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Abstract: Phenoxazine derivatives such as Nile Blue analogues are assumed to be increasingly rel-
evant in cell biology due to their fluorescence staining capabilities and antifungal and anticancer
activities. However, the mechanisms underlying their effects remain poorly elucidated. Using S. cere-
visiae as a eukaryotic model, we found that BaP1, a novel 5- and 9-N-substituted benzo[a]phenoxazine
synthesized in our laboratory, when used in low concentrations, accumulates and stains the vacuolar
membrane and the endoplasmic reticulum. In contrast, at higher concentrations, BaP1 stains lipid
droplets and induces a regulated cell death process mediated by vacuolar membrane permeabiliza-
tion. BaP1 also induced mitochondrial fragmentation and depolarization but did not lead to ROS
accumulation, changes in intracellular Ca2+, or loss of plasma membrane integrity. Additionally,
our results show that the cell death process is dependent on the vacuolar protease Pep4p and that
the vacuole permeabilization results in its translocation from the vacuole to the cytosol. In addition,
although nucleic acids are commonly described as targets of benzo[a]phenoxazines, we did not find
any alterations at the DNA level. Our observations highlight BaP1 as a promising molecule for
pharmacological application, using vacuole membrane permeabilization as a targeted approach.

Keywords: benzo[a]phenoxazine derivative; Nile Blue analogue; cell death mechanism; vacuole/lysosome
membrane permeabilization; yeast as a eukaryotic cell model

1. Introduction

Phenoxazine derivatives are long wavelength fluorescent dyes of great importance as
probes since they absorb and emit fluorescence in the 600–900 nm region of the spectrum
where there is minimum interference with the biological molecules’ auto-fluorescence [1–6].
They have been used in the covalent labeling of amino acids and proteins and in the
non-covalent labeling of nucleic acids in various contexts such as blotting experiments, gel
electrophoresis, and living cell assays [7–11].

In addition to their use as fluorophores, oxazine heterocycles such as phenoxazine
and benzo[a]phenoxazine derivatives have also assumed significance in life sciences due
to their antiproliferative proprieties, which has prompted their study in pharmacological
applications such as antimicrobial [12–14] and antitumor agents [15,16]. These compounds
may exert their cytotoxicity through the intercalation of their planar structure between the
DNA base pairs, forming stable complexes. In addition, they can suffer a metabolic con-
version into free radical intermediates leading to oxidative stress [17]. Some phenoxazine
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derivatives displayed apoptotic activity in different neoplastic cell lines, both in a caspase-
dependent and independent manner [18–22], while others induced autophagic cell death in
apoptosis-resistant cells [23]. This class of compounds has been shown to accumulate in can-
cer cells to a higher extent than in normal human cells, resulting in increased toxicity toward
cancer cells [24,25]. Despite their interest, information regarding their use and mechanisms
of action is very limited and further research is needed to explore their potential. In recent
years, our group has synthesized several benzo[a]phenoxazine compounds with signifi-
cant antiproliferative activity against Saccharomyces cerevisiae. Among these, the Nile Blue
analogue N-(5-((4-ethoxy-4-oxobutyl)amino)-10-methyl-9H-benzo[a]phenoxazine-9-lidene)
BaP1 (Figure 1) was particularly active [13,26,27].

In the present work, we show that in addition to its antiproliferative activity, BaP1
induces cell death in yeast cells and we were able to unveil the mechanism behind its
cell death-inducing activity. Using S. cerevisiae as a model organism, we assessed BaP1
intracellular localization and cell death markers upon incubation with low doses and with
a cytotoxic concentration of BaP1, respectively.

Figure 1. Chemical structure of N-(5-((4-ethoxy-4-oxobutyl)amino)-10-methyl-9H-
benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (BaP1).

2. Materials and Methods
2.1. Yeast Strains

The following Saccharomyces cerevisiae strains were used in this study: BY4741 (MATa,
his3∆1 leu2 ∆0 met15 ∆0 ura3 ∆0), (EUROSCARF, Frankfurt, Germany), and the respective
knockouts ∆pep4, ∆nuc1, ∆aif1 and ∆cpr3; BY4741 SEC66-GFP (derived from the S. cerevisiae
BY4741), as well as BY4741 ∆pep4 constructions (BY4741 ∆pep4 pESC(Ø), BY 4741 ∆pep4
pESC-Pep4p(FL) and BY 4741 ∆pep4 pESC-DPM-Pep4p); BY4742 (MATa his3 ∆1 leu2 ∆0
lys2 ∆0 ura3 ∆0) (EUROSCARF, Frankfurt, Germany), and the respective knockouts ∆fld1,
∆tgl3 ∆tgl44, ∆are1 ∆are2, ∆dga1 ∆iro1; W303-1A (MATa, ura3-52, trp1 ∆2, leu2-3, 112 his3-11,
ade2-1), (EUROSCARF, Frankfurt, Germany), and the respective mutants rho0, ∆aac 1/2/3,
∆atg1, ∆yca, as well as the constructions W303-1 pDF01-VBA1-YEGFP, W303-1A pYX-mt-
GFP, W303-1A p416 ADH-pep4-EGFP, W303-1A GFP-ATG8, W303-1A ∆atg5 GFP-ATG8
and W303-1A ∆atg32 GFP-ATG8; US50-18 C (ura3, his1, pdr1-3) and the knockout mutant
AD1-7 (ura3, his1, pdr1-3, ∆yor1, ∆snq2, ∆pdr5, ∆pdr10, ∆pdr11, ∆ycf1, ∆pdr3).

2.2. Growth

Yeast cells were grown on standard YEPD (1% yeast extract, 2% peptone, 2% glucose).
The strains transformed with plasmids were selected and grown in synthetic complete
medium (SC: 2% glucose, 0.5% ammonium sulfate, 0.7% yeast nitrogen base w/o amino
acids, 0.2% dropout mix, 0.01% histidine, uracil, and tryptophan, 0.02% leucine). In the
case of BY 4741 ∆pep4 (pESC(Ø), pESC-Pep4p(FL) and pESC-DPM-Pep4p) and W303-1A
pYX-mt-GFP strains, to induce protein expression, the same medium with galactose 2%,
instead of glucose, was used. All the strains were grown at 30 ◦C with agitation at 200 rpm,
until they reached the early exponential phase (OD640 nm ≈ 0.5). For solid media, 2% agar
was added.
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2.3. Survival Assays

When yeast cultures (cultivated as described above) reached the early exponential
phase (OD640 nm ≈ 0.5), cells were collected, washed, and resuspended in filtered YEPD or
YEPG (in the case of strains with Gal promotor). The treatment with the compound was
performed by adding BaP1 to the resuspended cells at a final concentration of 300 µM. An
80.0 mM stock solution of BaP1 in dimethyl sulfoxide (DMSO) was prepared. The purity
of the synthesized BaP1 compound was determined by 1H RMN analysis and was higher
than 95% [26,27]. Since BaP1 was dissolved on DMSO, the same volume of DMSO (≈0.35%)
was added to another tube that served as the negative control. The cell suspensions were
incubated at 30 ◦C with agitation at 200 rpm for 120 min, and 50 µL samples were collected
every 30 min. The 0 min sample was collected before adding the compound or DMSO
(negative control). Samples were serially diluted to 10−4 in sterile deionized water. Aliquots
of the 10−4 dilution were placed on YEPD plates for assessing colony forming units (CFUs).
The plates were incubated during 2 days at 30 ◦C and CFUs were counted. For protein
synthesis inhibition assays, cycloheximide (CHX) (Sigma-Aldrich) was dissolved in ethanol
and added to yeast cell cultures grown to (OD640 nm ≈ 0.5) at a final concentration of
100 µg/mL. The cultures were incubated for 30 min before BaP1 treatment.

2.4. Cell Death Markers

Plasma membrane integrity was accessed by incubating the cells for 5 min with
2 µg/mL of propidium iodide (PI) (Molecular Probes, Eugene, OR, USA) at room tempera-
ture followed by the flow cytometry measurements of PI-stained cells. Boiled cells were
used as positive control.

For the assessment of mitochondrial potential, DiOC6(3) (Molecular Probes, Eugene,
OR, USA) was used. Cells were collected, washed in PBS, and resuspended in DiOC buffer
(0.1 mM MgCl2, 10 mM MES (2-(N-morpholino)ethanesulfonic acid) and 2% (w/v) glucose,
pH 6.0). Then, they were incubated with DiOC6(3) at a final concentration of 0.24 µM for
30 min at 30 ◦C in the dark. The samples were analyzed by flow cytometry. As a positive
control, cells were treated with 150 mM acetic acid.

Intracellular reactive oxygen species were detected by 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA). For the detection of ROS, a double staining protocol with H2DCFDA
and PI was used. Cells were collected and then resuspended in culture medium containing
40 µg/mL H2DCFDA at 30 ◦C for 45 min, in the dark and then 2 µg/mL of PI was added
after 30 min. Cells were analyzed by flow cytometry.

For intracellular calcium measurements, cells previously washed with PBS were
stained with 5 µM FLuo4-AM (Molecular Probes, Eugene, OR, USA) for 90 min at 30 ◦C in
the dark, subsequently washed and resuspended in PBS and assessed by flow cytometry.
As the positive control, cells were treated with 3 mM H2O2 at pH 3.0 [28].

DNA strand breaks were assessed by TUNEL with the “In Situ Cell Death Detection
Kit, Fluorescein” (Roche Applied Science) as previously described in [29]. To measure
DNA content, cells were stained with SYBR Green I as described in [30] and staining
was assessed by flow cytometry. The quantification of the different cell cycle phases was
performed by the evaluation of the DNA content through the quantification of the Fl-1
fluorescent intensity.

Flow cytometry was performed in an Epics® XL™ (Beckman Coulter, Pasadena, CA,
USA) flow cytometer, equipped with an argon-ion laser emitting a 488 nm beam at 15 mW.
The monoparametric detection of PI fluorescence was performed using FL-3 (488/620 nm)
and the detection of DiOC6(3), H2DCFDA, FLuo4-AM and SYTOX Green fluorescence
was performed using Fl-1 (488/525 nm). Thirty thousand cells were analyzed per sample
at a low flow rate. Flow cytometry analyses were performed with FlowJo® 7.6 Software,
Ashland, OR, USA.
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2.5. Detection of Autophagy Induction in Yeast

Autophagy induction was accessed through the intracellular localization of the GFP-
ATG8 protein by fluorescence microscopy and by Western blot evaluation of GFP-ATG8
processing. As the positive control, cells were treated with the autophagy inducer ra-
pamycin at a final concentration of 0.2 µg/mL for 60 min. Western blot analysis was
performed according to [31].

For GFP and Pgk1p detection, a mouse anti-GFP monoclonal primary antibody (1:2000;
Roche, Mannheim, Germany) and mouse monoclonal anti-yeast phosphoglycerate kinase
(PGK1) antibody (1:5000; Invitrogen, Waltham, MA, USA) were used. As the secondary
antibody, a mouse IgG coupled to horseradish peroxidase (HRP) (1:5000; Jackson Im-
munoResearch, West Grove, PA, USA) was used. The signals were revealed by chemi-
luminescence detection using the Immobilon Western HRP Substrate (Millipore-Merck,
Darmstadt, Germany) and a ChemiDoc XRS image system (BioRad, Hercules, CA, USA).

2.6. Evaluation of BaP1 Intracellular Distribution and Vacuole Permeabilization by
Fluorescence Microscopy

For fluorescence microscopy observations, the cells were collected at different time
points, washed, and mounted on a slide.

BY4741, SEC66-GFP, W303-1 pDF01-VBA1-YEGFP, and BY4742, and the respective
knockouts ∆fld1, ∆tgl3 ∆tgl44, ∆are1 ∆are2, and ∆dga1 ∆iro1 were used to determine the
intracellular distribution of BaP1. For the mitochondria morphology observations, the
W303-1A pYX-mt-GFP strain was used. Vacuolar membrane permeabilization was an-
alyzed by CMAC staining, BY 4741 cells were stained with Celltracker™ Blue CMAC
(Molecular Probes, Eugene, OR, USA) at a final concentration of 2 µM and incubated for
15–30 min at room temperature. The release of Pep4p to the cytosol was analyzed using
W303-1A p416 ADH-pep4-EGFP.

The samples were observed on a Leica MicrosystemsDM-5000B microscope with
appropriate filter settings (red, green, blue, and DIC (Differential Interference Contrast))
and a 100× oil immersion objective. Images were obtained with a Leica DFC350 FX Digital
Camera and processed with LAS AF Microsystems software. For phenotype quantification,
at least 300 cells of at least two independent experiments were evaluated.

3. Results
3.1. BaP1 Causes Viability Loss in Yeast Cells Partially Dependent on Protein Synthesis

In a previous report [13], we showed that BaP1 inhibited yeast proliferation. To assess
whether BaP1 could induce cell death, S. cerevisiae cells were incubated with this compound
and its effects on cell viability were determined by CFU counting over time. We observed
that BaP1 induced a fast decrease in cell viability in S. cerevisiae, the effect being partially
reverted by the addition of the protein synthesis inhibitor cycloheximide [29] (Figure 2A).

3.2. Yeast PDR Transporters Do Not Confer Resistance to BaP1

Drug export is a general mechanism of multidrug resistance. In S. cerevisiae, a complex
network of genes, the pleiotropic drug resistance (PDR) network confers resistance to a
variety of small cytotoxic molecules by activating their cellular efflux through ABC efflux
pumps [32,33]. To understand whether the toxic effect of BaP1 could be reduced by its
efflux out of the cell, we evaluated the effect of the compound on cell viability of a PDR-
efflux deleted mutant, AD1-7 (deleted in six genes encoding the transporters Yor1p, Snq2p,
Pdr5p, Pdr10p, Pdr11p, Ycf1p, and the transcription factor Pdr3p), in contrast to US50-18C,
a strain with the activating mutation pdr1–3 in the gene encoding the transcription factor
Pdr1p, hyper-resistant to drugs which are PDR substrates [34]. The viability assay showed
that US50-18C was more sensitive to the action of BaP1 while AD1–7 was more resistant
to its effect (Figure 2B). This observation shows that BaP1 is not a substrate of any of the
tested drug–efflux pumps belonging to the ABC family of transporters and suggests that
changes in membrane lipid composition may influence BaP1 activity, as these ABC family
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proteins have been implicated in the modulation of the lipid composition of S. cerevisiae
membranes through the activation of sphingolipid biosynthesis along with other target
genes [35].

Figure 2. Effect of BaP1 on yeast cellular viability. (A) Effect of cycloheximide (CHX) (100 µg/mL) on
viability of S. cerevisiae W303-1A exponential cells, exposed to BaP1 (300 µM) and DMSO (0.35%) (negative
control). Cycloheximide was added 30 min before the beginning of BaP1 treatment. (B) Effect of BaP1
(300 µM) and DMSO (0.35%) on cell viability of S. cerevisiae AD1-7 and US50-18C strains. (C) Effect
of BaP1 (300 µM) and DMSO (0.35%) on cell viability of S. cerevisiae W303-1A, ∆yca1, ∆aac 1/2/3, rho0.
(D) Effect of BaP1 (300 µM) and DMSO (0.35%) on cell viability of S. cerevisiae BY4741, BY4742, ∆pep4,
∆nuc1, ∆aif1, ∆cpr3, and ∆dga1∆iro1 strains. (E) Effect of BaP1 (300 µM) and DMSO (0.35%) on cell
viability of S. cerevisiae BY 4741 ∆pep4 pESC(Ø), BY 4741 ∆pep4 pESC-DPM-Pep4p and BY 4741 ∆pep4
pESC-Pep4p(FL) strains. 30 min: (d vs. e) ns, (d vs. f) **, (e vs. f) **; 60 min: (d vs. e) *, (d vs. f) ***, (e vs. f)
ns; 90 min: (d vs. e) ns, (d vs. f) ***, (e vs. f) *; 120 min: (d vs. e) *, (d vs. f) ***, (e vs. f) *. Cell viability was
assessed by CFU counting at the different time points (0, 30, 60, 90, 120 min). The time 0 corresponds to
100% is the CFU counting before BaP1 and DMSO treatment. Values are means with SD (n≥ 2). Statistical
analysis was performed by two-way ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. BaP1-Induced Cell Death Is Dependent on Vacuolar Protease Pep4p; However, Not on
Commonly Described Mitochondrial Apoptotic Regulators

The observation that BaP1 was able to induce cell death, partially reduced by the inhibition
of the protein synthesis, suggested the regulated nature of the process, and led us to assess the
potential role of proteins reported to be involved in apoptotic or necrotic cell death. As such,
we tested yeast strains lacking: metacaspase (∆yca1), ADP/ATP carrier of the mitochondrial
inner membrane (∆aac1/2/3), vacuolar protease Pep4p (∆pep4), nuclease Nuc1p, described to
translocate from mitochondria to the nucleus upon an apoptotic stimulus (∆nuc1) and apoptosis-
inducing factor Aif1p (∆aif1) which translocates to the nucleus in response to apoptotic stimuli.
We also tested the ∆cpr3 strain, deficient in the gene coding for mitochondrial cyclophilin, the
yeast orthologue of mammalian cyclophilin D, described as a mediator of necrosis, and a strain
without mitochondrial DNA, rho0 [36–39]. Viability assays showed that ∆aac1/2/3 and rho0
were slightly more sensitive and ∆yca1 was more resistant to the action of BaP1. However,
despite being consistent, these differences were not statically significant (Figure 2C). The mutant
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strains ∆nuc1, ∆aif1, and ∆cpr3 showed no differences when compared with the wild-type strain
(Figure 2C,D).

On the other hand, the strain lacking the vacuolar protease Pep4p was considerably more
resistant to the effect of BaP1 (Figure 2D). Pep4p is a pepsin-like aspartic protease orthologue of
human cathepsin D that was shown to translocate from the yeast vacuole to the cytosol during
hydrogen peroxide [40] and acetic acid-induced regulated cell death, also being involved in
mitochondrial degradation and cell death protection during the latter process [41]. The fact that
the ∆pep4 strain is more resistant to the BaP1 effect suggests that this protein plays a role in the
mediation of the cell death process. To confirm the effect of Pep4p in the cell death process and
to investigate whether this resistance relies on the proteolytic activity of the protein, S. cerevisiae
BY4741 ∆pep4 strains transformed either with pESC-Pep4p(FL) containing a functional Pep4p,
the double point mutation, pESC-DPM-Pep4p proteolytic inactive, or the empty plasmid pESC
(Ø), were used in viability assays. As expected, BY4741 ∆pep4 pESC(Ø) showed a reduced
loss of viability, similarly to the BY4741 ∆pep4 strain (Figure 2E). The resistance phenotype was
reverted by the expression of the functional Pep4p, Pep4p(FL) strain displaying a significant
difference from the strain containing the empty plasmid in the last time points of the assay
(Figure 2E). Furthermore, the proteolytic activity of Pep4p appears to be relevant for cell death
mediation, since DPM-Pep4p presents a lower viability loss than Pep4p(FL) (Figure 2E). These
data confirm that Pep4p plays an important role in the cell death process.

3.4. BaP1 Leads to Mitochondrial Depolarization and Fragmentation with Preserved Plasma
Membrane Integrity

To characterize the cell death process induced by BaP1, apoptotic or necrotic mark-
ers/parameters were analyzed along the treatment time, namely: plasma membrane
integrity, mitochondrial fragmentation, mitochondrial membrane potential alterations,
reactive oxygen species (ROS) accumulation, intracellular calcium fluctuations, and DNA
alterations.

Mitochondria are dynamic organelles continuously dividing and fusing to form an
active interconnecting network [42]. However, during apoptosis, this network disintegrates
at the time of cytochrome c release and prior to caspase activation, yielding more numerous
and smaller mitochondria [43]. Therefore, we assessed whether BaP1 led to mitochondria
network fragmentation using a S. cerevisiae strain expressing a mitochondrial-targeted GFP
protein. When treated with BaP1, yeast cells revealed the appearance of punctuated struc-
tures instead of a defined interconnected network (Figure 3A). After 30 min of exposure,
more than 80% of cells displayed mitochondrial network fragmentation and the value
increased up to almost 92% after 120 min of treatment (Figure 3B).

Several studies have shown that alterations in the mitochondrial membrane potential
are implicated in the occurrence of regulated cell death. Thus, we evaluated whether
BaP1 induces changes in the mitochondrial membrane potential. As such, we used the
carbocyanine dye DiOC6(3) which accumulates in mitochondria depending on its mem-
brane potential. As a positive control, cells were treated with acetic acid, as previous work
showed a transient hyperpolarization followed by the depolarization of mitochondrial
membrane during acetic acid regulated cell death [41]. In agreement with what was de-
scribed for the acetic acid-treated cells, we observed a shift of the DiOC6(3) fluorescence
peak to the left, showing mitochondrial depolarization, and a small peak in the right side
of the histogram, which corresponds to cells with mitochondrial hyperpolarization (Figure
S1A), In the BaP1-treated cells, we could not observe any shift in the DiOC6(3) main peak.
However, we observed the appearance of an additional peak in the left of the histogram
(Figure S1B), which shows the existence of a sub-population presenting mitochondrial
depolarization. We could observe that, after 30 min of treatment, approximately 18% of the
total cells presented mitochondrial depolarization; however, this value did not increase
over 23%, even in the last time points (Figure 3C).
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Figure 3. Evaluation of mitochondrial morphology and mitochondrial membrane potential. (A) Fluorescence microscopy
images of W303-1A pYX-mt-GFP cells after 30 min of treatment with BaP1 (300 µM) or DMSO (negative control). Samples
were collected at different time points, before (time 0) and after 30, 60, 90, and 120 min of treatment, and then visualized
by epifluorescence microscopy with a 100× oil immersion objective; (B) percentage of BaP1-treated cells displaying
mitochondrial network fragmentation. At least 300 cells were counted for each condition. (C) Effect of BaP1 on mitochondrial
membrane potential. Quantification of FL1 negative population (FL1 LOG) corresponding to the percentage of cells with
mitochondrial depolarization. Values are the means with SD (n ≥ 2). Statistical analysis was performed by two-way
ANOVA. ns: non-significant, *** p < 0.001, **** p < 0.0001.

Considering the fact that mitochondria can represent a source of ROS production
within cells [44,45] and that phenoxazine derivatives may lead to oxidative stress [17], we
assessed whether BaP1 induced ROS accumulation using a double staining protocol with
propidium iodide (PI) and H2DCFDA. However, we found that 300 µM of BaP1 did not
lead to an increased accumulation of ROS (Figure S2).

Intracellular calcium perturbations have been reported as a cause of cytotoxicity and
apoptotic or necrotic cell death [46]. However, using Fluo-4, a probe to detect intracellular
Ca2+, no alterations in calcium levels were observed (Figure S3).

In apoptotic cell death, cells are characterized by alterations at the DNA level, such as
fragmentation, resulting in the appearance of DNA strand breaks and diminished DNA
content, characterized by the appearance of a sub-G0/G1 peak in a cell cycle analysis
histogram [47,48]. We assessed chromatin fragmentation by TUNEL assay and cell DNA
content by flow cytometry using SYTOX Green staining. Results showed that less than 1%
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of treated cells presented DNA fragmentation, even at the last time points (Figure S4A).
Furthermore, the SYTOX Green staining showed no significant change in the number of
cells in the sub G0/G1 phase (Figure S4B).

The assessment of the plasma membrane integrity of BaP1 treated cells by flow
cytometry using PI staining showed that the percentage of PI-positive cells did not increase
significantly, not exceeding 1% (Figure S5), confirming that this is not a necrotic process.

Taken together, these observations indicate that BaP1 induces cell death with the
preservation of plasma membrane integrity, mitochondrial fragmentation, and depolariza-
tion, but lacks some other common apoptotic markers.

3.5. Autophagy Is Not Involved in the BaP1 Cell Death

Since autophagic cell death induction by benzo[a]phenoxazine derivatives was re-
cently reported [23], we questioned the potential involvement of the autophagy machinery
in the cell death induced by BaP1. To address this question, we tested the dependence
of the cell death process on Atg1p, a serine-threonine kinase that is involved in the for-
mation of autophagosome membranes which is essential for autophagy induction [49].
No differences between the wild-type and ∆atg1 strains (Figure 4A) were observed in cell
viability assays, indicating that Atg1p, and thus autophagic induction, does not have a role
in BaP1-induced cell death.

Another assay that is commonly used to detect autophagy occurrence is the processing
of a GFP-ATG8 fusion protein [50]. During the course of autophagy, Atg8p is incorporated
into the autophagosome and carried to the vacuolar lumen where it is degraded by the
vacuolar hydrolases [51,52]; the hydrolysis of GFP-ATG8 results in free GFP that can
be detected as an autophagy indicator. Considering this approach, we used W303-1A
GFP-ATG8 cells, which were treated with 300 µM BaP1 or with 0.2 µg/mL rapamycin, an
autophagy inducer used as the positive control. In contrast to rapamycin treatment, with
BaP1 treatment, no particular fluorescence in the vacuolar lumen was detected (Figure 4B).
Moreover, we could not detect any increase in the cleaved GFP-ATG8 band by Western blot
analysis, so the occurrence of autophagy seems very unlikely (Figure 4C,D). As expected, in
an autophagy-deficient strain, ∆atg5, green fluorescence remained dispersed in the cytosol
for both treatments, and no cleaved band was observed, confirming that the rapamycin
phenotype observed was dependent on autophagy (Figure 4A–D).

Figure 4. Cont.
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Figure 4. Cont.
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Figure 4. Evaluation of autophagy induction. (A) Effect of BaP1 (300 µM) and DMSO (0.35%) on
cell viability of S. cerevisiae W303-1A and W303-1A ∆atg1. (B) Fluorescence microscopy images of
W303-1A GFP-ATG8 and W303-1A ∆atg5 GFP-ATG8 cells after 60 min treatment with BaP1 (300
µM) or DMSO (negative control), and Rapamycin (0.2 µg/mL). Samples were collected at different
time points, before (time 0) and after 30, 60, 90, and 120 min of treatment, and then observed by
epifluorescence microscopy with a 100× oil immersion objective. (C) Effect of BaP1 or DMSO
(negative control), and Rapamycin (positive control) on the Atg8p processing of W303-1A GFP-ATG8
and W303-1A ∆atg5 GFP-ATG8 cells. Representative experiment of two independent experiments.
(D) Quantification of cleaved GFP, values are ratios, normalized for GFP-ATG8 protein levels and
PGK levels. Values are the means with SD (n ≥ 2). Statistical analysis was performed by two-way
ANOVA. ns: non-significant, ** p < 0.01.

3.6. BaP1 Accumulates at the Vacuolar Membrane, Endoplasmic Reticulum, and Lipid Droplets

In order to analyze BaP1 fluorescence staining and to obtain further insights into its
possible intracellular targets, we used fluorescence microscopy to assess BaP1 intracellular
distribution. As such, we co-incubated S. cerevisiae cells with BaP1 and organelle-specific flu-
orescent probes, or used cells expressing GFP-fusion proteins targeting specific organelles
such as mitochondria, vacuole, endoplasmic reticulum, endosomes, Golgi complex, and
nuclei. Since BaP1 is highly fluorescent and to allow a better definition, in the staining
experiments, we decreased the concentration of the compound to 2.5 µM. Using a strain
expressing VBA1-YEGFP fusion protein, which allows the localization of the vacuolar
membrane, we observed that the compound’s Far-Red fluorescence co-localized with the
fusion protein. (Figure 5A). In addition, using a strain expressing a GFP fusion of the
endoplasmic reticulum protein Sec66, we could observe that BaP1 also localizes at the
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perinuclear endoplasmic reticulum (ER) since the colocalization of the Far-Red and green
fluorescence was observed (Figure 5B). We could not observe any significant co-staining
with mitochondria, endosomes, Golgi complex, or nuclei (not shown).

Interestingly, at 300 µM, the concentration of the compound used to induce a loss of
cell viability in S. cerevisiae, BaP1 loses its Far-Red vacuolar and ER staining specificity,
presenting a more diffuse staining pattern. However, we observed the appearance of
punctuated structures in the cytoplasm emitting green and blue fluorescence (Figure 5C).
Since the benzophenoxazine family compounds, Nile Blue, and Nile Red, have affinity
for lipophilic molecules [53] and particularly Nile Red has been used as a probe for lipid
droplets (LDs) detection, we analyzed whether the green and blue fluorescence came
from BaP1 LD staining. As such, we used S. cerevisiae mutants with different lipid droplet
morphology and abundance and were able to confirm our hypothesis (Figure S6).

BaP1 accumulation in LDs does not seem to influence cell death induced by the
compound, as cell viability assays performed with the BY4742 ∆dga1∆iro1 strain, with
much lower lipid droplet content, did not reveal differences to the wild type (Figure 2D).

Figure 5. Cont.
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Figure 5. BaP1 intracellular distribution for concentrations of 2.5 µM and 300 µM. (A) Fluorescence microscopy images of
W303-1A-pDF01-VBA1-YEGFP cells after incubation with BaP1 (2.5 µM). (B) Fluorescence microscopy images of BY4741-
SEC66-GFP cells after treatment with BaP1 (2.5 µM). (C) Fluorescence microscopy images of BY4742 cells after incubation
with BaP1 (300 µM). Samples were stained in PBS 1× at room temperature and visualized by epifluorescence microscopy
after 5 min with a 100× oil immersion objective.
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3.7. BaP1 Leads to Vacuolar Membrane Permeabilization and Cytosolic Release of Pep4p

The release of vacuolar and/or lysosomal contents to the cytosol has been observed to
play a role in several cell death processes. Furthermore, it is known that the magnitude
of the vacuolar content release determines the cell death type, a complete disruption
of vacuole usually being associated with uncontrolled cell death by necrosis, whereas
partial and selective permeabilization is associated with a controlled cell death process by
apoptosis [54,55].

Considering the fact that BaP1 accumulates at the vacuolar membrane, we evaluated
whether BaP1 could be disturbing the integrity of the vacuolar membrane during the cell
death induction process. For this we used the fluorescent dye CMAC, which accumulates
in the vacuolar lumen if the vacuolar membrane is intact. We could observe that, at 30 min
of treatment with a cell death-inducing dose, the blue fluorescence present in the vacuolar
lumen before BaP1 treatment (control) was already dispersed through the cell in more
than 60% of the cells (Figure 6A,C) and that this value increased up to 90% after 120
min of treatment. These observations indicated the occurrence of vacuolar membrane
permeabilization. Considering the Pep4p role in the cell death process, we assessed the
occurrence of Pep4p translocation to the cytosol. Using a S. cerevisiae strain expressing a
Pep4p-EGFP, we were able to observe green labeling throughout the cell, indicating the
translocation of the protein to the cytosol already at 30 min of treatment (Figure 6B).

Figure 6. Cont.
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Figure 6. Evaluation of vacuolar membrane permeabilization and Pep4p release. (A) Fluorescence microscopy images of
BY4741 cells after 30 min of treatment with BaP1 (300 µM) or DMSO (negative control). (B) Fluorescence microscopy images
of W303-1A p416 ADH-pep4-EGFP cells after 30 min of treatment with BaP1 (300 µM) or DMSO (negative control). Cells
were stained with CMAC to observe vacuolar permeabilization. Samples were collected at different time points, before
(time 0) and after 30, 60, 90, and 120 min of treatment and then visualized by epifluorescence microscopy with a 100×
oil immersion objective. (C) Percentage of BaP1-treated cells displaying dispersed blue staining pattern correspondent to
vacuole permeabilization. The reported values are means with SD (n≥ 2). At least 300 cells were counted for each condition.

4. Discussion and Conclusions

In previous work in our laboratory, we found that several newly synthetized fluores-
cent compounds derived from benzo[a]phenoxazine displayed antiproliferative activity
against S. cerevisiae, used as a model eukaryotic organism, and that minor changes in
substituents of the benzo[a]phenoxazine nucleus drastically influenced their activity, with
MIC values ranging from 3.75 µM to over 400 µM, as well as their intracellular staining
patterns [7,13,14,26,27,56]. Here, we found that one of these compounds, BaP1, induced a
regulated cell death process and uncovered its mode of action to unveil its potential for
pharmacological applications.

Drug resistance is one of the first barriers found in the pharmacological application of
many compounds. At this level, the most important resistance mechanism, ubiquitous from
bacteria to humans, is the overexpression of membrane-associated transporters that extrude
drugs out of the cell [57]. In S. cerevisiae, the active efflux of drugs is mediated by ABC efflux
pumps that are regulated by a complex network of genes belonging to the pleiotropic drug
resistance (PDR) network [32,33]. In this case, we showed that BaP1 cell death induction is not
affected by the deletion or overexpression of PDR transporters, suggesting that BaP1 is not
a substrate of these pumps being a positive indication for its application. Regarding the cell
death process, we observed that BaP1 induced mitochondrial fragmentation and depolarization,
with no loss of plasma membrane integrity. We further observed that BaP1 leads to vacuolar
membrane permeabilization (VMP). The consequences of VMP are well documented in the
literature in different scenarios. These organelles possess a large amount of proteases that, when
in the cytosol, may be responsible for the activation of apoptotic effectors such as caspases and
mitochondria that signal-regulated cell death [58–61]. When VMP is extensive, it can lead to
widespread hydrolysis in the cytoplasm, causing necrosis [54]. Our results do not corroborate
a mechanism of this type, as we clearly show that BaP1 does not induce a necrotic process.
In fact, we observed that BaP1-induced VMP is accompanied by the release of Pep4p and
that Pep4p-deficient cells are more resistant to BaP1-induced cell death, the results being in
accordance with a pro-death role of Pep4p. An effector role of Pep4p has also been evidenced
during H2O2-induced apoptosis, where Pep4p translocates from the vacuole to the cytosol
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and degrades the nucleoporins [40]. On the other hand, it has been shown that acetic acid can
induce VMP with the release of Pep4p in yeast, which seems to have an anti-apoptotic effect,
protecting cells from acetic acid-induced regulated cell death [41].

Our results also showed that the autophagic machinery was not involved in the cell
death process. This result is in accordance with previous reports showing that VMP blocks
autophagy and leads to autophagosome accumulation [59]. Our observations are also
in agreement with those described by Suzuki et al. who showed that two phenoxazine
derivatives, VM7 and VM8, inhibited autophagosome formation and induced cell death on
tumor cells and normal human cells [20].

To the best of our knowledge, this is the first report in the literature regarding the in-
volvement of VMP and Pep4p in a cell death process induced by a benzo[a]phenoxazine
derivative.

The assessment of BaP1 cellular distribution in low doses revealed that the compound
stains the ER and the vacuolar membrane. In this context, BaP1 arises as a suitable molecule
to be used as a fluorescent probe for ER and vacuole co-localization experiments. This is
reinforced by BaP1’s great photophysical characteristics, such as its emission in the Far-Red
region, where background interference caused by the biological material is minimal, as
well as presenting high photostability, molar absorption, and modest stoke shift [26,27].
In contrast, at higher doses, capable of inducing loss of cell viability, BaP1 changes its
staining profile as it loses its Far-Red vacuolar and ER staining specificity, probably due
to the depolarization of the membranes [62], presenting a more diffuse staining pattern,
accompanied by green and blue lipid droplets’ fluorescence stain. However, our results
show that there is not a direct correlation between BaP1 cell death induction and its
accumulation on LDs, as a yeast strain with reduced accumulation of LDs showed no
differences in viability when compared with the wild-type strain. This is in accordance
with other observations where compounds of this family were reported to stain these
lipidic structures [63–65].

Overall, our data show the huge versatility of this compound. Its fluorescence stain-
ing pattern together with its photophysical properties highlight BaP1 as an endorsed
fluorescent probe for biological applications.

On the other hand, BaP1 shows immense potential to be explored not only as an
antifungal but also in other pharmacological applications. Phenoxazine compounds have
grown as molecules of great interest in anticancer therapy [18–23,66] as well as antibac-
terial [67,68] and antiviral agents [69]. In this perspective, BaP1’s vacuolar membrane-
permeabilizing capacity could emerge as a promising therapeutical approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7110971/s1, Figure S1 Effect of BaP1 on mitochondrial membrane potential; Figure S2
Effect of BaP1 on ROS production; Figure S3 Effect of BaP1 on intracellular calcium accumulation;
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on plasma membrane integrity; Figure S6 BaP1 intracellular distribution in lipid droplets mutants.
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