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Introduction

Damage resulting from stroke disrupts cortical networks 
and patterns of synchronized brain activity between dis-
parate brain regions (termed functional connectivity).1-3 
Synchronized patterns of brain activity can be characterized 
across the brain at rest (ie, resting-state functional connec-
tivity [rsFC]) and their relationships represented as coher-
ence. These patterns characterize functional reorganization 
of the brain after stroke and are reliable measure that char-
acterize neural changes across the stages of recovery.4 
While altered rsFC is associated with motor recovery 
(ie, improvements in function characterized by clinical 
assessments),5 it is not clear how rsFC is modulated by 
skilled motor practice after stroke (ie, behavioral improve-
ments associated with a specific motor task). Even though 
rsFC does not rely on task performance, there is evidence 
showing that active networks mapped with rsFC overlap 
with regions involved in task performance.6-8 As rsFC does 
not rely on participant effort or compliance, it may be used 
to characterize neural changes that accompany motor 
impairment poststroke. Typically, in individuals with stroke, 

rsFC is disrupted in the sensorimotor network relative to 
healthy individuals.9,10 Increases in rsFC in both the senso-
rimotor network and between regions implicated in cogni-
tive processes (ie, working memory) have been observed 
as motor recovery is achieved.9,11,12 For instance, poorly 
recovered individuals showed decreased connectivity 
within the sensorimotor network, while no differences in 
connectivity were observed between individuals who were 
well-recovered and healthy controls.9 Yet a typical pattern 
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Objective. Activity patterns across brain regions that can be characterized at rest (ie, resting-state functional connectivity 
[rsFC]) are disrupted after stroke and linked to impairments in motor function. While changes in rsFC are associated with 
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study examined how rsFC is modulated by skilled motor practice after stroke and how changes in rsFC are linked to motor 
learning. Methods. Two groups of participants (individuals with stroke and age-matched controls) engaged in 4 weeks 
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and brain activity (via functional magnetic resonance imaging) were obtained before and after training. Results. While 
no differences in rsFC were observed in the control group, increased connectivity was observed in the sensorimotor 
network, linked to learning in the stroke group. Relative to healthy controls, a decrease in network efficiency was observed 
in the stroke group following training. Conclusions. Findings indicate that rsFC patterns related to learning observed after 
stroke reflect a shift toward a compensatory network configuration characterized by decreased network efficiency.
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of connectivity is not necessarily restored during recovery 
after stroke. Even in well-recovered individuals, relative to 
healthy controls, reduced connectivity persists between 
brain regions associated with cognitive processes.9,13 To 
date, changes in rsFC have largely characterized functional 
reorganization that occurs in association with recovery from 
stroke.11,12,14,15 It remains unclear whether or not skilled 
motor practice drives changes in rsFC patterns.

Importantly, rsFC is thought to reflect the processing of 
information gained during skilled motor practice associ-
ated with motor consolidation and learning.16,17 Short-term 
changes in rsFC in areas previously shown to be critical to 
planning and executing visually guided movement18,19 
including a network of frontal, posterior parietal, and 
cerebellar regions are associated with learning a visuomo-
tor task.16,17,20,21 However, as behavioral change associated 
with task-specific learning plateaus, limited long-term 
changes in rsFC in healthy individuals are noted.21 While 
learning (and relearning) motor skills are critical to pro-
moting functional recovery, we know little about the altera-
tions in processes underlying motor learning after stroke. 
Thus, rsFC can be employed to characterize change in con-
solidation of motor memories and learning that result from 
functional reorganization after stroke.

Specifically, functional magnetic resonance imaging 
(fMRI) shows that healthy individuals shift brain activity 
from the prefrontal regions early in skilled motor practice to 
premotor cortical activation after learning occurs.16,22 This 
shift is not observed after stroke.23 The persistent and 
greater recruitment of frontal-parietal regions during motor 
tasks may reflect higher cognitive load during skilled motor 
practice after stroke.24 It also may be related to an overall 
decrease in network efficiency after stroke,25,26 that repre-
sents a lower overall capacity to transmit information and 
indicates that a compensatory network (ie, not restored to 
a neurotypical pattern of functioning) underlies motor 
processes.23 Taken together, alterations in consolidation 
and learning processes may arise after stroke, reflected by 
decreased network efficiency and greater reliance on cogni-
tive processes during skilled motor practice. To test this 
idea, we probed (long-term) changes in rsFC induced by 
skilled motor practice to examine how brain reorganization 
supports learning after stroke.

The primary aim of the current study was to examine 
how rsFC is modulated by skilled motor practice after 
stroke. Furthermore, we sought explore how changes in 
rsFC are linked to motor learning. To address our objec-
tives, we employed a between-group design whereby 2 
groups of participants (individuals with stroke and age-
matched controls) engaged in 4 weeks of skilled motor 
practice of a complex, gamified reaching task, that was 
designed to prevent early plateaus in performance. Clinical 
assessments of motor function and impairment, and brain 
activity were obtained before and after training.

We expected that rsFC would be differentially modu-
lated from pre- to posttraining between groups. Because 
past work showed that individuals with stroke rely on pre-
frontal regions during skilled motor practice,23,27,28 and that 
greater recovery is linked to increased functional connectiv-
ity of frontal regions implicated in working memory,9,24 we 
expected to observe increased connectivity within the sen-
sorimotor network, and between the sensorimotor network 
and prefrontal areas. In exploring the association between 
changes in rsFC and motor learning, we hypothesized that 
(1) improvements in motor behavior associated with task-
specific learning would be related to decreased connectivity 
between regions implicated in working memory in individu-
als with stroke and (2) healthy controls would show minimal 
connectivity changes. Finally, we predicted that changes in 
network efficiency induced by skilled motor practice would 
occur differentially after stroke relative to healthy controls. 
Specifically, we predicted that healthy controls would 
show enhanced network efficiency that would reflect their 
increased capacity to transmit information. In contrast, we 
expected that individuals with stroke would show decreases 
in network efficiency reflecting a shift toward a compensa-
tory network configuration to support learning.

Methods

Participants

Thirty-two individuals presenting with chronic (>6 months) 
stroke between the ages of 35 and 85 years and 31 age-
matched controls were recruited for the study. Individuals 
were excluded if they (1) were unable to complete MRI 
scanning; (2) showed signs of dementia (<24 on the 
Montreal Cognitive Assessment)29; (3) had history of head 
trauma, seizure, psychiatric diagnosis, neurodegenerative 
disorder, substance abuse, or neurological or muscular defi-
cits that affected task performance; or (4) could not engage 
in the motor task without arm or shoulder pain. The inclu-
sion of a wide distribution of individuals with varied stroke 
severity was intentional, as the gamified motor task was 
designed to enable as many individuals as possible to com-
plete. The institutional review board of the University of 
British Columbia approved the protocol, all participants 
gave written consent, and the experiment was conducted in 
accordance with the principles of the Declaration of Helsinki.

All participants engaged in 10 sessions of skilled motor 
practice (Figure 1). Participants completed structural and 
functional MRI scans no more than 24 hours (week 0; pre-
training scan) prior to the first of 10 separate sessions and 
then a follow-up MRI acquisition session within 24 hours 
(posttraining scan; week 5) of the last session. Individuals in 
the stroke group also completed testing of motor impairment 
and function. Impairment was quantified using the upper 
extremity portion of the Fugl-Meyer (FM) Assessment 
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(0-66; higher scores indicate less physical impairment).30,31 
The Wolf Motor Function Test (WMFT).32 consisting of 15 
timed movement tasks with higher scores reflecting a faster 
movement rate and thus greater function, characterized 
motor function before and after the training protocol (ie, 
administered within 24 hours prior to and completion of 
training). For each WMFT task, the rate (repetitions/60 sec-
ond, with a rate of zero recorded if no repetitions were com-
pleted within 120 seconds) was calculated to characterize 
functional impairment.33 Trained physical therapists admin-
istered and scored the FM and WMFT.

Behavioral Task

Apparatus. All participants engaged in a semi-immersive 
virtual reality–based intercept and release task (Track and 

Intercept Task [TRAIT]).34 TRAIT was presented on a 
46-inch monitor, viewed at 72 inches away (screen refresh 
rate 59 Hz). A Microsoft Kinect (Model No. 1517, Kinect 
for Windows; Microsoft) camera was used for motion 
detection and communication between the user and the 
computer task. Before each session, the Microsoft Kinect 
was calibrated using a 4-point grid; this enabled the work-
space to be customized for each participant. All participants 
were asked to use their affected arm (stroke) or nondomi-
nant arm (control group) to navigate to each corner of the 
screen for calibration. All participants were asked to “save 
the world” by controlling an on-screen icon (spaceship) 
using movements of the relevant arm to intercept a moving 
object (asteroid) as it emerged from the side of the screen. 
Once intercepted, they had to throw the object to accurately 
hit a target (the sun), which caused the object to explode. 
The location of the target randomly varied on the screen. 
Auditory (ie, sound effects) and visual feedback (ie, a 
numerical score provided at the end of each trial) were used 
to maintain motivation and engagement in the task.

Procedure. Participants completed 10 TRAIT training ses-
sions of increasing difficulty, which were designed to main-
tain challenge and to prevent plateaus in performance.34,35 
Based on the principles of the challenge point hypothesis,36 
the TRAIT sessions become more difficult as a higher 
degree of success was demonstrated by each individual. In 
this manner, each individual practiced in an optimally chal-
lenging environment given their own capacity.37 To advance 
to the next level of the task, participants had to achieve 80% 
success on 2 consecutive practice blocks.34 Difficulty was 
manipulated by increasing asteroid speed, decreasing aster-
oid size, and reducing target size. Each session lasted 
approximately 30 minutes and consisted of 5 consecutive 
TRAIT blocks. Each block contained 200 movements, 
totaling 1000 arm movements per session. In the experi-
ment, each participant completed 10 000 total arm move-
ments. The number of practice days and trials were 
determined from our prior work34 based on the principle 
that both repetition and intensity are important to stimulate 
experience-dependent neuroplastic change. Training took 
place 2 to 3 times per week for 4 weeks (Figure 1).

Data Analysis. Motor skill acquisition for the TRAIT ses-
sions was quantified by exponentially fitting object intercep-
tion time for each successful trial over the entire training 
period.34,35,38 Motor skill acquisition was quantified with 3 
curve fitting variables (A, B, α). Briefly, the rate of skill 
acquisition, overall change rate of skill acquisition, move-
ment time, overall change in movement time, and movement 
time at asymptote were extracted using the following:

E MT A BeN
N( )   = + −α

Figure 1. Timeline of the experimental design (A) and 
normalized acquisition curves for each individual participant 
and the group mean (black line) across all trials (B). Participants 
engaged in 4 weeks (10 total sessions, 10 000 total movements) 
of training on a gamified visuomotor reaching task using their 
affected arm (stroke) or nondominant arm (control). Within 24 
hours prior to and following training, participants underwent 
functional magnetic resonance imaging to capture changes in 
resting-state functional connectivity. A decrease in movement 
time was observed for all participants during training. Motor 
skill acquisition parameters (A: the movement time at which 
the participant has plateaued in performance; horizontal; and B: 
overall change in movement time from the beginning of training 
to the point of performance plateau; vertical) are depicted by 
the dashed lines.
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where E(MTN) is the expected value of movement time 
(MT) on trial N. B (seconds; our primary outcome measure) 
is a measure of overall change in movement time from the 
beginning of training to the point of performance plateau. 
Secondary outcome measures A (seconds) and α (seconds/
trial) were used to identify the movement time at which 
the participant has plateaued in performance and quan-
tify the rate of skill acquisition to the point of plateau, 
respectively.37 All values are reported as mean ± SD; for 
visualization values for each participant were normalized 
within each group.35

Group-Level Analyses. Separate 2-sample t tests were con-
ducted on each outcome measure (A, B, α) to evaluate dif-
ferences in motor performance between the stroke and 
healthy control groups. Data that did not meet the assump-
tions of normality were tested with nonparametric statistics 
to assess between-group differences for each outcome 
measure. All statistical analyses were conducted using R 
(R project for statistical computing) with an a priori α of 
P < .05 denoting significance.

MRI

Data Acquisition. Magnetic resonance data were acquired at 
the University of British Columbia MRI Research Centre 
and were obtained on a Philips Achieva 3.0 Tesla whole 
body MRI scanner (Philips Healthcare), using an 8-channel 
sensitivity encoding head coil (SENSE factor = 2.4) and 
parallel imaging. The following scans were acquired: (1) 
3D T1 turbo field echo scan (TI = 800 ms, short-TR = 1900 
ms, flip angle θ = 6°, FOV = 256 × 256 mm, 160 slices, 1 
mm slice thickness, scan time = 3.2 minutes), and (2) rest-
ing state blood-oxygen level dependent (BOLD) scans (2) 
with a single shot EPI sequence (TR = 2000 ms, TE = 30 
ms, flip angle θ = 90°, voxel dimension = 3 mm3 with 
1-mm gap, 36 slices, FOV 240 × 240mm, scan time = 8.0 
min/scan). During the resting-state functional MRI scan, all 
participants were instructed to fixate on a picture of a win-
dow and not fall asleep.

fMRI Preprocessing and Analyses. All fMRI data were pro-
cessed using the CONN toolbox with SPM (CONN v.17, 
Functional Connectivity SPM toolbox; McGovern Institute 
of Brain Research, Massachusetts Institute of Technology; 
www.nitrc.org/projects/conn, RRID:SCR_009550).39 Func-
tional data were corrected for motion using the SPM12 
realign and unwarp procedure with default settings, with 
any scans that exceeded 5.0 mm mean framewise displace-
ment excluded from further analyses. Functional images 
were co-registered to their corresponding T1-weighted 
structural images. Using SPM12 unified segmentation and 
normalization procedure, structural images were normal-
ized to SPM’s Montreal Neurological Institute 2-mm T1 

template by an affine transformation and nonlinear registra-
tion, with the same estimated nonlinear transformation then 
applied to the functional data. Functional and anatomical 
data were then resampled into 2-mm and 1-mm isotropic 
voxels, respectively, and functional data were spatially 
smoothed with a Gaussian kernel (FMWH = 6 mm). To 
remove noise and lesion-induced artifacts, as this is critical 
to mitigate confounds associated with rsFC, particularly in 
stroke,4 data were decomposed into independent compo-
nents at the group level to compute Z-scored spatial maps 
for each independent component.40,41 These spatial maps 
were thresholded (Z = 2.0) and noise components were 
identified via manual classification, according to the guide-
lines reported in Griffanti et al.42 To remove the effects of 
nuisance covariates, these identified noise components 
were then regressed out of the fMRI data, along with white 
matter signal and cerebrospinal fluid signal. The temporal 
signals in the 4-dimensional volume were linearly detrended 
and band-pass filtered (0.01-0.08 Hz) to remove undesired 
components.

The Harvard-Oxford probabilistic atlas was used to 
identify the regions of interest (ROI).43 In line with our 
research objectives, 31 ROIs were selected a priori for anal-
yses, encompassing sensorimotor regions underlying motor 
function and learning (eg, primary motor cortex, supple-
mentary motor area [SMA]; cerebellum; see Dayan and 
Cohen16 for review), dorsal attention stream which is criti-
cal for visuomotor and spatial processes (eg, angular gyrus 
of the posterior parietal cortex; superior parietal lobule),18,44 
and key regions for cognitive processes (ie, working mem-
ory) implicated in stroke recovery (eg, thalamus, inferior 
temporal gyrus, superior frontal gyrus, parietal opercu-
lum).5,45-47 Functional connectivity correlation matrices (31 
× 31; representing the level of functional connectivity 
between each pair of ROIs) were generated at the subject 
level. ROI-specific time courses of the BOLD signal were 
computed by averaging time courses across the voxels 
within each ROI. The resultant ROI-to-ROI correlation 
coefficients were Fisher Z-transformed and extracted to 
perform group-level analyses and brain-to-behavior corre-
lation analyses.

To characterize network reorganization, we computed 
graph theory metrics at the subject level on resultant cor-
relation matrices at each time point, after controlling for 
hand used in the task. Specifically, to characterize network 
distribution and interconnectedness, and to identify “hubs” 
(ie, highly connected ROIs), we extracted node degree (ie, 
the number of connections each node has with all other 
nodes in the network), betweenness centrality (ie, the influ-
ence that each node has over the transfer of information 
across nodes in the network, or the extent to which a node 
acts as a “hub”), and global efficiency (ie, the extent to 
which nodes of the network are integrated, representing 
the overall capacity that the network has to transfer 

www.nitrc.org/projects/conn
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was computed and reported for each hub, and the change in 
node degree (post minus pre) for each ROI separately for 
each group. Following the removal of an outlier in the 
stroke group that was equivalent to the mean plus 3 stan-
dard deviations of the mean global efficiency value, a Group 
(Stroke, Control) × Time Point (Pre, Post) ANOVA was 
computed on resultant global efficiency values to investi-
gate differences in network efficiency across groups. Effect 
sizes were computed within each group comparing global 
efficiency values at each time point (using the average stan-
dard deviation of global efficiency values within each 
group) to characterize group differences. Lastly to consider 
the relationship between stroke-related demographics and 
changes in network efficiency, change in global efficiency 
values (Δefficiency; post minus pre) were correlated (via 
Pearson’s correlations) with time since stroke, and FM 
score.

Results

Of the 63 participants, 28 (65.6 ± 11.3 years old, 8 female) 
individuals with stroke and 24 (64.0 ± 8.8 years old, 15 
female, 22 right handed) controls were included in final 
analyses. Six control participants dropped out of the study 
(3 had incidental findings; 3 failed to complete the first 
scan). In addition, data from 4 individuals with stroke and 
1 control participant were lost (for motion during scanning 
that exceeded our exclusion criteria of mean framewise 
displacement = 5.0 mm). Of the remaining participants, 
mean framewise displacement in the scanner was 2.1 ± 0.8 
mm for the stroke group and 1.6 ± 0.6 mm for the controls. 
Demographics for each individual in the stroke group are 
reported in Table 1. The average level of the motor task 
achieved was 6 ± 2.9 (stroke) and 9 ± 1.8 (control).

Motor Skill Acquisition

An average of 84.7 ± 8.0% (stroke) and 86.34 ± 5.2% (con-
trols) of the asteroids were successfully intercepted across 
all levels of task difficulty. Curve fitting revealed that all 
participants learned the motor task (positive B values) 
with resultant mean B values for the stroke and control of 
0.61 ± 0.06 and 0.64 ± 0.07 seconds (see Figure 1 for 
acquisition curves across each participant). A and α values 
were 0.39 ± 0.06 (stroke) and 0.36 ± 0.07 seconds (con-
trols), and 0.0009 ± 0.0002 (stroke) and 0.0011 ± 0.0004 
seconds/trial (controls), respectively. Shapiro-Wilk and 
Bartlett’s tests showed data for each group met assumptions 
of normality, with the exception of α values. Thus, a 
Kruskal-Wallis rank sum test was conducted to analyze the 
between-group effect on α. No differences were observed 
between groups for our primary (B value; tB[47.49] = 1.44, 
P = .16) and secondary measures of learning (tA[47.49] = 
−1.44, P = .16; Hα = 2.88, P = .090).

information) for each participant48-50 using unweighted 
ROI networks thresholded at a cost value of k = 0.15.39 
Resultant graph theory metrics were exported to text files 
from the CONN toolbox to perform group-level analyses 
using R. Importantly, these measures allowed us to quan-
tify the network at each time point to further inform on any 
observed changes in rsFC at the group level.

Group-Level Analyses. To address our hypotheses, second-
level analyses were performed in CONN.39 All analyses 
used a significance threshold of P < .05, FDR (false dis-
covery rate) corrected for multiple comparisons (ie, cor-
recting the individual connection-level statistics for the 
total number of individual connections in the ROI-ROI 
matrix).39 To account for lesion side, we included unaf-
fected versus affected hemisphere (ie, training arm) as a 
covariate in all group-level analyses. Specifically, prior 
work has demonstrated that differences in connectivity 
may arise based on lesion side.51 Furthermore, functional 
differences in a left-lateralized versus right-lateralized sys-
tem that supports motor function are well established in the 
literature, particularly for visually guided reaching tasks 
(encompassing sensorimotor and dorsal attention stream 
ROIs included in the current work; see Binkofski and 
Buxbaum18 for a review). Yet, as images are often flipped 
such that all lesions are analyzed within the same hemi-
sphere, there are few motor learning investigations that 
consider these lateralized systems in individuals with 
stroke. Taking the above together, we opted to control for 
lesion side in analyses (ie, rather than transform images 
such that all lesions were within the same hemisphere) to 
permit the investigation of differences in connectivity 
within these lateralized systems regardless of lesion side. A 
Group (Stroke, Control) × Time Point (Pre, Post) ANOVA 
(analysis of variance) was conducted to examine overall 
differences in rsFC changes between groups. To determine 
how rsFC is modulated by skilled motor practice, within-
group contrasts were conducted on the subject-level corre-
lation matrices for each time point (posttraining scan vs 
pretraining scan), controlling for both hand used in the task 
(accounting for lesion side) and B value (ie, motor skill 
acquisition, our primary performance outcome). As hand 
used in the task is directly related to lesion side, this covari-
ate effectively controls for lesion side in analyses. To test 
the association between motor learning and rsFC, a regres-
sion was conducted with B value as the predictor variable 
on changes in resultant connectivity (post > pre) within 
each group.

To quantify network characteristics and interconnected-
ness, betweenness centrality was calculated for each ROI 
for each participant and t tests against zero were performed 
for each ROI in CONN, separately for each group.39 Hubs 
were identified at the group level as ROIs that survived this 
calculation. Mean node degree for each ROI in the network 
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Rs-fMRI

A significant interaction between group and time point 
for rsFC was observed, showing increased connectivity 
between left superior lateral occipital cortex and sensorim-
otor regions (including SMA, premotor, and motor corti-
ces), and decreased connectivity between right motor 
cortex and right superior parietal lobule for the healthy 
control group (post minus pre) relative to the stroke group. 
Within-group changes in rsFC (separately for each group) 
are summarized in Table 2. In the stroke group, within-
group comparisons examining the effects of skilled motor 
practice on rsFC (accounting for B value) revealed 
enhanced connectivity within the sensorimotor network at 
the post versus pre scan between the following areas: left 
SMA and left supramarginal gyrus, left superior parietal 
lobule and right anterior inferior temporal gyrus, and right 
cerebellum Crus II and lobule III. Deceased connectivity 
was also observed between right cerebellum lobule III and 
left parietal operculum (Table 2). B value correlated with 

rsFC; positive correlations were noted between left angular 
gyrus and left precentral gyrus (Figure 2). In the control 
group, no changes were observed at the post- versus pre-
scan, nor were any correlations found between connectivity 
and B value.

Network Characterization and Quantification

All identified hubs and their resultant node degree are 
included as Supplementary Materials (available online). Six 
hubs were identified in the control group at the pretraining 
scan, with 4 identified posttraining; 18 hubs were identified 
in the stroke group pretraining scan with 22 identified post-
training. The right middle frontal gyrus and right supramar-
ginal gyrus were identified as hubs for both groups at each 
time point; additional hubs localized to frontal and parietal 
regions were identified in the stroke group including left 
middle frontal gyrus, left superior frontal gyrus, and bilat-
eral angular gyri. Figure 3A shows the change in node 
degree for each ROI in the network, relative to its respective 

Table 1. Demographic Information of the Stroke Groupa.

Subject Age Sex
Time since 

stroke (months)

Fugl-Meyer  
(Upper Extremity) 

score

Wolf Motor Function 
Test (affected limb, 

reps/min)
Affected 

hemisphere Lesion location

 1 57 Female 162 32 11.9 Right Middle frontal gyrus
 2 51 Female 47 29 22.3 Right Basal ganglia
 3 58 Male 96 59 58.1 L Inferior frontal gyrus
 4 72 Male 49 50 38.7 Right Basal ganglia
 5 71 Male 117 59 68.9 Right Middle frontal gyrus
 6 77 Male 32 58 45.0 Left Pons
 7 47 Female 35 10 5.0 Right Precentral gyrus
 8 65 Male 46 33 22.0 Left Parietal lobe
 9 60 Male 188 31 21.0 Right Parietal lobe
10 73 Male 60 54 38.3 Left Thalamus
11 73 Male 30 – 34.6 Left Lingual gyrus
12 58 Female 15 25 6.1 Left Basal ganglia
13 66 Male 10 66 126.3 Right Putamen
14 37 Female 84 18 21.0 Left Basal ganglia
15 79 Male 27 54 40.8 Right Basal ganglia
16 62 Male 8 59 74.5 Right Putamen
17 78 Female 28 64 78.6 Right Pons
18 72 Male 140 56 43.6 Right Basal ganglia
19 75 Male 41 65 53.6 Left Basal ganglia
20 79 Female 51 59 53.2 Right Basal ganglia
21 59 Male 61 33 29.3 Left Post central gyrus
22 61 Male 62 28 15.5 Left Insular cortex
23 71 Female 94 52 43.1 Left Basal ganglia
24 74 Female 19 39 32.5 Right Precentral gyrus
25 51 Male 14 23 12.5 Right Corticospinal tract
26 73 Male 47 64 51.9 Right Thalamus
27 62 Male 6 62 37.4 Left Amygdala
28 80 Male 135 58 34.5 Left Precentral gyrus

ainstances of missing data are indicated by a dashed line.
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node degree at the pre-scan. A general increase in node 
degree across all ROIs in the network was observed in the 
stroke group, while a general decrease in node degree was 
observed in the healthy control group (Figure 3A). While no 
effect of time point was found (F[1, 49] = 2.1, P = .15), 
there was a significant main effect of group (F[1, 49] = 5.1, 
P = .029) and interaction between group and time point 
(F[1, 49] = 5.7, P = .021), whereby a decrease in global 
efficiency was observed in the stroke group (d = −0.52), 
while there was a negligible increase in global efficiency 
from pre to post in the control group (d = 0.19; Figure 3B). 
Pearson’s correlations indicates that Δefficiency correlated 
with time since stroke (r[24] = −0.39, P = .0496; 
Figure 4). No correlation resulted between Δefficiency and 
FM scores (r[24] = 0.04, P = .84).

Discussion

The current study examined how rsFC is modulated by 
skilled motor practice after stroke. Consistent with our 
hypotheses, we observed increased connectivity in the sen-
sorimotor network and circuitry underlying motor control, 
yet contrary to our hypotheses, we discovered an increase in 
connectivity within circuitry underlying higher cognitive 
processes. Coupled with the lack of differences observed 
in the control group, here we provide unique evidence that 
alterations in rsFC induced by skilled motor practice after 
stroke reflect a shift toward a compensatory network 
configuration, characterized by a decrease in network 
efficiency.

Skilled Motor Practice Modulates Functional 
Connectivity After Stroke

Our data show changes in connectivity between regions 
previously implicated in cognitive load (eg, enhanced con-
nectivity with anterior inferior temporal gyrus, decreased 
connectivity with parietal operculum) following training 
and underscore the notion that processes induced by skilled 
motor practice require greater cognitive load after stroke. 
Specifically, prior research demonstrated the role of inferior 
temporal cortices in working memory.52 The parietal oper-
culum is implicated in stroke recovery due to its role in 
facilitating integration of proprioceptive feedback with 
preparation of subsequent movements, supporting optimal 
motor function46; decreased connectivity to this region thus 
indicates suboptimal motor function. Furthermore, our find-
ings of enhanced connectivity following training in cir-
cuitry involving the SMA is consistent with prior work 
suggesting that after stroke tasks are experienced as more 
complex and require greater motor planning prior to move-
ment execution.24 The SMA is a region critical for prepara-
tion of movement and transforming desired kinematics to 

Table 2. Significant Functional Connectivity ROI-to-ROI Relationships Resulting From Group-Level Comparisons.

ROI Connected region t value p, FDR corrected

Group * Time 
point

R Precentral gyrus R Superior parietal lobule −3.12 .045
L Superior lateral occipital cortex R Supplementary motor area 3.02 .030

R Superior parietal lobule 2.80 .043
R Postcentral gyrus 3.31 .025
R Precentral gyrus 3.22 .025
L Superior parietal lobule 3.18 .025

Stroke
 Post > Pre R Cerebellum III L Parietal operculum −4.62 .003

R Cerebellum II 3.32 .041
R Inferior temporal gyrus (anterior) L Superior parietal lobule 4.47 .004
L Supramarginal gyrus L Supplementary motor area 3.74 .029

 Effect of B value L Precentral gyrus L Angular gyrus 3.66 .035

Abbreviation: ROI, region of interest; FDR, false discovery rate; L, left; R, right.

Figure 2. Resting-state functional connectivity (rsFC) 
modulated by skilled motor practice after stroke. Greater 
learning (B value) was positively correlated with connectivity 
between left precentral gyrus (M1) and left angular gyrus (AG).
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forces exerted by the effectors.53-55 Thus, circuitry involv-
ing the SMA is heavily relied on during consolidation pro-
cesses as revealed by associations between rsFC and 
recovery.15,47 Importantly, the semi-immersive virtual real-
ity task employed here required the integration of visual, 
spatial, and proprioceptive information and was designed to 
challenge each participant throughout practice. Prior work 
demonstrated that both increased (cognitive) task demands 
and complexity require greater neural resources, affecting 
resultant patterns of brain activity.56-58 Furthermore, princi-
ples of learning and recovery, derived from simple motor 
(ie, sequence or finger-tapping) tasks, do not necessarily 
generalize to complex motor tasks.59 Thus, the complexity 
of the TRAIT in conjunction with its semi-immersive expe-
rience provides a unique opportunity to consider neural 

processes associated with motor learning and recovery 
poststroke.

Critically, the current study shows a unique pattern of 
rsFC patterns that support learning in individuals after 
stroke that was associated with connectivity between left 
primary motor cortex and left angular gyrus, regardless of 
hand used in the task (and thus lesion side). These regions 
are critical to the acquisition and performance of visually 
guided and object-based actions, with a left-lateralized sys-
tem particularly critical to skilled, functional movements 
that are object related (eg, catching asteroids as in the 
virtual reality–based task employed here),16,18,44 and reflect 
the brain achieving a more effective state for motor 
learning.60-62 Yet, given that these changes differed from 
those seen in the control group,3,13,23 it is likely that this left-
lateralized system is functioning in a compensatory manner. 
We may have observed different associations in our control 
participants because their rsFC was already optimized for 
motor learning. This idea is in line with prior work demon-
strating that individuals with stroke show more benefit from 
consolidation processes relative to healthy controls.60,61 We 
did not include a no-intervention stroke group, as the win-
dow for spontaneous change related to upper limb function 
is early after stroke.63 Given that little spontaneous change 
is expected during the chronic stage of recovery from 
stroke, we conclude that alterations in rsFC observed in the 
current are attributable to task performance. In light of the 
current findings, the association between learning and rsFC 
after stroke likely reflects the reorganization of the brain to 
achieve a compensatory state that enables motor learning.

Network Characterization

Our graph theory analyses showed that brain reorganiza-
tion for motor learning after stroke comes at the cost of 

Figure 3. Network characterization. (A) Change in node degree (post minus pre) as a function of pretraining node degree. Across 
all ROIs in the network, node degree was observed to generally increase in the stroke group, while in contrast node degree was 
observed to generally decrease in the healthy control group. (B) Global efficiency across study time points for each group. Skilled 
motor practice was shown to induce a negligible change in global efficiency in the healthy control group, while in contrast decreases in 
global efficiency were observed in the stroke group.

Figure 4. Change in global efficiency (post minus pre) within 
the stroke group as a function of time since stroke (months). 
Changes in global efficiency induced by skilled motor practice 
were shown to decrease with greater amounts of time that had 
passed since the occurrence of the stroke.
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network efficiency and thus may represent a compensatory 
state.23 Typically, and consistent with the findings of our 
control group, as a network becomes functionally segre-
gated 3 features emerge: (1) fewer ROIs act as hubs, (2) 
enhanced network efficiency results from high intercon-
nectedness of hubs in the network, and (3) ROIs not criti-
cal to the specific function become less connected within 
the network.12,48,50,64 However, after stroke, we observed 
the opposite pattern of results. Following training, a gen-
eral increase in node degree across all ROIs was observed 
in the stroke group, a large portion of ROIs were shown to 
act as hubs, and an overall decrease in network efficiency 
was observed relative to controls. Importantly, while prior 
work showed reduced efficiency after stroke relative to 
controls,12,26 here we demonstrate further reductions in 
efficiency with skilled motor practice, supporting the pres-
ence of a compensatory network underlying online and 
offline motor processes.23 Interestingly, changes in effi-
ciency (post minus pre) were negatively correlated with 
time since stroke, further suggesting that network reorga-
nization after stroke, and specifically later in the chronic 
phase, becomes robust and difficult to restore. While pre-
liminary evidence demonstrated that high network effi-
ciency after stroke is predictive of greater recovery 
outcomes,65 whether or not functional reorganization fol-
lowing a “window of recovery” may lead to enhanced (or 
restored) network efficiency in late stages of the chronic 
phase requires further research.

Additionally, it is necessary for future research to explore 
markers of recovery, through investigations examining the 
impact of a broad range of stroke-related factors on network 
efficiency. While on average our stroke group showed a 
decrease in efficiency with training, we identified 5 partici-
pants who showed (small) increases (ie, positive change 
over training). Prior research has shown that compensatory 
shoulder movements (ie, excessive abduction observed dur-
ing clinical assessments) predict recovery outcomes.66 As 
the current study design did not permit an in-depth kine-
matic analysis, it is possible that participants performed 
movements during the task using different strategies (ie, 
engaging different groups of muscles resulting in compen-
satory movements). Furthermore, while we did not include 
prestroke handedness in our analyses as we were interested 
in capacity for change versus baseline motor ability, and an 
additionally conducted t test showed B value did not differ 
between prestroke handedness (rightn = 18 vs othern = 10; 
t15.28 = −1.22, P = .24), how prestroke handedness may 
further affect strategies used during motor tasks and/or 
resultant motor learning. Thus, the extent to which compen-
satory movements may be linked to compensatory brain 
activity and/or prestroke handedness, and as such affected 
network efficiency should be addressed by future research. 
Other work demonstrated associations between the cortico-
spinal tract integrity and recovery after stroke.67 While all 

participants in our study could perform the task, which 
might suggest they all had at least a partially intact, future 
work could consider the impact of descending white matter 
tract damage on network efficiency during motor learning.

It is important to consider timescales of learning and 
dose of training employed in the current study; individuals 
in the stroke group may have been in a different stage of 
learning as compared to the controls after the 4 weeks of 
training. It is possible that greater efficiency may have been 
achieved with a higher dose of practice; however, the unique 
features of the task used in this study may mitigate this con-
cern. Importantly, we designed the TRAIT task following 
principles of the challenge point hypothesis.36 In the TRAIT 
task all participants make behavioral improvements from 
the start to the end of the study regardless of how quickly or 
to what level they advance. As the task is only advanced 
once a certain level of proficiency is achieved each partici-
pant moves up in difficulty according to their unique ability. 
This avoids the pitfalls that affect many typical motor learn-
ing studies where the motor tasks are relatively easy for 
healthy controls and at the same time very difficult for indi-
viduals with stroke. In the TRAIT task, the goal was for 
each participant to be engaged at their optimal level and not 
to reach plateaus in performance before completing the 10 
000 practice trials. No between-group differences were 
observed in any of our behavioral outcomes suggesting 
that despite working at different levels of the TRAIT task 
both groups learned. In light of our findings, we stress that 
future studies of motor learning should consider the use of 
tasks that are based on the principles of individualized 
challenge.

While prior work demonstrated that frontal-parietal rsFC 
measured immediately prior to and following skilled motor 
practice of a tracking task is modulated by improvements 
in performance in healthy controls,17 we did not observe 
this pattern. Given that we know little about the differ-
ences between semi-immersive virtual reality and laboratory-
based tasks, it may be that the absence of observable 
changes in rsFC in our control group is attributable to the 
point in time at which we measured rsFC (ie, 24 hours prior 
to and following training). Interestingly, our finding that 
there was not a pre to post difference in rsFC for controls is 
consistent with prior work employing a similar timeframe21 
and may reflect that the network was already functioning 
efficiently. As we did not include an rsFC scan at a longer 
retention interval future research is required to understand 
whether or not changes in rsFC persist over time. Last, we 
did not flip images such that lesions were presented within 
the same hemisphere, but instead controlled for lesion side 
in our analyses. Our approach thus allowed us to detect 
changes in connectivity while taking functional differences 
within a left- versus right-lateralized system that supports 
motor function into consideration, regardless of lesion side. 
Because our study did not contain the power required to 
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conduct further subgroup analyses to assess changes in con-
nectivity between individuals with left versus right hemi-
sphere lesions future research is required to investigate 
connectivity differences within these lateralized streams.

Conclusion

In comparing rsFC before and after 4 weeks of skilled 
motor practice, the current study shows that changes in 
rsFC induced by skilled motor practice are altered after 
stroke relative to healthy controls. Here, we provide unique 
evidence of rsFC patterns related to learning after stroke, 
suggesting that patterns of change reflect a shift toward 
a compensatory network configuration characterized by 
decreased network efficiency. Future research should con-
sider exploring biomarkers of recovery by including a 
more nuanced investigation of the impact of stroke-related 
factors network efficiency.
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