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General electric devices and ventilation systems are known to generate low frequency

noise (LFN) with frequencies of <100Hz. Previous studies showed that exposure to LFN

caused impairments of balance in humans and mice during adulthood. On the other

hand, a previous study showed that noise levels in the neonatal intensive care unit (NICU)

were greater than those in general home or office environments. Therefore, it is possible

that neonates have a potential risk to be exposed to LFN in the NICU. However, the risk

of neonatal exposure to LFN remains unclear in humans and mice. In this study, male

ICR mice were exposed to LFN at 100 Hz for 4 weeks after birth and then subjected

to rotarod and beam crossing tests in order to assess LFN-mediated risk of imbalance

during the neonatal period. Exposure to LFN at 70 dB, but not exposure to LFN up to 60

dB, during the neonatal period significantly decreased performance scores for rotarod

and beam crossing tests compared to the scores of the control group. The number of

calbindin-positive hair cells in the saccule and utricle was decreased in mice exposed to

LFN at 70 dB for 4 weeks in the neonatal phase. Cessation of exposure for 10 weeks

did not result in recovery of the decreased performance in rotarod and beam crossing

tests. Thus, our results suggest that 70 dB is a possible threshold for exposure to LFN

for 4 weeks during the neonatal period causing unrecoverable imbalance in mice.

Keywords: neonatal exposure, low frequency noise, balance, motor activity, vestibule

INTRODUCTION

Exposure to audible noise at excessive levels is known to cause noise-induced hearing loss
(Dougherty and Welsh, 1966; Wallenius, 2004) but information about the frequency-dependent
influence of noise on health is limited. Low frequency noise (LFN) is defined as a sound with
frequency below 100 Hz, and infrasound usually has a frequency below 20 Hz (Berger et al., 2015).
In our previous study, electric devices used daily were shown to generate LFN with characteristic
sounds having a peak at 100Hz and 70 dB (Tamura et al., 2012). Thus, we are potentially exposed
to LFN generated from many devices including public transportation, industrial machines, air
circulating devices (e.g., wind fans, ventilation and air-conditioning devices) and household devices
(e.g., heat pumps, ventilation fans, washing machines, refrigerators and freezers) in daily and
occupational environments.
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Exposure to LFN has been shown to affect some physiological
functions including functions of the cardiovascular and nervous
systems and the endocrine system in humans (Leventhall, 2003;
Schust, 2004). Exposure to LFN has also been shown to cause
annoyance, sleep disturbance and impairments of wakefulness,
perception, evoked potentials and cognition (Karpova et al., 1970;
Landstroem et al., 1983). Exposure to infrasound has been shown
to cause impairments of blood pressure, leading to hypertension
in humans (Danielsson and Landström, 1985). Furthermore,
occupational exposure of human adults to LFN at 70 dB has
been shown to increase cortisol levels in saliva samples (Waye
et al., 2002). A previous study also suggested a risk of maternal
stress caused by exposure to noise in humans (Kihal-Talantikite
et al., 2013). Thus, previous studies have suggested that LFN can
cause health problems in human adults. However, there is no
information about the influence of exposure to LFN during the
neonatal period on health risks.

The inner ears consist of the organ of Corti, the vestibule
and the semicircular canal. The vestibule contains the utricle and
saccule, both of which perceive linear acceleration and gravity. In
the utricle and saccule, the otolith, a complex of calcium crystal
and protein that is located on the hair bundles of hair cells, plays
a crucial role in mechanotransduction for balance perception
(Lundberg et al., 2006). In an experimental study, behavior
analyses including rotarod and beam-crossing tests are usually
performed to determine balance in mice. Electrophysiological
impairments of hair cells in the utricle have been shown to
be involved in imbalance assessed by rotarod analysis in mice
(Horwitz et al., 2011). Thus, hair cells in the saccule and utricle
play an important role in balance.

In a previous study, occupational exposure to LFN was
shown to cause impairments of vestibular functions assessed
by a caloric test in human adults (Doroshenko and Stepchuk,
1983). Our previous study showed that exposure to LFN at 70
dB for 4 weeks during adulthood affected scores of rotarod
and beam-crossing tests in mice (Tamura et al., 2012). Thus,
these previous studies suggest that exposure to LFN during
adulthood increases risks of imbalance in humans and mice.
However, there is no information about risk assessment of
exposure to LFN in a developmental stage. Therefore, we
performed experiments in which wild-type mice were exposed
to LFN during the neonatal period to assess the risk for
imbalance.

MATERIALS AND METHODS

Mice
ICR mice and C57BL/6J mice (Japan SLC, Hamamatsu,
Japan) were separately bred in a specific pathogen-free (SPF)
environment with room temperature at 23 ± 2◦C and a 12-h
light/dark cycle as previously described (Tamura et al., 2012).
All experiments were approved by the Institutional Animal Care
and Use Committee in Nagoya University (approval number:
28251) and Chubu University (approval number: 2810030)
and followed the Japanese Government Regulations for Animal
Experiments.

Noise Exposure
Neonatal mice were continuously exposed to LFN with a
peak of 100 Hz at 50, 60 and 70 dB for 4 weeks at a
distance of approximately 15 cm from the speaker in a closed
soundproof room (Figures 1A and Figures S1). Control groups
were maintained under a normal breeding condition in which
the background noise level (mean ± SD) at 100 Hz was 42.3
± 1.1 dB. We output LFN with a setting of 0.1 ms rise-fall,
600 ms interval and 10 ms flat by a sound stimulator (DPS-
725, Dia Medical System CO., LTD, Japan). The exposure for
4 weeks after birth was performed in the presence of mother
mice and performed without dividing male and female neonates.
After the neonatal exposure, we divided male and female mice
and further maintained male mice under the normal breeding
condition for 10 weeks as the exposure “cessation” group. We
regularly monitored the noise output with a noise level meter
(Type 6224 with an FFT analyzer, ACO CO., LTD, Japan) as
previously described (Tamura et al., 2012).

Behavior Analyses
Assessment of balance was performed according to previous
studies (Tamura et al., 2012; Tung et al., 2016). We used only
male mice for behavior analyses after the neonatal exposure and
the exposure cessation to exclude the possibility that the estrous
cycle affects behavior analyses in female mice. After the neonatal
exposure and the exposure cessation, we examined mice with a
rotating rod treadmill (Ugo Basile; Stoelting Co., Chicago, IL).
The mice were gently placed into individual lanes of the rotating
rod, and the rotating rod test was performed at an acceleration
mode (5–40 rpm). We recorded each animal’s performance score
in seconds when the mouse was unable to continue walking on
the rotating rod. Three repeated trials separated by 5-min rests
were performed. After a pre-trial, scores of duplicated trials were
recorded. We also performed a beam crossing test with a round
wooden bar of 2 cm in diameter. We put a beam of 60 cm in
length across a container of 40 cm in width, 60 cm in depth and
15 cm in height. We first performed pre-training of mice on the
bar at 30 cm in length, followed by three consecutive trials of
traversing the bar at 30 cm in length. We set a time limit for 60 s
to traverse the beam at 30 cm in length. We recorded the time to
traverse and the number of hind limb slips for each mouse. Four
mice per group were used for the results shown in Figures 1, 2,
and 6 and six mice per group were used for the results shown in
Figures 3, 5 except for five mice for the exposure group at 70 dB
in Figure 3.

Immunohistochemistry
Morphological analyses were performed as described previously
(Ohgami et al., 2010, 2012a,b). We used three male mice per
group for results shown in Figure 1. A total of nine serial
sections from three mice per group were used. In brief, perfusion
fixation was performed using Bouin’s solution and then inner
ears from mice were immersed in Bouin’s solution for 3 days to
1 week at 4◦C. Immunohistochemical analysis with a polyclonal
antibody against calbindin D28k (1:200; Santa Cruz, C-20) was
performed with paraffin sections. Alexa594 Donkey Anti-Goat
IgG (H+L) (Invitrogen, A-11058) was used as a secondary
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FIGURE 1 | Rotarod analysis after exposure to LFN for 4 weeks during the neonatal period. (A) A photograph of the exposure setting of low frequency noise

(LFN) for mice. The arrow indicates a speaker and arrowheads indicate breeding cages. (B–D) After exposure to LFN at 100 Hz, 70 dB for 4 weeks, (B) a rotarod test

and (C,D) a beam-crossing test were performed at 4 weeks of age. (B) Retention time (seconds, mean ± SEM) on the rotarod, (C) time to traverse (seconds, mean ±

SEM) and (D) number of hind limb slips per mouse (mean ± SEM) on the beam were recorded for the control group (n =4) and neonatal exposure group (n = 4).

Significant difference (**p < 0.01; *p < 0.05) from the control group was analyzed by the unpaired t-test.

antibody followed by counterstaining with 4′,6-diamidino-2-
phenylindole (DAPI). The specimens were observed under
a fluorescent microscope (Leica DMI6000B). The software
program WinROOF (Mitani Corp., Fukui, Japan) was used for
immunohistochemical estimation of positive cells detected by
antibodies as previously reported (Ohgami et al., 2016a). A total
of 9 serial sections from 3 mice per group were used for the
estimation.

Statistical Analysis
Statistical analyses were performed following the methods
previously reported (St-Amour et al., 2014; Ohgami et al., 2016b).
All statistical analyses were performed by JMP Pro (version
11.0.0; SAS Institute Inc., Cary, NC, USA). The unpaired t-
test was used to determine a significant difference between
two groups (Figures 1, 4–6). We used Bartlett’s test to assess

homogeneity of variances for four groups (Figures 2, 3). In
the case of homogeneous variance, one-way ANOVA followed
by Tukey’s post-hoc multiple comparison tests were used to
determine significant differences among four groups (Figure 2).
When homogeneous variance was denied, Welch’s ANOVA
followed by Dunnett’s multiple comparison tests were used
(Figure 3).

RESULTS

Exposure to LFN at 70 dB for 4 Weeks
during the Neonatal Period Affected
Balance
We performed an experiment with exposure of neonatal
mice to LFN with a frequency of 100 Hz for 4 weeks
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FIGURE 2 | Exposure to LFN up to 60 dB in the neonatal period did not

affect performance on the rotarod. After exposure to LFN at 100 Hz, 70

dB for 4 weeks, a rotarod test was performed at 4 weeks of age. Retention

times (seconds, mean ± SEM) on the rotarod were recorded for the control

group and neonatal exposure group at 50, 60, and 70 dB. Four mice per

group were tested. Significant differences (*p < 0.05) among groups were

analyzed by Tukey’s post-hoc multiple comparison tests.

after birth in order to determine whether exposure to LFN
during the neonatal period affects balance in mice (Figure 1A).
Rotarod analysis showed that exposure of neonatal mice
to LFN at 70 dB significantly affected rotarod performance
at 1 month of age compared to the performance by the
control group (Figure 1B). For mice that had been exposed
to LFN in the neonatal period, the time to traverse and the
number of hind limb slips in the beam crossing test were
significantly increased compared to those of the control group
(Figures 1C,D).

70 dB Is a Possible Threshold for Exposure
to LFN for 4 Weeks in Neonatal Mice
We next performed an experiment with exposure of neonatal
mice to LFN with a peak of 100 Hz at different noise levels
including 50, 60 and 70 dB for 4 weeks (Figure S1) to determine a
possible threshold affecting balance. After exposure for 4 weeks
after birth, the retention time to fall on the rotarod in the
group exposed to LFN at 70 dB, but not the groups exposed
to LFN at 50 and 60 dB, significantly decreased compared
to that in the control group [F(3, 12) = 6.15, p = 0.009 by
one-way ANOVA; p < 0.05 by Tukey’s test] (Figure 2). In
beam crossing tests, the time to traverse and hind limb slips
in neonatal mice exposed to LFN at 70 dB, but not the
groups exposed to LFN at 50 dB and 60 dB, were significantly
increased compared to those in the control group [F(3, 27)
= 13.42, p < 0.0001 by Welch’s ANOVA; p < 0.0001 by
Dunnett’s test] (Figure 3A). Also, hind limb slips in neonatal
mice exposed to LFN at 70 dB were significantly increased
compared to those in the control group [F(3, 31) = 3.77, p
= 0.020 by Welch’s ANOVA; p < 0.0001 by Dunnett’s test]
(Figure 3B).

FIGURE 3 | Exposure to LFN up to 60 dB in the neonatal period did not

affect performance on the beam. After exposure to LFN at 100 Hz, 70 dB

for 4 weeks, a beam-crossing test was performed at 4 weeks of age. (A) Time

to traverse (seconds, mean ± SD) and (B) number of hind limb slips per

mouse (mean ± SD) on the beam were recorded for the control group (n = 6)

and neonatal exposure group at 50 dB (n = 6), 60 dB (n = 6) and 70 dB (n =

5). Significant differences (**p < 0.01) among groups were analyzed by

Dunnett’s multiple comparison test.

Influence of Exposure to LFN at 70 dB for 4
Weeks during the Neonatal Period Was
Irreversible
We further performed immunohistochemistry with anti-
calbindin D28k, a marker of vestibular hair cells. The results for
mice exposed to LFN for 4 weeks during the neonatal period
showed decreased numbers of calbindin-positive hair cells in
the saccule and utricle compared to those in the control group
(Figure 4). We finally examined whether the impairment of
balance in neonatal mice exposed to LFN at 70 dB for 4 weeks
is reversible (Figure 5A). Rotarod analysis showed decreased
retention time to fall in neonatal mice just after exposure to LFN
at 70 dB for 4 weeks (Figure 5B). After exposure cessation for 10
weeks, retention time to fall in mice exposed to LFN at 70 dB for
4 weeks during the neonatal period was significantly shorter than
that in the control group (Figure 5C). In the beam crossing test,
the time to traverse and the number of hind limb steps in mice
exposed to LFN at 70 dB for 4 weeks during the neonatal period
were significantly increased compared to those in the control
group (Figures 6A,C) even after exposure cessation for 10 weeks
(Figures 6B,D).
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FIGURE 4 | Exposure to LFN decreased the number of

calbindin-positive hair cells in the saccule and utricle. (A)

Immunohistochemistry of hair cells (red) at equivalent positions in the saccule

(left panels) and utricle (right panels) from the control group (upper panels) and

neonatal LFN-exposure group (lower panels) detected by anti-calbindin D28k

antibody. Counterstaining was performed with DAPI (blue). Arrows indicate

positive hair cells detected by anti-calbindin D28k antibody. Scale bars: 20

µm. (B,C) Number of calbindin-positive hair cells per mm (mean ± SEM) in the

saccule (B) and utricle (C) from a total of nine serial sections from three mice

per groups. Results for the LFN-exposure group (closed bars) and control

group (open bars) are presented. Significant difference (**p < 0.01; *p < 0.05)

from the control was analyzed by the unpaired t-test.

DISCUSSION

This study is the first study to assess the health risk of exposure
to LFN during the neonatal period in ICR mice. The results
obtained in this study showed that exposure to LFN at 70 dB for
4 weeks, but not exposure to LFN up to 60 dB, affected balance
in neonatal mice. Exposure to LFN at 70 dB for 4 weeks during
the neonatal period also resulted in imbalance in C57BL6/J mice
in this study (Figure S2). Thus, our results suggest that 70 dB is
a possible threshold for exposure to LFN for 4 weeks affecting
balance in neonatal mice.

In this study, the imbalance in mice after exposure to LFN at
70 dB for 4 weeks during the neonatal period was irreversible.
Since the number of calbindin-positive hair cells in the saccule
and utricle was decreased in neonatal mice exposed to LFN in
this study, it is possible that morphological impairment of hair
cells in the saccule and utricle causes irreversible imbalance.
These results partially correspond to the results obtained in our
previous study showing that exposure to LFN at 70 dB for 4 weeks

FIGURE 5 | Exposure to LFN in the neonatal period resulted in

irreversible impairment of performance on the rotarod. (A) Scheme of

exposure to low frequency noise (LFN) at 70 dB for 4 weeks during the

neonatal period and cessation of exposure for 10 weeks. After birth, ICR mice

were continuously exposed to LFN at 70 dB for 4 weeks. After the exposure,

mice were maintained for 10 weeks under the condition of exposure cessation

(in the absence of exposure to LFN). Rotarod tests were performed just after

exposure and after exposure cessation. (B,C) Retention times (seconds, mean

± SD) of each group (n = 6) on the rotarod were recorded just after exposure

(B) and after exposure cessation (C). Results for the LFN-exposure group

(closed bars) and control group (open bars) are presented. Significant

difference (**p < 0.01) from the control was analyzed by the unpaired t-test.

led to a decrease in the number of calbindin-positive hair cells
in the vestibule (Tamura et al., 2012). Exposure to audible noise
has been shown to involve an increase of oxidative stress and
loss of hair cells in the organ of Corti (Henderson et al., 2006).
Therefore, it is likely that the morphological impairment of hair
cells in the saccule and utricle caused by exposure to LFN may
involve oxidative stress.

Our results showed that exposure to LFN at 70 dB for 4 weeks,
but not exposure to LFN up to 60 dB, during the neonatal period
caused impairment of balance in mice. A previous study showed
that LFN penetrates the uterus of sheep with attenuation of about
10 dB (Gerhardt et al., 1992). Therefore, it is possible that no
influence of exposure to LFN at 70 dB during the fetal period
reflects attenuation of exposure levels to fetal mice. Further study
is needed to investigate the health risks by exposure to LFN at
more than 70 dB during the fetal period. On the other hand,
a previous study showed that postnatal care by mother mice
affects behaviors of offspring after growing (Francis et al., 2003).
Therefore, body weights after neonatal exposure to LFN were
measured in this study since the exposure was performed in
the presence of mother mice. Exposure to LFN at 70 dB up to
4 weeks did not affect body weights of neonatal mice in this
study (Table S1). Thus, it is unlikely that exposure to LFN up
to 70 dB affects nurture activities by mother mice, although
maternal behaviors of mother mice were not examined in this
study. A previous study showed increased levels of corticosterone

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 February 2017 | Volume 11 | Article 30

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Ohgami et al. LFN-Mediated Imbalance in Neonatal Mice

FIGURE 6 | Exposure to LFN in the neonatal period resulted in

irreversible impairment of performance on the beam. After neonatal

exposure to LFN at 70 dB for 4 weeks after birth, mice were maintained for 10

weeks under the condition of exposure cessation. Beam tests were performed

just after exposure and after exposure cessation. (A,B) Time to traverse

(seconds, mean ± SEM) and (C,D) number of hind limb slips per mouse (mean

± SEM) of each group (n = 4) on the beam were recorded just after exposure

(A,C) and after exposure cessation (B,D). Results for the LFN-exposure group

(closed bars) and control group (open bars) are presented. Significant

difference (*p < 0.05) from the control was analyzed by the unpaired t-test.

in serum of offspring cared for by stressed mother mice with
increased levels of corticosterone in serum (Moles et al., 2008).
It would be worthwhile to investigate the influence on other
behaviors and stress-related hormones of offspring and mother
mice.

It is known that audible ranges of frequency for humans
and mice are about 20–20,000 and 1,000–40,000Hz, respectively
(Heffner and Heffner, 2007), while a previous study showed
changes of auditory startle response in mice by stimulation
of sound with 375 Hz, which is out of the audible range for
mice (Jones et al., 2010). In this study, there was no significant
difference of hearing levels between the control group and
neonatal LFN-exposed group after exposure to LFN (Figure S3).
Thus, our results suggest that exposure to LFN at least at 100 Hz,
70 dB for 4 weeks during the neonatal period affects balance but
not hearing in mice.

A previous study showed that noise levels in the neonatal
intensive care unit (NICU) were greater than those in
general home or office environments, indicating the
necessity to reduce noise levels in the NICU (Almadhoob
and Ohlsson, 2015). However, there is no information
about LFN levels in the NICU and health risks for human
neonates, although general electric devices are known to
generate LFN. Therefore, it is important to monitor exposure
levels of human neonates to LFN to decrease potential
risks.
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