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Abstract: This article studies the supramolecular assembly behavior of a Zn-trisporphyrin conjugate
containing a triphenylamine core (1) with bridging N-donor ligands using the UV-vis spectrophoto-
metric titration method at micromolar concentrations. Our results show that pyridine, a non-bridging
ligand, formed a 3:1 open complex with 1. The corresponding binding constant was estimated
to be (2.7 ± 0.15) × 1014 M−3. In contrast, bridging ligands, 4,4-bipyridine (BIPY) and 1,3-di(4-
pyridyl)propane (DPYP), formed stable 3:2 double-decker complexes with 1 in solution, which
collapsed to yield a 3:1 open complex when excess BIPY or DPYP was added. The binding constants
for forming BIPY and DPYP double-decker complexes were estimated to be (9.26 ± 0.07) × 1027 M−4

and (3.62 ± 0.16) × 1027 M−4, respectively. The UV-vis titration profiles supported the conclusion
that the degradation of the 3:2 double-decker 1·BIPY complex is less favorable compared to that of
1·DPYP. Consequently, the formation of the 3:1 1·DPYP open complex proceeded more readily than
that of 1·BIPY.

Keywords: Zn-trisporphyrin conjugate; supramolecular assembly; bridging N-donor ligand; double-
decker complexes

1. Introduction

The construction of well-defined nano- and microscopic architectures provides access
to outstanding materials [1–3] for use in artificial electron transfer [4], photocatalysis [5],
sensing [6], molecular recognition [7], and medicinal applications [8]. Porphyrin materials
are attractive building blocks for forming self-assembled, highly ordered supramolecular
structures [9–11]. Porphyrin compounds are important because of their symmetric aromatic
structures and excellent electronic and photophysical properties, and are used for cataly-
sis [12–14]. Porphyrin molecules self-assemble to form large-scale aggregates with well-
defined nanostructures of definite sizes, shapes, and dimensions. Various intermolecular
non-covalent forces or interactions, such as hydrogen bonding, hydrophobic or hydrophilic
interactions, π-π stacking, ligand coordination, electrostatic interactions, and van der Waals
interactions, are responsible for porphyrin self-assembly [15–19]. Various strategies, such
as ionic self-assembly [20], re-precipitation methods [21], ligand coordination [22], coordi-
nation polymerization [23], and surfactant assistance by either surfactants or amphipathic
molecules [24], have been utilized to form porphyrin aggregates. However, covalent
metalloporphyrins, such as dendrimers, double-stranded conjugated ladder porphyrins,
porphyrin arrays, double-decker porphyrins, cyclic porphyrins, and tetra-porphyrins,
readily self-assemble without any external stimuli and form a larger aggregation of por-
phyrin arrays in solution [25–30]. Among the various supramolecular architectures, tris-
metalloporphyrins assembled with N-donor ligands, such as 1,4-diazabicyclo[2.2.2]octane
(DABCO), form sandwich-type coordination cages that are attractive for supramolecular
catalysis applications and artificial molecular receptor synthesis [31–33].
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We have previously reported the strong two-photon absorption of octupolar trisporphyrin
conjugates containing a triphenylamine core (1) (Scheme 1) [34]. The optimized geometry
obtained using semi-empirical AM1 calculations revealed that the trisporphyrin molecule
adopts a propeller-shaped structure. Incorporating the unique C3-symmetrical struc-
ture of conjugated porphyrins, we expected to construct an interesting architecture via
supramolecular assembly within this system. In this report, we describe the spectrophoto-
metric study of the supramolecular assembly of Zn-trisporphyrin induced by coordination
with bridging N-donor ligands. We chose 4,4-bipyridine (BIPY, a rigid ligand) and 1,3-di(4-
pyridyl)propane (DPYP, a flexible ligand) as the bridging N-donor ligands for the present
study.

Scheme 1. Chemical structures of Zn-porphyrins and N-donor ligands used in this study.

2. Results and Discussion

UV-vis spectroscopy was applied to evaluate the binding properties of Zn-trisporphyrin 1
(1× 10−6 M) with bridging N-donor ligands in toluene at room temperature. For a compara-
tive study, we used monomeric Zn-porphyrin 2 ([5,10,15-tri-(p-tolyl)-20-trimethylsilylethyny
lporphyrinato]Zn(II), see Scheme 1) as a reference model and performed supramolecular
assembly studies under similar conditions.

The stability constant and the related species resulting from the coordination of
pyridine with 1 are shown in Scheme 2. The UV-vis spectrum of 1 in toluene contained an
intense, broad Soret band (439 nm) and weak Q-bands (570 nm and 627 nm) (Figure 1 and
Supplementary Materials Figure S1) [34].
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Scheme 2. Schematic representation of the species involved in the binding of Zn-trisporphyrin 1
with pyridine.

Figure 1. UV-vis titration spectra of Zn-trisporphyrin 1 complexation with pyridine in toluene
(c = 1 µM). (a) UV-visible region, (b) Q-band zone, (c) data curve for Job’s plot at 446 nm (mole
fraction of 1), (d) fitting curve for the determination of the binding constant K31 at 446 nm.

Titrimetric addition of pyridine to a toluene solution of 1 created a series of isosbestic
points (439, 578, 599, and 632 nm) along with a shift in the Soret band (439 to 446 nm)
and in the Q-bands (570 to 581 nm and 627 to 644 nm). The associated 7 nm redshift in
the Soret band indicated pyridine binding to 1. No further changes in the absorbance
were observed after the addition of 3 equiv. of pyridine. Job’s plot for the titration data
(Figure 1c) clearly supports forming a 3:1 complex, as shown in Scheme 2. Equilibrium
constant K31 for 1·pyridine was calculated as follows:

K31 = [(PY)3·1]/[PY]3[1] (1)

The binding constant, K31 for the 1·pyridine complex, was estimated to be (2.7 ± 0.15)
× 1014 M−3. On the other hand, monomeric Zn-porphyrin 2 exhibits typical electronic
absorption features in toluene, including an intense Soret band at 434 nm and weak Q
bands at 563 nm and 605 nm (Figure S2). The addition of pyridine to a toluene solution
of monomeric 2 resulted in a series of isosbestic points (436, 570, 592, and 611 nm) along
with a shift in the Soret band (434 to 438 nm) and in the Q-bands (563 to 575 nm and 605 to
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622 nm). The associated 4 nm redshift in the Soret band is characteristic of the formation of
a 2·pyridine complex in a 1:1 ratio. The binding constant, K11 (= [PY·2]/[PY][2]) for the
2·pyridine complex, was calculated to be (1.60 ± 0.08) × 104 M−1 (Figure S2).

The addition of 4,4-bipyridine (BIPY) to a toluene solution of conjugated Zn-trisporphyrin
1 led to forming a series of coordination complexes. The overall stability constants and
associated species are depicted in Scheme 3. The general equilibrium constants, shown in
Scheme 3, were determined as follows:

K31 = [L3·1]/[L]3[1] (2)

K32 = [L3·12]/[L]
3[1]2 (3)

K32↔31 = (K31)
2/(K32) = [L3·1]2/[L3·12][L]

3 (4)

where, L = BIPY or DPYP.

Scheme 3. Schematic representation of the species involved in the binding of Zn-trisporphyrin 1
with BIPY or DPYP.

Upon the addition of 0–3 equiv. of BIPY into a toluene solution of 1, the Soret band
initially shifted from 439 to 443 nm (Figure 2 and Figure S3). Such a 4 nm redshift was
characteristic of the formation of a 3:2 double-decker complex, as shown in Scheme 3. With
the further addition of BIPY above 3 equiv. to the solution of 1, the band at 443 nm started
to decrease in intensity, and a new band appeared at 446 nm, suggesting the deconstruction
of the 3:2 double-decker complex and the mono-coordination of 1 with BIPY to form a
3:1 open complex. In addition, a series of isosbestic points (441, 581, 599, and 634 nm)
along with a shift in the Q-bands (570 to 583 nm and 627 to 647 nm) were also observed
during the titration process. Based on the fitting of the titration data to the three species (1,
3:2 double-decker coordination complex, and 3:1 open complex) and the binding model
described in Scheme 3, binding constants K32 and K31 were calculated to be (9.26 ± 0.07)
× 1027 M−4 and (3.1 ± 0.13) × 1015 M−3, respectively, using global multivariate factor
analysis [31–33,35–37]. On the other hand, the BIPY titration of a toluene solution of
monomeric 2 resulted in a two-phase absorbance change, which appeared stable even
after the addition of more than 3 equiv. of BIPY. The titration results consisted of four
concomitant isosbestic points (436, 570, 592, and 611 nm) along with a shift in the Soret
band (434 to 438 nm) and in the Q-bands (563–575 nm and 605–622 nm). The associated
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4 nm redshift in the Soret band evidently supports forming a 1:1 2·BIPY complex. From
the titration data, it is clear that forming a 2:1 complex of Zn-monomeric 2 with BIPY was
negligible under our experimental conditions. It is likely that 2:2 or 4:2 complexes were
generated, which would affect the binding constant, as mentioned in the literature [32].
However, we did not consider these species owing to their negligible concentration under
our experimental conditions (micromolar concentrations and room temperature). At
micromolar concentrations, ladder-type 2:1 complexes are not likely to be formed during
UV-visible titration [38]. The binding constant, K11 (= [BIPY·2]/[BIPY][2]) for 2·BIPY, was
calculated to be (2.02 ± 0.03) × 104 M−1 (Figure S4). The above observation confirmed that
the synergistic effect of the three conjugated porphyrin moieties in 1 was operational during
the titration process [26]. This cooperative effect facilitates constructing a 3:2 double-decker
coordination complex at a certain concentration of BIPY in solution.

Figure 2. UV-vis titration spectra of Zn-trisporphyrin 1 with BIPY in toluene (c = 1 µM). (a) UV-vis
region, (b) Q-band zone, (c) data curve for Job’s plot at 446 nm (mole fraction of 1), (d) fitting curve
for the determination of the binding constant K32 at 446 nm.

The binding of the rigid ligand BIPY to 1 was then compared to the assembly behavior
of 1 with flexible N-donor ligand, 1,3-di(4-pyridyl)propane (DPYP) in toluene. Titrimetric
addition of DPYP to a toluene solution of 1 gave rise to a series of isosbestic points (439, 579,
599, and 633 nm) along with a shift in the Soret band (439 to 446 nm) and in the Q-bands
(570 to 582 nm and 627 to 645 nm). The appearance of the titration profile was very similar
to that of BIPY with 1 (Figures 3 and 4), although the fitted curve did not perfectly match
with experimental data. This deviation may be due to side reactions that form unexpected
complexes.
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Figure 3. UV-vis titration spectra of Zn-trisporphyrin 1 with DPYP in toluene (c = 1 µM). (a) UV-
visible region, (b) Soret-band zone, (c) Q-band zone, (d) fitting curve for the determination of the
binding constant K32 at 446 nm.

Figure 4. Job’s plots for the UV-vis titration of Zn-trisporphyrin 1 with DPYP in toluene (c = 1 µM).
(a) mole fraction, and (b) site fraction.

A notable difference is that the degradation of the sandwiched 3:2 complex and
forming an open 3:1 complex proceeded more easily in the case of DPYP addition to the
solution of 1 compared to that of BIPY titration. Binding constants K32 and K31 were
calculated to be (3.62 ± 0.16) × 1027 M−4 and (8.1 ± 0.13) × 1015 M−3, respectively. Thus,
the binding constant, K32 of 1·BIPY, was approximately 2.5 times higher than that of
1·DPYP. This implies that rigid BIPY forms a more robust self-assembled double-decker
complex than flexible DPYP. Using the above stability constants of 1·BIPY and 1·DPYP,
and the SPECFIT program, we simulated the speciation profile considering only three
species (1, 3:2 sandwiched complex, and 3:1 open structure) according to the reported
methods [32,33], as shown in Figure 5. It should be mentioned that for simplicity, we
neglected other species (~2:2 or 4:2 model structures mentioned in [32]), due to their
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negligible content at micromolar concentration. We observed some notable features from
these simulated speciation profiles along with the experimental spectra in Figures 2 and 3.
Initially, the concentration of 1 is high (100%), as indicated by the Soret band at 439 nm.
After the addition of ligands (BPY or DPYP), the Soret band is redshifted to 443 nm, and
the concentration of 1 is decreased. This is because, at a low concentration of ligand,
both BIPY and DPYP formed 3:2 double-decker complexes with 1. The concentration of
the 3:2 double-decker complex increased upon the addition of bidentate ligands up to
3 equivalents. The 3:2 double-decker complex seems to be stable up to a certain range of
ligand concentrations. After that, these double-decker complexes gradually degrade to
form 3:1 open complexes as the concentration of ligands highly increases further. The Soret
band was further redshifted from 443 nm to 446 nm during this process.

Figure 5. Simulated speciation profiles for titrations of 1 with (a) BIPY and (b) DPYP. Insets show enlargements of the
lower-site-ratio region.

Several notable conclusions can be drawn from these UV-vis titration profiles. Degra-
dation of the 3:2 double-decker 1·BIPY complex is less favorable compared to that of
1·DPYP. Consequently, forming the 3:1 open 1·DPYP complex proceeded more readily
than that of 1·BIPY. It should be noted that DPYP is somewhat curved, whereas BIPY is
a categorically linear ligand. Therefore, the possible geometry of the double-decker 3:2
1·BIPY complex would be a regular sandwich (eclipsed stacked structure). On the other
hand, the double-decker 3:2 1·DPYP complex would exhibit offset sandwich geometry
(displaced stacked structure).

To validate our results, we employed DABCO, a common bridging ligand, previously
used to construct double-decker complexes [31–33,36]. Titrimetric addition of DABCO to a
toluene solution of 1 afforded a series of isosbestic points (439, 578, 598, and 632 nm) along
with a shift in the Soret band (439 to 446 nm), as well as in the Q-bands (570 to 582 nm
and 627 to 645 nm). The appearance of the titration profile was comparable to that of BIPY
titration of 1 (Figure S5). Binding constants K32 and K31 were calculated to be (1.47 ± 0.09)
× 1027 M−4 and (1.7 ± 0.21) × 1015 M−3, respectively. The binding constant, K32 derived
from 1·BIPY, was higher than that from 1·DABCO. Compared to DABCO, the longer arm
of BIPY appears to avoid steric clashing with the aryl groups of 1 in forming double-decker
complexes.

3. Materials and Methods

Zn-trisporphyrin conjugate 1 and monomeric Zn-porphyrin 2 were synthesized ac-
cording to our previous report [34]. All other chemicals (pyridine, 4,4-bipyridine, and
1,3-di(4-pyridyl)propane) were purchased from Sigma-Aldrich and used without further
purification. Steady-state UV-vis spectra were recorded on a Shimadzu UV-3600 spec-
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trophotometer. For UV-vis titrations, we prepared the host and guest solutions in toluene
at room temperature. The porphyrin (host) concentration was fixed at 1 µM, and ligand
(guest) concentration was varied from 0.001 to 0.1 M. UV-vis titration experiments were
performed by recording a spectrum of the host (porphyrin) in toluene at 298 K and adding
the guest (ligand) solution in increments. After each addition, a new UV-vis spectrum was
obtained. The data obtained from the UV-vis spectrophotometric titrations were analyzed
by fitting the entire spectral series at 1 nm intervals using the SPECFIT software [39], as
mentioned in earlier reports [32,33]. To determine the binding constants, the titration
results were fitted using the nonlinear regression method within the Origin 9 software and
generated the following equation:

y = A((1 + Kx + KP) − ((1 + Kx + KP)2 − 4K2Px)0.5/2KP (5)

x = [guest] × (binding site)

y = ∆A = A − A0

A =∆A at 100% complexation

K = Binding constant

P = [host]

4. Conclusions

In summary, the supramolecular assembly of conjugated Zn-trisporphyrin 1 with
different types of N-donor ligands was investigated in solution at micromolar concentra-
tions, employing UV-vis spectrophotometric titration. While pyridine, a non-bridging
ligand, forms a 3:1 open complex with 1, bridging ligands, BIPY, and DPYP, form stable
3:2 double-decker complexes with 1. These double-decker complexes collapse into simple
open 3:1 complexes with the addition of excess BIPY or DPYP. For DPYP (flexible ligand)
complexation with 1, the 3:2 double-decker complex equilibrated with the 3:1 open complex
more readily than the 1·BIPY complex (rigid ligand). Additionally, forming a 3:2 double-
decker coordination complex was similarly observed when the DABCO complexed with 1.
Our results provide valuable insights for constructing a variety of metalloporphyrin-based
self-assembled structures, potentially applicable in constructing novel functional materials
for chemical detection, supramolecular catalysis, and photoelectronics.

Supplementary Materials: The following are available online. Figure S1: UV-vis titration spectra of
Zn-trisporphyrin 1 with pyridine in toluene; Figure S2: UV-vis titration spectra of Zn-monoporphyrin
2 with pyridine in toluene; Figure S3: UV-vis titration spectra of Zn-trisporphyrin 1 with 4,4-
bipyridine in toluene; Figure S4: UV-vis titration spectra of Zn-monoporphyrin 2 with 4,4-bipyridine
in toluene, Figure S5: UV-vis titration spectra of Zn-trisporphyrin 1 with DABCO in toluene.
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