplementary Table 2 shows the values of this coefficient 

for several networks and their backbones. As expected, the removal of semi-metric edges 

tends to reduce the clustering coefficient, which is essentially null for the ultra-metric 

backbone. A more detailed study of the distance backbone and community structure is 

beyond the scope of this article, and is forthcoming [69].

4. Discussion

4.1 Related concepts

The distance backbone is related to but distinct from the concept of transitive reduction in 

graph theory [70]. The latter is the smallest directed graph that has the same reachability, 

and thus transitive closure, as the original graph. The transitive reduction has been expanded 

to weighted, directed graphs [71] and general fuzzy graphs and relations [72], but developed 

mostly for directed, unweighted graphs. Its algorithmic complexity is larger than that of 

the distance backbone (via Dijkstra’s algorithm or distance product) precisely because it 

accounts for directed graphs that can be acyclic or cyclic. Certainly, the distance closure 

framework can be expanded to deal with directed graphs by relaxing the symmetry axiom of 

distance functions, which become quasimetrics [26]. Indeed, this has been done to compute 

shortest paths in the large-scale Wikipedia knowledge graph for automatic fact-checking 

[25], even though in this case there was no performance advantage over using the undirected 

distance graph ([25] § 3; Table 1). Here we stick to generalized metric spaces that retain 

the symmetry axiom, but exploration of quasimetric spaces is certainly a future development 

possibility.

A very important difference is that the distance backbone does not necessarily return the 

smallest graph whose closure is the same as that of the original graph. It includes all 
triangular edges, some of which may be removed and still yield the same distance closure 

graph if there are alternative paths of the same length in the backbone. For instance, in the 

metric backbone example of Fig. 4, if the direct distance between xi and xj were dij = 10
(rather than 9), edge dij would still be in the metric backbone (because the triangle inequality 

would not be broken) but not in the transitive reduction. Finally, the general distance 
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closure framework for weighted graphs that we pursue allows us to explore (infinitely) many 

transitivity criteria based on alternative path length measures (via td-norm g and eq. 2.5) 

and distinct path aggregation measures (via td-conorm f). Here we explore only shortest-

path distance closures and backbones (f ≡ min), but other weighted graph criteria such as 

diffusion [73] and diffusion-like distances, such as resistance [74, 75] and communicability 

[76, 77], are also possible [26]8.

In addition to transitive reduction, in network science there are several other graph 

reduction techniques available. The most obvious is to remove edges above a certain 

distance value dij > α, known as thresholding distance edge weights. Unfortunately, with 

this method bridges that link graph components can easily be removed, dramatically 

altering the distribution of shortest paths. In contrast, the distance backbone guarantees 

that the distribution of shortest paths is unaffected with the removal of semi-metric edges. 

Supplementary Figure 14 shows the destruction of connectivity and shortest paths by 

thresholding the simple example graph of Figs 4 and 5. Furthermore, because real-world 

networks tend to be organized in a multiscale manner whereby distance weights are not 

uniformly and independently distributed but can be hierarchically organized and locally 

correlated, a global threshold can easily remove features and structures that are present only 

at a large distance/length scale (or low proximity/strength) [55]. In contrast, the distance 

backbone preserves the original graph connectivity (and all shortest paths), including long-

range path lengths. As discussed below, in forthcoming work we show that, for social 

contact networks at least, the metric backbone also preserves community structure [69].

Unlike edge thresholding, the minimum spanning tree (MST) of a distance graph preserves 

the connectivity of the original graph. The MST is the acyclic subgraph that connects 

all edges of a connected graph and minimizes the sum of all distance edges included. 

Because as a tree it is acyclic, the MST graph reduction is very destructive to local 

community structure [55]. Importantly, unlike the distance backbone (Theorem 2), the MST 

is not sufficient to compute the metric closure.9 In other words, the MST reduction does 

not guarantee the preservation of the distribution of shortest paths in the original graph. 

Supplementary Fig. 14B shows the MST of the simple example graph of Figs 4 and 5. In 

this case, the metric edge dij is removed from the MST resulting in an increase of the shortest 

path between nodes xi and xj : dij
T , m : 9 10.

Several graph reduction techniques center on the extraction of a backbone subgraph. In 

particular, the disparity filter backbone [55] has been proposed precisely to deal with 

the shortcomings of thresholding and MST graph reductions to preserving the multiscale 

8To calculate diffusion distances, rather than assume the distance between a node pair is a single shortest path, we integrate the length 
of all possible paths between the pair with, for example, an averaging operator. This allows us to consider situations where information 
(or other phenomena) traverse networks by some form of random or stochastic walk on locally available paths. Our distance closure 
methodology includes such types of distances [26], however, diffusion-like distance backbones likely require additional convergence 
criteria because, for the general case, the transitive closure is reached only for κ ∞ in 2.1. In contrast, for the shortest-path 
distance closures we pursue here, we have κ ≤ X − 1 (§2.1), which leads each one to converge to a (unique) distance backbone in 
a (small) finite number of matrix compositions. Therefore, extension of distance backbones to diffusion-like distances is left for future 
work.
9Since the MST is defined for summing edges, the metric closure (g = +) is the appropriate comparison. However, even considering 
extensions of the MST concept to minimize any path length measure (with any g in eq. 2.5), the MST subgraph, by construction, is not 
sufficient to compute the respective distance closure.
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structure of complex networks—even for large distance weights (or low strength/proximity). 

However, as a statistical technique, it requires a null model with a significance level 

parameter to maintain (not filter out) the structure that larger distance weights can bring. 

In contrast, the distance backbone does not need a statistical null model as it is axiomatically 

defined by the chosen geometry monoid (Section 3.1). Moreover, the distance backbone 

guarantees the same connectivity and no change to the shortest path distribution, unlike the 

disparity filter which has no such guarantee and can even remove nodes. For instance, the 

disparity filter backbone of the U.S.- airports-2006 network of over 1,000 airports presented 

in Section 3 is composed of 24% of the original edges (for a significance level α = 0.2, 

per Table 1 in [55]). In addition to removing 76% of all edges, it also removes 23% of all 

nodes. Moreover, shortest paths are not preserved by this reduction technique even for the 

77% of nodes that remain (Table 1 and Fig. 1 in [55]). In contrast, the metric backbone of 

the same U.S. airport traffic network shown in Fig. 6 is almost half the (edge) size (τm = 

16.14%) but keeps all node variables with the same connectivity and shortest path length 

distribution. Indeed, many metric backbones shown in Table 1 are substantially smaller and 

still preserve these important characteristics of the original distance graphs, and tend to 

preserve community structure in social networks [69].

Another related concept is that of pathfinder networks [49], which, similarly to distance 

backbones are obtained by removing graph edges that break the triangle inequality for 

different ways of computing path length. They are extracted from distance graphs by 

adjusting two parameters: r sweeps a space of transitivity criteria by varying how path 

length is computed, and q sets the maximum number of edges that are considered to compute 

indirect paths. Typically, r sweeps a space restricted to the Minkowski distance, of which 

it is a parameter. for r = 1, path length is the sum of the edges, and for r = + ∞ it 

is the maximum edge in the path—equivalent to our formulations g ≡ + and g ≡ max, 

respectively.

The distance closure approach [26] we pursue is instead based on the more general algebraic 

space formed by t-norms and t-conorms from probabilistic metric spaces and fuzzy set 

theory [4] (see Section 2). In this formalism, operation g that defines path length (eq. 2.5) is 

not circumscribed to the Minkowski distance or any specific metric, but rather expanded to 

any metric space monoid. Furthermore, while in the present work we set f ≡ min to focus 

on shortest-path distance closures, the framework allows for other path aggregations such 

as averaging, diffusion, or diffusion-like distances [26] (see discussion above). Additionally, 

since we always compute the full distance closure (Section 2.2), we consider all possible 

violations of the generalized triangle inequality for any path length, not just length q. In 

other words, in our formulation, q is always maximized to the graph diameter—which is 

equivalent to κ in eq. 2.1 and κ ≤ X − 1 (§2).

Importantly, while we remove semi-triangular edges to reveal the distance backbone, we 

do not consider them irrelevant nor do we throw them away. Semi-triangular behaviour 

and properties are very relevant to various network science concepts including clustering, 

expanding the notion of betweeness centrality, and understanding the robustness of shortest 

paths to random attack better, as shown in Section 3. Therefore, we characterize the 
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semi-triangular distortion, overall proportion, and distribution in the graphs we analyse. 

Indeed, precisely characterizing the distortion inherent in semi-triangular edges has led to 

the development of competitive recommender systems [26, 50–52], link prediction tasks in 

computational biology [78], information extraction in social media [21], and even to the 

ability to distinguish healthy from autistic, depressive, and psychotic human cohorts from 

brain (fMRI) networks [27]. Thus, the distance backbone methodology provides a complete 

characterization of triangular organization that goes beyond the edge removal procedures of 

pathfinder networks.

4.2 Future development: improving explanation in network phenomena

Since the distance backbone is composed of the set of edges sufficient to compute all 

shortest paths for a given length measure, we expect it to include the preferred and most 

parsimonious communication paths in the network. Furthermore, because the distance 

backbone is typically very parsimonious, the paths it contains serve as preferred ‘lines 

of argumentation’ to explain and visualize important paths in the network. Following are 

current and future areas of potential development.

Epidemiology is one of the fields where network and data science have led to concrete 

advances [19, 20, 79] since the structure of the contact network in which a disease 

propagates plays a crucial role. Heterogeneous (scale-free) networks strongly favour spread 

[79] so distance backbones and the heterogeneity of semi-triangular distortion are likely 

to be relevant to the study of social contact networks and their role in disease spread. In 

forthcoming work, we test the hypothesis that the metric backbone comprises the most 

relevant pathways for epidemic spread processes on social contact networks. We show that 

in social networks built from contact data, the metric backbone: (a) preserves the original 

community structure; (b) is a subgraph much smaller than the original distance graph (e.g. 

primary- and high-school social contact networks in Table 1 have τm = 9.5 and 7.84%, 

respectively); (c) is by far the preferred subgraph of the same size for epidemic transmission; 

and (d) preserves connectivity, which as discussed above, other reduction techniques do 

not guarantee [69]. Because deleting edges on the backbone, especially the ultra-metric 

backbone, is likely to result in a measurable impact on average shortest-paths in the network 

(Section 3), it would be useful to highlight them as preferred disease spreading pathways in 

actionable epidemiological models. Going forward, we will test different distance backbones 

on the same networks as well as the robustness of the epidemic processes to deletions 

of specific social connections. Since the metric backbone is the preferred transmission 

subgraph, containment strategies to most curb epidemic transmission can be studied. Indeed, 

deletion of ultra-metric edges or edges that must be replaced by highly distorted semi-metric 

edges is most likely to substantially increase the average path length (Section 3) and thus 

overall disease propagation speed.

The study of human brain structural connectivity has revealed characteristic network 

features. For instance, various studies suggest that inter-modular bridge edges and connector 

nodes are critical for information integration in the human brain [14]. This analysis 

hinges on computing betweeness centrality of nodes and edges, as well as how much 

they contribute to modularity. Therefore, computing the metric backbone of structural 
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connectivity in human brain networks is likely to provide a more nuanced characterization of 

important nodes and edges in information integration (especially for bridges that are all on 

the backbone) and those that only contribute to modularity and shortest-path robustness 

(edges with varying degrees of semi-metric distortion). Analysis of different distance 

closures is expected to further add to the toolbox to study structural connectivity of the 

human brain, by accomodating various normalization schemes for human brain connectivity 

measurements (Section 3.4). Our analysis of a human connectome network uncovered 

high topological redundancy: only τm = 9% or 17.57% of edges contribute to the metric 

backbone, depending on coarser or finer brain parcellation, respectively (Section 3, Fig. 

7). The metric backbone of the functional activity correlation among brain regions of the 

observed human cohort is even smaller: τm = 5.5%. We also found a wide variation of 

semi-metric distortion in the human connectome (Fig. 7). In forthcoming work we expand 

this analysis to study the development of structural connectivity in longitudinal human 

cohorts [80]. Indeed, the semi-metric analysis of the human connectome and functional 

activity has already proven useful to distinguish autistic and depressive cohorts from healthy 

subjects [27, 28].

Another promising use of distance backbones is in reducing the computational complexity 

of problems involving large data sets and networks, whereby computational complexity of 

shortest-path calculation can be decreased by removing semi-triangular edges. For instance, 

the Wikipedia knowledge graph used for fact-checking is composed of 14 million edges 

[25]. Yet, 98% of these are semi-metric and can be removed in the calculation of shortest-

paths used by the fact-checking algorithm. In other words, the metric backbone, which is 

sufficient to compute all shortest paths and thus all knowledge inferences, is only 2% of 

the original network. Removal of the semi-metric edges results in substantial storage and 

computation gains.

Likewise, related approaches to infer drug interactions from social-media users and 

electronic health records also rely on shortest-path calculations on distance graphs built 

from co-occurrence of drug names and biomedical terminology [17]. For instance, the metric 

backbone of a network built from an Instagram cohort of ≈ 7, 000 users associated with 

depression [21] contains only τm ≈ 8% of the edges of the original network (Table 1). 

Interestingly, a previous analysis of this network showed that ≈ 86% of the users in the 

cohort contributed to the edges in the metric backbone, thus we can remove ≈ 14% of the 

user timelines from the data set since those only contribute to semi-metric edges not on 

the backbone (≈ 980 users) [68]. In other words, a substantial proportion of users in the 

dataset does not contribute to shortest paths of the resulting network. Similar proportions 

of redundant users are observed in analysis of related data sets on Twitter. Due to the 

large-scale nature of these graphs, removing semi-metric redundancy directly from graphs 

or from underlying data sets can significantly improve all network inference algorithms for 

link-prediction and recommendation that are based on shortest-path calculation [26].

A related potential use of distance backbones is in simplifying network visualization. The 

distance backbone is the subgraph that exists on a specific geometry defined by the length 

function chosen and its associated generalized triangle inequality (Section 3). In contrast, 

semi-triangular edges exist off this geometry. Therefore, distance backbones computed for 
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geometries that are more amenable to 2D or 3D visualization—for example, the metric 

and Euclidean backbones—allow for a sequential visualization procedure whereby backbone 

edges are first rendered in direct proportion to their actual distance weights, and semi-

triangular edges are subsequently rendered in increasing order of semi-triangular distortion 

or simply omitted. This would result in a network visualization anchored to a desired, 

natural geometry.

4.3 A complete characterization of triangular organization

The general distance closure and backbone methodology (Section 3) provides a 

comprehensive understanding of the triangular geometry of complex networks. It includes 

both the edges that obey generalized triangle inequalities and the semi-triangular edges that 

break those inequalities, which are not directly characterized by existing complex network 

measures. The methodology grounds weighted graphs in well-known geometric axioms of 

generalized metric spaces and provides both a principled reduction technique for weighted 

graphs that preserves all shortest paths (the distance backbone) and a novel characterization 

of the two types of edges and their relationship to network robustness and evolution. 

Specifically, in our approach the amount of (shortest-path) redundancy in a distance graph 

D(X) is given by σg (eq. 3.3), or its dual measure of the relative size of the distance 

backbone τg = 1 − σg (eq. 3.4), for any path length operation g (eq. 2.5). In addition, the 

semi-triangular distortion sij
g  (eq. 3.5) measures how much a generalized triangle inequality is 

broken for each edge dij of D, while the distribution of this measure characterizes the overall 

semi-triangular geometry of graph D. This way the approach characterizes both the edges 

that contribute to (generalized) shortest-paths as well as those that do not but are involved in 

other network phenomena such as modularity and diffusion.

Our analysis of real-world networks demonstrates that semi-triangular edges are pervasive 

in networks across domains from biology to technology (Table 1). The results strongly 

suggest that the proportion of such edges (σg) plays an important role in complex networks, 

especially to increase the robustness of shortest-paths to random attacks. For instance, 

information processing in the human brain that depends on shortest-paths that structurally 

link brain regions seems to be very robust given that most edges are redundant for shortest-

path calculation (Fig. 7). Similarly, air traffic across U.S. airports (Fig. 6) and automatic 

inference on knowledge networks are robust to most removals of connections between cities 

and concepts/keywords, respectively. However, that type of robustness is not universal. For 

instance, the C-elegans neuron network shown in Figure 9 has, proportionally, a much 

larger metric backbone (τm≈ 47%) than the HCN-Fine network (τm≈ 18%) and is thus a 

comparatively more triangular network. Therefore, random removal of synaptic connections 

between neurons in the C-elegans is more likely to result in the increase of shortest paths 

between neurons: roughlya1 in2 chance of increase, versus a 1 in 6 chance when axonal 

pathways between brain regions in the human connectome are removed. This is coherent 

with the fact that the neural architectures of c-elegans and humans are quite different. While 

the former is made up of fewer neurons precisely developed to implement specific functions, 

neurons in the human brain are thought to be more general-purpose with much greater 

redundancy in structural connectivity.
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The co-authorship networks have shown an even stronger triangular organization with a 

majority of edges that obey the strongest ultra-metric triangle inequality, as seen in Fig. 

8 (Section 3). In contrast, all the other social networks studied are semi-triangular with 

a majority of edges that break the metric (and ultrametric) triangle inequality. From an 

information transmission viewpoint, the most likely transmission between any two people in 

the social contact networks is via an indirect path, whereas in the co-authorship networks 

it is via a direct link. The reason for the difference is likely because of how the social 

ties are formed, and specifically the social investment inherent in each case. Social contact 

networks are built from observations of the time people spend in the vicinity of one another 

in a particular context (e.g. school). Therefore, there are many fortuitous interactions with 

small social investment. In contrast, co-authoring scientific articles constitutes a substantial 

interaction with less chance of fortuitous interactions. Indeed, the density δ(D) of the 

co-authorship networks is much smaller. This suggests that the metric backbone of social 

contact networks is a more accurate representation of a true, invested social structure of the 

people involved, as we explore in forthcoming work [69].

Similar reasoning also suggests that neural connections in C-elegans, given the small 

number of neurons, constitute a substantial functional investment that leads to a more 

triangular network organization characterized by a large metric backbone as shown in Fig. 

9. In contrast, given the large number of neurons in the human brain, structural connections 

may represent a smaller functional investment leading to an overwhelmingly semi-triangular 

organization characterized by a very small metric backbone as shown in Fig. 7. In a sense, 

the latter can afford connection redundancy for greater robustness but the former cannot. In 

forthcoming work we study the relationship between triangular organization and structural 

cost in the human brain connectome [80].

While edges off the metric backbone do not contribute to shortest paths and have null 

betweeness centrality, the distribution of their semi-metric distortion (sij
m) is meaningful. 

When a distance graph is almost metric (e.g. HCN-Physical in Table 1), there is very 

little semi-metric distortion and most edges either obey the triangle inequality or barely 

break it as seen in Fig. 7D and E. However, most real-world networks we have observed 

display a wide variation of semi-metric distortion as seen in Figures 6B and 7C. This 

means that the shortest path length between many pairs of nodes can be substantially 

smaller via indirect paths in the metric backbone than via a direct connection—over 100 

times smaller for the human brain regions in the HCN, and over 10,000 times smaller 

for some airport pairs in the U.S. Airport network, as seen in Figs 6B and 7C. In this 

sense, the distance backbone functions metaphorically as a wormhole, greatly and indirectly 

shortening the (semi-triangular) distance between many pairs of nodes. Interestingly, edges 

that substantially break the triangle inequality have been shown to be relevant to associations 

in network inference, link prediction, recommender systems, and even segmentation of 

healthy and diseased human-brain phenotypes [21, 26, 27]. This suggests that such edges 

denote associations that are more likely to be stronger in the future or with more data. Given 

the very strong indirect connection (via the backbone), in time, diffusion of information 

is likely to more strongly, directly associate nodes that are presently related by very semi-

metric edges, evolving the networks toward a more triangular organization overall [51].
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The analysis of the triangular geometry thus provides a more nuanced characterization of 

edges in weighted graphs than does betweeness centrality. In the case of the metric closure 

(which uses the most traditional path length operation g ≡ +), all semi-metric edges have 

null betweeness centrality, but their semi-metric distortion varies widely and meaningfully, 

as we have shown. Furthermore, our approach in effect generalizes betweeness centrality to 

include the (triangular) edges that do contribute to shortest paths. By considering more or 

less stringent length operations g, the resulting distance backbone reveals the most important 

edges for shortest paths. For instance, edges on the ultra-metric backbone contribute 

more to shortest paths than do those that are only on backbones computed with less 

stringent triangular constraints. Therefore, the concept of triangular edges is more general 

than betweeness centrality, since it considers all possible shortest-path length measures. 

Moreover, it does not require an algorithm to compute all and how many shortest paths 

pass through a given edge, but simply the length of the shortest path between the nodes of 

each edge (the APSP.) All together, the distance backbone analysis provides a principled 

graph reduction technique and also allows a finer characterization of how the triangular 

geometry of real-world networks affects shortest paths and thus more generally, information 

transmission in complex multivariate systems.

5. Materials, methods and data

5.1 Network data

To allow for easier comparisons, we used only the largest connected component of each 

distance graph described below. In every case, the set of nodes of D(X) in Table 1, X , 

denotes the number of nodes in the largest connected component. Therefore, for every 

network, D(X) and Bg(X) are connected graphs, and DT, g is a complete graph. We used the 

following networks, which we converted to distance graphs from proximity/strength versions 

via eq. 2.3, except where noted.

Technological

• The U.S.-airports-500 network is a distance graph of the 500 busiest commercial 

airports in the United States. An edge exists between two airport-nodes if a flight 

was scheduled between them in 2002. Edge weights are a normalized measure of 

traffic (available airplane seats) between airports [61].

• U.S.-airports-2006 is the domestic nonstop segment of the U.S. 

airport transportation system for the year 2006, retrieved from http://

www.transtats.bts.gov. Edge weights are the normalized average number of 

passengers traveling between two airport-nodes. Airports in the American 

Samoa, Guam, Northern Marianas, and Trust Territories of the Pacific Islands 

have been removed. This network is a reconstruction of the one used by Serrano 

et al. [55].
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Biological

• C-elegans is the Caenorhabditis elegans worm (C. elegans) neural network. Each 

node is a neuron and edge weight is a normalized measure of the number of 

synapses or gap junctions between two neuron-nodes [63].

• Four distinct Human Connectome networks (HCN) are obtained from the group 

averages of five human participants in a study to map the human brain [60]. The 

edge weights of the HCN-Coarse and HCN-Fine networks are a normalized 

measure of the volume of cortico-cortical axonal pathways between human 

brain regions (nodes) obtained via diffusion spectrum imaging (DSI). The edge 

weights correspond to the number of tractography streamlines linking two 

region-nodes, divided by the combined volume of the two regions. The two 

networks are built from the same data but HCN- Coarse is a coarse-grained 

representation of HCN-Fine that results in larger network density (Table 1. 

HCN-Coarse is based on a parcellation of 66 regions of interest (ROI), whereas 

HCN-Fine is based on a finer structural connectivity matrix of 998 nodes for 

which we kept the 989 nodes that form its largest connected component. The 

edge weights of the HCN-Physical network denote the physical length of each 

connection in the 998 node structural connectivity matrix—in general a little 

longer than the Euclidean distance since connections are curved in the interior 

of the human brain. In this case, the distance graph uses these edge weights 

directly, rather than via eq. 2.3. Finally, HCN-fMRI is the resting-state functional 

magnetic resonance imaging matrix of the 998 regions. The original data is in a 

correlation matrix which for edge length we convert to a proximity measure by 

considering the absolute value of positive and negative correlations.

• Enterocyte GRN is a gene interaction network retrieved from STRING [81] 

for genes expressed in insect intestinal cells. Edge-weights between gene-nodes 

denote a confidence score that the genes are known to interact based on 

experimentally and computationally derived evidence sources [62].

Social

• High-school is a face-to-face contact network of a typical high school day in 

the United States (unspecified city/state) gathered in 2010. Data were collected 

from students, teachers, and staff via wireless ‘sensor network motes’ (TelosB; 

Crossbow Technologies Inc.), with data covering 94% of the entire school 

population [64]. Temporal contacts between pairs of individuals/nodes have been 

summed and normalized by their total interactions to calculate edge-weights and 

reduce the temporal network to a weighted graph.

• Primary-school is also a contact network. Data are between 242 individuals 

in a primary school in Lyon, France—232 students and 10 teachers. The 

school comprises 5 grades, each grade with two classes, each class with an 

assigned room and an assigned teacher. Lunches are served in a common 

canteen, and a shared playground is located outside the main building. As 

the playground and the canteen do not have enough capacity to host all the 
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students at the same time, only two or three classes have concurrent breaks, 

and lunches are taken in two consecutive turns. Contacts were recorded using 

active RFID devices embedded in unobtrusive, wearable badges. The badges 

exchanged multi-channel, bi-directional radio communication [65]. Similar to the 

high-school data set, temporal contacts were reduced to a weighted graph of 

interactions.

• Freeman is a network built from a data set collected in 1978 that contains 

the frequency of message exchange among 32 researchers working on social 

network analysis via an electronic communication tool [66].

• cond-mat is a weighted co-authorship network among scientists who had posted 

pre-prints on the condensed matter e-print archive between 1st January 1995 and 

31st December 1999 [12]. Edge weights are a normalized measure of volume of 

co-authored articles between a pair of scientist-nodes.

• cond-mat-2003 is an updated version of the cond-mat network that includes all 

preprints posted between 1st January 1995 and 30th June 2003 [12].

• net-science is a co-authorship network of scientists working on network theory 

and experiment as originally compiled by Newman [67]. Edge weights are 

a normalized measure of volume of co-authored articles between a pair of 

scientist-nodes.

Social

• Wikipedia-Fact is a semantic proximity network of Wikipedia concepts used for 

large-scale automatic fact-checking [25].

• The MyLib networks are from scientific articles and user profiles of the 

MyLibrary Recommender system at the Los Alamos National Laboratory’s 

digital library [50]. MyLib-Keywords is a semantic proximity network of the 

500 most frequent keywords in scientific articles accessed and edge weights are 

co-occurrences in user profiles. MyLib-Users is a network of the scientists who 

utilized the MyLibrary Recommender system and built from co-access patterns 

to academic journals. MyLib- Journals is a network of ISSN (academic journals) 

and built from co-occurrence in user profiles.

• Instagram depression is a co-mention network built from complete Instagram 

timelines of users who had mentioned at least one drug known to treat 

depression. Nodes denote terms (i.e. drugs or medical terms) present in the 

timelines and edges connect terms that were mentioned within a seven day 

window [21, 68].

5.2 Computational methods and tools

Network backbones have been computed using the ‘distanceclosure’ python package 

developed by the authors and freely available at https://github.com/rionbr/distanceclosure. 

Network plots have been rendered with Gephi [82]. Distortion distributions have been fitted 

using the ‘powerlaw’ python package [56, 57].
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Fig. 1. 
General isomorphism and shortest-path distance closure. (A) Proximity and distance graphs 

with their respective transitive and distance closures. (B) Schematic of the transformation of 

a distance graph D(X) and its adjacency matrix with (symmetric) entries dij into a distance 

closure graph DT, g(X) and its adjacency matrix with (symmetric) entries dij
T , g. This class of 

closure fixes f ≡ min so that the path with shortest length between each pair of nodes xi and 

xj is selected, while g can be any td-norm and defines how path length is computed (eq. 2.5). 

On the left, an example distance graph with 5 nodes and edge weights given by constraint 

a ≥ b ≥ c. On the right, its shortest-path distance closure; edges that do not exist in D(X)
are shown as dashed in DT, g(X).
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Fig. 2. 

Distance backbone. Top, right: Schematic of the shortest-path distance closure DT, g(X)
obtained from either the original distance graph D(X) or its distance backbone Bg(X). 
Top, left: Example distance graph of 5 nodes with edge distance weights constrained by 

a ≥ b ≥ c and by a > g(c, c) and a ≤ g(b, b) which, respectively, break and enforce the 

generalized triangle inequality (eq. 3.2) for nodes {xj, xk, xm} and {xi, xk, xl}. Bottom: The 

distance backbone graph Bg(X) (left) and the distance closure graph DT, g(X) (right) for any 

td-norm g given the edge weight constraints considered and td-norm properties; backbone 

(triangular) edges in blue, semi-triangular edges in grey, and (indirect) edges that do not 

exist in D(X) appear in dashed grey in DT, g(X).
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Fig. 3. 
Semi-triangular measures. Parsing of the two types of distance graph edges, triangular (sij

g

= 1) and semi-triangular (sij
g> 1), from which graph-level measures of backbone size (τg(D)) 

and redundancy (σg(D)) derive, respectively. The measures apply to all distance backbones 

that derive from a shortest-path distance closure with any td-norm g.
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Fig. 4. 

Metric backbone. Top, right: Schematic showing metric closure DT, m(X) is obtained 

equivalently from either the original distance graph D(X) or its metric backbone Bm(X). 
Top, left: An example distance graph with 5 nodes and edge distance weights; edges dik = 

9 and djk = 9 break the triangle inequality and are annotated with the computation of their 

indirect (shortest path) distances dik
T , m = 8 and djk

T , m = 2; edge dij = 9 does not break the triangle 

inequality (dij
T , m = 10). Bottom, left: The metric backbone graph Bm(X). Bottom, right: The 

metric closure graph DT, m(X) with metric backbone edges in green, semi-metric edges in 

grey, and indirect edges (that do not exist in D(X)) in dashed grey. Bottom, box: Measures 

of semi-metric edge distortion for the two edges that break the triangle inequality; backbone 

size and edge redundancy for graph D(X).
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Fig. 5. 

Ultra-metric backbone. Top, right: Schematic showing ultra-metric closure DT, u(X) is 

obtained equivalently from either the original distance graph D(X) or its ultra-metric 

backbone Bu(X). Top, left: An example distance graph with 5 nodes and edge distance 

weights; edges dik = djk = dij = 9 break the ultra-metric triangle inequality and are 

annotated with the computation of their indirect, shortest minimax path length (g ≡ max): 

dik
T , u = dij

T , m = 4 and djk
T , m = 1; ultra-metric edges in light green, semi-ultra-metric edges in 

grey, and metric edge (in metric backbone but not in ultra-metric backbone) in dark green. 

Bottom, left: The ultra-metric backbone graph Bu(X). Bottom, right: The ultra-metric closure 

graph DT, u(X) (right); indirect edges that do not exist in D(X) appear in dashed grey. 

Bottom, box: Measures of semi-ultra-metric edge distortion for the three highlighted edges, 

as well as ultra-metric backbone size and edge redundancy of graph D(X) shown at the 

bottom.
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Fig. 6. 
The U.S. domestic nonstop airport transportation network and backbones for the year 2006. 

A1. Distance network D(X) with weights representing the average number of passengers 

between two airports. This is a reconstruction of the network used in Serrano et al. [55] 

that keeps only the largest connected component and removes some U.S territory airports 

(e.g. Guam). A2. Metric backbone Dm(X) with only τm = 16% of the original edges. 

A3. Ultrametric backbone Du(X) with only τu = 9% of the original edges. B. Log-binned 

distribution of semi-metric distortion sij
m values for the σm = 84% of semi-metric edges in 

the network. Both a log-normal ( sij
m  = 4.25, SD = 1.916) and a power law fit are shown; 

a comparison between the two favours the former as a better representation of the data. 

The best power law fit has an exponent γ = 1.353. Data fitted using the ‘powerlaw’ python 

package [56, 57].
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Fig. 7. 
Human connectome network and backbones. A1–3: HCN-Coarse. B1–3: HCN-Fine. A1,B1: 

Original distance Networks [60], whose distance weights are inversely proportional to the 

volume of cortico-cortical axonal pathways between brain regions (nodes), obtained via 

diffusion spectrum imaging (Section 5). A2,B2. Metric backbone Dm(X) with only τm = 

9.23% and τm = 17.57% of original edges for HCN-Coarse and HCN-Fine, respectively. 

A3,B3. Ultrametric backbone Du(X) with only τu = 5.66% and τu = 5.53% of original edges 

for HCN-Coarse and HCN-Fine, respectively. C. Log-binned distribution of semi-metric 

distortion sij
m values for the σm = 82% of semi-metric edges in HCN-Fine network. Both a 

log-normal ( sij
m  = 1.42; SD = 1.417) and a power law fit are shown; a comparison between 

the two favours the former as a better representation of the data. The best power law fit 

has an exponent γ ≈ 1.6. D. Log-binned distribution of semi-metric distortion sij
m values for 

the σm = 51% of semi-metric edges in HCN-Physical network. Both a log-normal ( sij
m  = 
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−0.01; SD = 0.447) and a Powerlaw fit are shown; a comparison between the two favours the 

former as a better representation of the data. E. Box plot of semi-metric distortion sij
m values 

comparing networks HCN-Fine and HCN-Physical. Data fitted using the ‘powerlaw’ python 

package [56, 57].
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Fig. 8. 
Net-science network and backbones. A1. Original Net-science distance network. A2. Metric 

backbone Dm(X) with τm = 83.59% of original edges. A3. Ultrametric backbone Du(X)
with τu = 78.45% of original edges. C. Log-binned distribution of semi-metric distortion sij

m

values for the σm = 16.41% of semi-metric edges in network. A log-normal ( sij
m  = −0.10; 

SD = 0.962) and a power law fit are shown; comparison favours the former as a better 

representation of the data.
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Fig. 9. 
C-elegans network and backbones. A1. Original C-elegans distance network. A2. Metric 

backbone Dm(X) with τm = 46.97% of original edges. A3. Ultrametric backbone Du(X)
with τu = 13.97% of original edges. C. Log-binned distribution of semi-metric distortion sij

m

values for the σm = 53.03% of semi-metric edges in network. A log-normal ( sij
m  = −0.03; 

SD = 0.927) and a Powerlaw fit are shown; comparison favours the former as a better 

representation of the data.
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Table 1

Metric and ultra-metric backbones of networks across domains. X : number of nodes; di > j : number of 

finite distance edges; δ: density of distance graph D(X); τm, τu: relative size of metric and ultra-metric 

backbones. Values of δ, τm, τu, and τu/τm are shown as percentages (%); the proportion of semi-metric (σm) and 

semi-ultrametric (σu) edges are obtained directly from size of backbones since σ = 1 − τ. Rows are ranked 

by increasing size of metric backbone (τm) within each domain group. To facilitate comparison, analysis is 

restricted to the largest connected component and the reported number of nodes X  refers to that subgraph. See 

§5 for additional details and a description of the networks.

D(X) X di > j δ τm τu τu/τm ref.

Techn.
U.S.-airports-2006 1,075 11,973 2.07 16.14 8.98 55.64 [55]

U.S.-airports-500 500 2,980 2.39 37.15 16.75 45.08 [61]

Biological

Enterocyte GRN 8,058 1,689,653 5.21 1.75 0.83 47.51 [62]

HCN-fMRI 998 497,503 100 5.5 0.2 3.64 [60]

HCN-Coarse 66 1,148 53.52 9.23 5.66 61.32 [60]

HCN-Fine 989 17,865 3.66 17.57 5.53 31.49 [60]

C-elegans 297 2,148 4.89 46.97 13.97 29.73 [63]

HCN-Physical 989 17,865 3.66 49.25 5.53 11.23 [60]

Social

High-school 788 118,291 38.15 7.84 0.66 8.49 [64]

Primary-school 242 8,317 28.52 9.5 2.9 30.51 [65]

Freeman 32 266 53.63 31.96 11.65 36.47 [66]

Cond-mat-2003 27,519 116,181 0.03 77.27 62.77 81.23 [12]

Cond-mat 13,861 44,619 0.05 81.13 70.62 87.05 [12]

Net-science 379 914 1.28 83.59 78.45 93.85 [67]

Knowledge

Wikipedia-Fact 3.4M 23M ≈ 0 2 - - [25]

MyLib-keywords 500 115,737 92.78 4.36 0.43 9.9 [50]

Instagram depression 3,288 230,799 4.27 8.1 1.47 18.12 [21, 68]

MyLib-journals 1,690 51,234 3.59 22.4 7.59 33.89 [50]

MyLib-users 381 6,525 9.01 27.49 7.79 28.32 [50]
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