
Rapidly Processed Stool Swabs Approximate Stool Microbiota
Profiles

Nicholas A. Bokulich,a Juan Maldonado,b,c,d Dae-Wook Kang,b,c* Rosa Krajmalnik-Brown,b,c,e J. Gregory Caporasoa,f

aCenter for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
bBiodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
cBiodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
dASU Genomics Core, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
eSchool of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
fDepartment of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA

ABSTRACT Studies of the intestinal microbiome commonly utilize stool samples to
measure the microbial composition in the distal gut. However, collection of stool
can be difficult from some subjects under certain experimental conditions. Sampling
of fecal material using sterile swabs can streamline sample collection, handling, and
processing. In this study, we validate the use of swabs of fecal matter to approxi-
mate measurements of microbiota in stool using 16S rRNA gene Illumina amplicon
sequencing and evaluate the effects of shipping time at ambient temperatures on
accuracy. The results indicate that swab samples reliably replicate the stool microbi-
ota bacterial composition, alpha diversity, and beta diversity when swabs are pro-
cessed quickly (�2 days) but that sample quality quickly degrades after this period
and is accompanied by increased abundances of Enterobacteriaceae. Fresh swabs ap-
pear to be a viable alternative to stool sampling when standard collection methods
are challenging, but extended exposure to ambient temperatures prior to processing
threatens sample integrity.

IMPORTANCE Collection of fecal swab samples simplifies handling, processing, and
archiving compared to collection of stool. This study confirms that fecal swabs reli-
ably replicate the bacterial composition and diversity of stool samples, provided that
the swabs are processed shortly after collection. These findings support the use of
fecal swabs, when shipping and handling are done properly, to streamline measure-
ments of intestinal microbiota.
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The microbial communities inhabiting the human gastrointestinal tract play impor-
tant roles in digestion, immune and metabolic regulation, and disease (1). Moni-

toring the gut microbiota is often performed to assess the impact of disease or other
disturbances (2), therapeutic interventions (3), or host development (4). Measurements
of the microbiota composition in the distal gut commonly utilize stool samples.

Collection and transport of stool may be difficult or impossible, however, under
certain conditions, e.g., due to stool consistency or if subjects are unable or unwilling
to provide stool. In a study by Sinha et al., the microbial compositions of stool swabs
moderately correlated with those of stool (5); however, this study assessed the similarity
of swab microbiota to stool at only three different storage times (frozen immediately or
frozen after 1 day or after 4 days at room temperature). With a similar approach, Bassis
and coworkers showed that the microbiota composition determined after collecting
and immediately processing rectal swabs also approximated the stool microbiota
composition (6). Rectal swabs are collected by insertion of a sterile swab into the
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rectum; fecal swabs are collected by applying a sterile swab to freshly passed stool or
toilet paper. Collection of fecal swabs represents a simpler and less disruptive approach
than either stool collection or rectal swabbing, permitting its use with sensitive
patients. Swab collection also simplifies sample handling and processing during col-
lection, archiving, and DNA extraction. This facilitates sampling under busy clinical
settings or by individual subjects at home.

To validate stool swabs for measurements of intestinal microbiota, stool swabs and
stool samples were collected from subjects in a previously published microbiota
transfer therapy study (treatment that included a fecal transplant) (3). Both swabs and
stool samples were collected from the same stool, and the microbiota composition and
diversity were compared between sample pairs using 16S rRNA gene amplicon se-
quencing and analysis in the QIIME 2 software package (7). We show that swab and
stool samples exhibit highly similar microbiota profiles, provided that the swabs are
received and processed within 2 days of collection.

RESULTS

In the original study reanalyzed here, samples were collected from children with
autism spectrum disorders (ASD) (n � 18) and neurotypical children (n � 20) (mean
age, 11.1 � 2.7 years) across an 18-week period (10 weeks of the clinical trial and an
8-week follow-up) (3). Stool samples were collected at 4 time points (baseline, week 3,
week 10, and week 18) and frozen immediately after collection. Swabs were collected
at 11 time points (every 2 weeks since baseline and week 3), including the time points
when stool was collected, and shipped to the laboratory by standard postal mail.
Information on the study population and samples is shown in Table 1. Our current
study focused on swab samples and stool samples collected from the same individual
subject at the same time (n � 82), but additional stool and swab samples were included
for measuring pairwise distances between all stool and swab samples collected from
the study population, as described below (Fig. 1).

An accurate measurement of intestinal microbiota composition should demonstrate
a high degree of similarity to stool composition, the current gold standard method. We
measured phylogenetic similarity between samples using abundance-weighted and
unweighted pairwise UniFrac distances (8). We also measured paired differences in the
observed richness of sequence variants, phylogenetic diversity (PD) (9), and Shannon
diversity and evenness to assess alpha diversity differences between swab and stool
samples.

Fresh swab microbiota resembles stool microbiota. Freshly processed (�2 days)
pairs of stool and swab samples collected from the same individual at the same time
(paired samples; n � 11) were significantly more similar to each other than stool or
swab samples collected from the same individual but at different times (within-subject
pairs; n � 98), suggesting that stool and swab samples yield similar community struc-
tures when swabs are processed quickly (Fig. 1) (Mann-Whitney U test, weighted
UniFrac, U � 294.5 and P � 0.007; unweighted UniFrac, U � 342.5 and P � 0.024).
Swabs experiencing longer transport times (n � 71) were not significantly more similar
to their stool pairs than they were to within-subject pairs (P � 0.05), suggesting that the
microbiome after shipping times of longer than 2 days does not reliably represent the
microbiome of stool samples frozen at the time of collection.

Transport time degrades swab accuracy. Both unweighted and weighted UniFrac
paired-sample distances increased as swab shipping time increased (Fig. 1), becoming
significantly more dissimilar than within-subject pairs by 6 days of shipping (Wilcoxon
signed-rank test, P � 0.05); transport time was positively correlated with paired-sample
dissimilarity for both weighted UniFrac (Spearman correlation coefficient [�] � 0.88,
P � 0.004) and unweighted UniFrac (Spearman � � 0.88, P � 0.004) distances. Thus,
transport times longer than 1 to 2 days appear to have a damaging effect on swab
compositional accuracy, similar to the negative effects of room temperature storage on
the compositional accuracy of stool samples not stored in preservative (10).
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TABLE 1 Overview of study population

Characteristic Value

No. of patients in the following group:
Neurotypical 20
ASD 18

No. of patients by sex
Male 34
Female 4

Mean � SD age (yr) 11.1 � 2.7
No. of samples of the following type:

Stool 105
Swab 321
Stool � swab pairs 82

No. of samples with the following shipping time (days)a:
1 3
2 8
3 15
4 22
5 20
6 7
7 3
8 4

Mean � SD avg temp (°C) when samples wereb:
Sent 15.0 � 3.6
Received 14.9 � 3.6

No. of samples with the following mo of collection:
January 123
February 70
March 88
April 67
May 12
June 2
July 1
August 0
September 0
October 30
November 12
December 115

aShipping time is shown only for swab samples that were paired to a stool sample in this study (n � 82).
bAverage daily outdoor temperature at the time of collection and receipt for swabs only. Data were collected
from the U.S. National Weather Service (https://www.weather.gov/).

FIG 1 Unweighted (A) and weighted (B) UniFrac distance distributions between sample pairs. Box plots compare the pairwise
distance distributions between all samples collected from within each individual subject (W; green; n � 98 pairwise distances),
between all subjects (B; purple; n � 90,853), between all stool samples (St; yellow; n � 5,565), or between all swab samples (Sw;
red; n � 51,681) collected from the same subject at different times and between pairs of stool and swab samples collected from
the same individual at the same time (paired samples, shown in blue; sample sizes are shown by shipping time in Table 1). Swarm
plots are overlaid for paired distance measurements between swab and stool samples only, indicating the actual distribution of
paired distances.
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Pairwise differences in alpha diversity between paired samples (swab-stool observed
diversity; n � 82) indicated that swab microbiota richness (Spearman � � �0.86,
P � 0.006) and PD (Spearman � � �0.88, P � 0.004) decreased as the transport time
increased. Shannon diversity (Spearman � � �0.64, P � 0.086) and evenness (Spear-
man � � �0.57, P � 0.139) also decreased with increasing transport time, but the
correlations were not significant (Fig. 2). After 4 days of transport time, swab richness,
Shannon diversity, and evenness, but not PD, were significantly lower than those for
stool (Wilcoxon signed-rank test, P � 0.05), but transport times under 4 days did not
significantly impact these alpha diversity metrics (P � 0.05). Swabs experiencing longer
transport times (6 to 8 days) were not significantly different from their stool pairs,
though this appears to be due to the small sample sizes and very high variances
observed with these transport times. The time-dependent decrease in richness and
evenness likely indicates that the growth of one or more bacterial species (facultatively
aerobic enterobacteria, as the results presented below suggest) numerically overshad-
ows the abundance of other bacteria (e.g., strict anaerobes and slower-growing organ-
isms). The latter organisms do not disappear from this closed system but become less
likely to be detected.

Supervised learning classification confirms accuracy of fresh swabs. To confirm
the similarity of swab microbiota compared to stool microbiota, we used random forest

FIG 2 Observed differences in alpha diversity metrics between stool and swab paired samples in relation to transport time.
Box plots show quartile distributions of differences between paired samples (swab � stool observed diversity) for observed
richness (A), Shannon H (B), Faith’s PD (C), and evenness (D). Swarm plots are overlaid to show the actual distribution of
metric differences. Sample sizes are shown by shipping time in Table 1.
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(11) classification models to predict the sample type (stool or swab) based on the
microbiota composition (16S rRNA gene sequence variants). Stool samples were com-
pared to swab samples exposed to between 3 and 8 days of transport time (where swab
samples were highly dissimilar to stool) or only 1 to 2 days of transport time (where
swab samples were more similar to stool). Swabs exposed to 3 to 8 days of transport
time could accurately be classified 94.6% of the time and stool samples could accu-
rately be classified 90.1% of the time. However, swabs exposed to �2 days of transport
time could not be reliably distinguished from stool samples: swab samples were
correctly classified only 47.1% of the time (random chance is 50%). Notably, the most
important features identified in each model were members of the family Enterobacte-
riaceae.

Swabs are characterized by overrepresentation of Enterobacteriaceae com-
pared to stool samples. Next, we determined the impact of transport time on the
bacterial taxonomic composition in swabs compared to that in stool to identify the taxa
responsible for altered diversity patterns. The taxonomic compositions of swab samples
became dominated by Enterobacteriaceae as the transport time increased, leading to a
notable disparity compared to that for stool samples collected from the same subject
at the same time (Fig. 3). Enterobacteriaceae relative abundance was positively corre-
lated with transport time (Spearman � � 0.88 [P � 0.004]; Pearson R � 0.87 [P � 0.005])
(Fig. 4). Notably, two samples received after 1 to 2 days of transport also had relatively
higher abundances of Enterobacteriaceae (Fig. 4).

Paired analysis of composition of microbiomes (ANCOM) tests (12) between all
paired samples (regardless of transport time) indicated that bacterial species in the
families Enterobacteriaceae and Bacillaceae were overrepresented in swab samples
(P � 0.05) and a broad range of Clostridiales were overrepresented in stool (Table 2).
While the phylum Proteobacteria (represented mostly by the family Enterobacteriaceae)

FIG 3 Relative abundance of bacterial families in paired stool (top) and swab samples (bottom). Paired stool and swab samples collected from the same
individual at the same time point are aligned along the x axis and sorted by swab transport time. p, phylum; c, class; o, order; f, family.
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was overrepresented in swab samples compared to their matching stool samples
(slope � 1), most other phyla exhibited slight overrepresentation in stool (slope � 1)
(Fig. 5). Nevertheless, the abundances of all phyla were significantly correlated between
swabs and their matching stool samples (Spearman � � 0.67, P � 0.001) (Fig. 5). This
most likely indicates the cellular growth of Enterobacteriaceae while other populations
remain largely static and are supplanted at an approximately even rate. This could also
indicate death and DNA degradation of these other populations, but that scenario
seems much less likely, given the short time frame of this experiment; however, we

FIG 4 Distribution of Enterobacteriaceae relative frequencies in stool samples and in swab samples
exposed to different transport times.

TABLE 2 ANCOM differentially abundant sequence variantsd between stool and swab paired samples

Feature identifiera Family
Genus or genus
and speciesb Wc

Sequence abundance

Stool
median

Stool
maximum

Swab
median

Swab
maximum

f3fc3c1992d8118d6105048408aaf6d6 Enterobacteriaceae 2,457 27.5 1,932 2,201.5 57,802
8ce638638fc5ee9e2128ac4bd03ed11e Enterobacteriaceae Klebsiella 2,455 1 10 1 35,068
5a83ea3d76cd341dac86f333c7d5f293 Enterobacteriaceae Citrobacter 2,436 1 18 1 18,276
c57bf51f33c656b83ae967392536b842 Enterobacteriaceae Klebsiella 2,406 1 66 1 3,235
801cc2f4b3dfb4b130c4ba7ef4a20094 Bacillaceae Bacillus 2,276 1 1 1 2,076
fb9c4b48fcb5d89827e4d868e63846a8 Lachnospiraceae Blautia 2,213 169 4,721 73.5 2,374
2f561a0913fb0ed1a03d6cbdd1796e0c Lachnospiraceae Coprococcus 2,294 122.5 2,295 50.5 1,321
edfefd945764652423a9183e4934f63e Lachnospiraceae Roseburia 2,229 38 1,327 1 769
c4e55d1fa1d9152699f44847eec89821 Lachnospiraceae 2,375 152.5 1,544 46.5 701
6f063a38df307a2c50a525bf2ae85f7d Lachnospiraceae Blautia 2,273 78 1,996 34 536
8be4f08a4c290c121885c6d3abc32186 Ruminococcaceae Oscillospira 2,215 13.5 1,217 1 455
b54e516c620e7b11f1f267f154efe1f6 Lachnospiraceae 2,212 13 464 1 150
4949d5468cabaae7de1a985e6a479a6a Lachnospiraceae Coprococcus catus 2,234 14.5 154 1 146
ebf3c3237392738d0fdeb35e9bb35bcd Alcaligenaceae Sutterella 2,407 21 1,527 1 137
efeef69c255be9b873b917707495b22f Lachnospiraceae 2,243 1 154 1 105
2d1be5a482c6d0a6b58a5d9b5f3c5b3d Ruminococcaceae Oscillospira 2,355 24 235 1 101
40a904445b77cf5125c51fb01f785193 Lachnospiraceae 2,248 1 279 1 97
aFeature identities equal the MD5 hashes of the 16S rRNA gene sequences identified as being differentially abundant between paired stool and swab samples.
bGenus and species names are shown where available. Any feature missing a genus and/or a species label was classified as belonging to a species that is missing a
genus and/or a species annotation in the Greengenes 16S rRNA gene sequence reference database.

cW equals the number of ANCOM subhypotheses that have passed for each individual taxon, indicating that the ratios of that taxon’s relative abundance to the
relative abundances of W other taxa were detected to be significantly different between stool and swab samples.

dSequence variants differentially abundant at a P value of �0.05.
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cannot discern changes to absolute abundance based on our compositional (relative
abundance) sequence data.

DISCUSSION

This study has demonstrated the accuracy of swabs for approximating the compo-
sition of stool samples and evaluated the effect of transport time. Previous authors have
examined the reproducibility and accuracy of fresh swabs for approximating stool
microbiota measurements (5). We extend these prior studies by demonstrating the
impact of storage time on swab similarity to stool. This corroborates earlier findings
that swab and stool samples yield similar biological conclusions (3, 5).

We show that swabs provide an accurate approximation of stool microbiota diver-
sity, composition, and structure, provided that the swabs are processed when they are
as fresh as possible (�2 days). Stool samples and swabs could not be reliably distin-
guished by supervised learning classification, indicating the close resemblance be-
tween these collection methods. Long transport times were associated with the
overrepresentation of Enterobacteriaceae (probably due to growth under aerobic con-
ditions), decreasing the accuracy of the microbiota profiles. Prospectively, this finding
could be used to further enhance the use of swabs for fecal microbiota profiling. Except
in scenarios where high levels of Enterobacteriaceae are a normal constituent of the
intestinal microbiota, such as following gastric bypass surgery (13, 14), Enterobacteri-
aceae could be used as a marker for validating swab integrity, e.g., to reject outliers that
may have experienced inadequate shipping or storage. For example, in our study, 2 out
of 11 swab samples received within 2 days of collection still exhibited outlying relative
abundances of Enterobacteriaceae (Fig. 4), indicating that transport time alone cannot
ensure sample integrity. Modeling of the compositional changes over time could
support the development of algorithms to correct for biases arising from collection and
storage issues, e.g., to adjust Enterobacteriaceae relative abundance based on storage/
transport time and temperature.

Blooms of Gammaproteobacteria were reported in a previous meta-analysis by Amir
et al. (15) that compared the microbial community composition of swabs that were
shipped at uncontrolled temperatures versus swabs that were frozen immediately.
However, that study did not examine the relationship between swab shipping time and
Gammaproteobacteria abundance or other microbiome characteristics, as was mea-
sured in our current study, though their meta-analysis did include published studies
examining the impact of room temperature storage on stool microbiota. Amir et al. (15)

FIG 5 Scatter plot comparing the relative abundances of all taxa observed in stool and swab samples.
Taxa are colored by their phylum affiliation (all other phyla are combined into “other”), and linear
regressions for each phylum are plotted. Pearson R and Spearman (�) correlation coefficients and their
P values comparing stool and swab abundances for each phylum are shown in the key.
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recommended filtering specific gammaproteobacterial sequence variants to rectify
microbiome measurements from swabs stored at room temperature. However, this
approach is highly specific to their study methodology; e.g., those blooming sequence
variants may not generalize to different read lengths, to sequencing technologies, or to
studies not included in their meta-analysis. Hence, further studies are needed to devise
general strategies for mitigating room temperature storage-related blooms.

Our study is limited by the relatively small number of subjects (n � 38) (Table 1). The
study cohort included only children, several of whom had received a microbiota
transfer therapy. Swabs collected from subjects with highly distinct stool microbiota
(e.g., subjects suffering from severe gastrointestinal illness) could exhibit storage
profiles different from those observed in our study and should be revalidated for
atypical study cohorts. This study only examined swabs that were shipped by mail.
Hence, results may be impacted by temperature fluctuations that were not controlled
for in this experiment. Additionally, multiple shipping times were not tested for each
individual swab sample; collection and exposure of replicates to different shipping
times would enable repeated measurements to assess longitudinal changes in individ-
ual taxa. Given the unpredictability of shipping times by standard post, these results
underscore the importance of utilizing expedited post, temperature control, and/or
preservation techniques for fecal swab collection if swabs cannot be frozen immedi-
ately upon collection.

Stool collection is not always easy or convenient. This may be due to logistical
constraints (e.g., at-home collection or busy clinical settings), sample characteristics
(e.g., fecal incontinence), or subject comfort. Stool swabs represent a viable alternative
for measurement of distal gut microbial composition and diversity. Swabs are also
considerably easier to handle and process than stool samples, streamlining collection
and DNA extraction protocols. Although we found that stool and fresh swab samples
could not be reliably distinguished by supervised learning classification, we do not
recommend mixing stool and swab collection methods within the same study, in order
to avoid introduction of experimental variation and potential sampling biases. For
example, contamination and other artifactual biases could differ between collection
methods and different brands of swabs, and variation should be minimized as much as
possible. In studies where different collection methods become necessary, investigators
should test to ensure that collection methods do not covary with other sample
characteristics or metadata.

MATERIALS AND METHODS
Sample collection and processing. Stool samples and swabs were collected and processed as

previously described in a study of children with ASD receiving microbiota transfer therapy (3). Stool
samples and fecal swabs were collected by the subjects’ parents. Stool samples were stored in dry ice,
collected by a driver, and frozen at �80°C immediately upon arrival at the laboratory. Swabs were
shipped to the lab by standard postal mail. After defecation, fecal matter was collected from toilet paper
using a sterile swab (Fisher Scientific BD culture swab item number B4320135), taking care not to contact
the paper or overload the swab. Samples were shipped at room temperature and frozen at �80°C
immediately upon arrival at the laboratory. Swab samples were primarily shipped within Arizona at
different times of year, so temperatures (and, hence, shipping effects) may be slightly higher than those
in other regions. The time between shipping and receipt was logged as the number of days in transit,
which was used to perform the statistical analyses described below. DNA extraction and sequencing
were performed as previously described, following the Earth Microbiome Project standard protocol for
16S V4 rRNA gene sequencing with 515f-806r primers (16). A total of 105 stool samples and 321 swab
samples were collected and analyzed in the current study, including 82 pairs of stool and swab samples
that were collected from the same source stool (Table 1). Swab transport times in the original study
varied from 0 to 68 days; however, only days 1 to 8 contained a sufficient sample size (minimum, n � 3
stool-swab pairs), and these samples were used in the current study for assessing the impact of transport
time on swab composition accuracy compared to that for paired stools.

Microbiome analysis. Sequence data were processed and analyzed using the QIIME 2 software
package (7). Raw sequences were quality filtered using the DADA2 software package (17) to remove phiX,
chimeric, and erroneous reads. Sequence variants were aligned using the mafft program (18) and used
to construct a phylogenetic tree using the fasttree2 program (19). Taxonomy was assigned to sequence
variants using q2-feature-classifier (20) against the Greengenes 16S rRNA reference database (13_8
release) (21).
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Statistical analysis. QIIME 2 was used to measure the following microbiota alpha diversity metrics:
richness (as observed sequence variants), Shannon diversity and evenness, and phylogenetic diversity (9).
Microbiome beta diversity was estimated in QIIME 2 using weighted and unweighted UniFrac distances
(8). Feature tables were evenly subsampled at 5,000 sequences per sample prior to alpha or beta diversity
analyses.

Alpha diversity differences and UniFrac distances between paired stool and swab samples from
identical source samples (paired samples) were calculated using paired Wilcoxon signed-rank and
Mann-Whitney U tests as implemented in Scipy (https://scipy.org) and q2-longitudinal (22). ANCOM (12)
was used to test whether the abundances of individual taxa differed between paired samples, as
implemented in the QIIME 2 plug-in q2-composition (version 2017.4.0) with the following parameters:
transform_function�clr (center log-ratio transformation); statistical_test�ttest_rel (paired-sample t test);
the Holm-Bonferroni false discovery rate correction was applied by default. Spearman correlation
coefficients were computed between transport time and median alpha diversity metrics, UniFrac
distance, and Enterobacteriaceae relative abundance. Mann-Whitney U tests were used to test whether
the relative abundances of the family Enterobacteriaceae were significantly different between stool
samples and swab samples exposed to different transport times. Supervised learning classification was
performed in q2-sample-classifier (23), using random forests classifiers (11) grown with 500 trees, trained
on a random subset of the data (80%) and validated on the remaining samples.

Data availability. This study reanalyzed a previously published 16S rRNA gene sequence data set (3),
which is available in the NCBI Sequence Read Archive under accession number PRJNA529598 and in the
open-source microbiome database Qiita (qiita.microbio.me) under study identification number 10532.
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