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ABSTRACT The combination of experimental evolution with high-throughput sequencing of pooled
individuals—i.e., evolve and resequence (E&R)—is a powerful approach to study adaptation from standing
genetic variation under controlled, replicated conditions. Nevertheless, E&R studies in Drosophila mela-
nogaster have frequently resulted in inordinate numbers of candidate SNPs, particularly for complex traits.
Here, we contrast the genomic signature of adaptation following �60 generations in a novel hot environ-
ment for D. melanogaster and D. simulans. For D. simulans, the regions carrying putatively selected loci
were far more distinct, and thus harbored fewer false positives, than those in D. melanogaster. We
propose that species without segregating inversions and higher recombination rates, such as D. simulans,
are better suited for E&R studies that aim to characterize the genetic variants underlying the adaptive
response.
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Standing genetic variation in natural populations underlies their po-
tential to adapt to novel environments. The evolve and resequence
(E&R) approach (Turner et al. 2011), which combines experimental
evolution with sequencing of pooled individuals (Pool-Seq)
(Schlötterer et al. 2014), provides an excellent opportunity to under-
stand how this standing genetic variation is being used to fuel adapta-
tion of the evolving populations (Schlötterer et al. 2015; Long et al.
2015). Because experimental evolution permits the analysis of replicate
populations, which have evolved from the same standing genetic var-
iation under identical culture conditions, it is possible to distinguish
selection from random, nondirectional changes (Kawecki et al. 2012;
Schlötterer et al. 2015).

A short generation time and high levels of polymorphism, in
combination with a small, well-annotated genome, has madeDrosophila

melanogaster the preferred sexual model organism to study the genomic
response to truncating selection. Many traits such as aging (Remolina
et al. 2012), courtship song (Turner et al. 2013), hypoxia (Zhou et al.
2011; Jha et al. 2016), body size (Turner et al. 2011), egg size (Jha et al.
2015), development time (Burke et al. 2010; Graves et al. 2017), and
Drosophila C virus (DCV) resistance (Martins et al. 2014) have already
been studied. The E&R approach has also been applied to laboratory
natural selection experiments, in which differential reproductive success
is the sole driver of adaptation to novel environments such as elevated
temperature (Orozco-terWengel et al. 2012; Tobler et al. 2014; Franssen
et al. 2015) and high cadmium and salt concentration (Huang et al.
2014). For traits with a simple genetic basis, such as DCV resistance,
E&R has identified causal genes (Martins et al. 2014); on the other hand,
identification of the genetic basis of polygenic traits has been consider-
ably more challenging because of the large size of the genomic regions
that have been identified (Burke et al. 2010; Turner et al. 2011; Zhou et al.
2011; Orozco-terWengel et al. 2012; Remolina et al. 2012; Tobler et al.,
2014). These genomic regions often contain a substantial number of
candidate SNPs that are mostly false positives (Nuzhdin and Turner
2013; Tobler et al. 2014; Franssen et al. 2015). The inflated numbers
of false positives can be partly attributed to linkage disequilibrium (LD)
and long-range hitchhiking caused by low frequency adaptive alleles
(Tobler et al. 2014; Franssen et al. 2015). Other important factors con-
tributing to the large number of false positives include (1) reduced re-
combination rates close to the centromeres, and (2) the presence of large
chromosomal inversions that suppress recombination and occasionally
also respond to selection (Kapun et al. 2014).
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D. simulans, a sister species of D. melanogaster, lacks large segre-
gating inversions (Aulard et al. 2004), has higher recombination rate,
and the centromeric recombinational suppression is restricted to amuch
smaller part of the chromosomes (True et al. 1996). These characteristics
make D. simulans potentially more suitable for E&R studies (Kofler and
Schlötterer 2014; Tobler et al. 2014). While the availability of genomic
and functional resources is not comparable toD.melanogaster, improved
genome assemblies and annotations are available for D. simulans (Hu
et al. 2013; Palmieri et al. 2015).

In this studywe contrast the genomic response of aD. simulansE&R
study spanning 60 generations to D. melanogaster populations that
have been evolving for the same length of time in the same hot tem-
perature environment. Consistent with the absence of segregating in-
versions and higher recombination rate, the selection signatures in
D. simulans result in substantially smaller genomic regions carrying
putatively selected variants.

MATERIALS AND METHODS

D. simulans experimental populations and
selection regimes
202 isofemale lines were established from a natural D. simulans pop-
ulation collected in Tallahassee, Florida in November 2010. The iso-
female lines were maintained in the laboratory for nine generations
prior to the establishment of the founder populations to rule out infec-
tions and determine the species. Five mated females from each isofe-
male line were used to establish 10 replicates of the founder population,
three of which were used in our study. They were maintained as in-
dependent replicates with a census population size of 1000 and�50:50
sex ratio. Both temperature and light was cycled every 12 hr between
18 and 28�, corresponding to night and day.

Genome sequencing, mapping, and SNP calling
of D. simulans data
GenomicDNAwas prepared for three founder replicates (females only)
and three replicates of the evolved populations at generation 60 (mixed
sexes). Details of DNA extraction and library preparation are summa-
rized in Supplemental Material, Table S1. The average genome-wide
sequence coverage across the founder and evolved population replicates
was �259· and �100·, respectively.

Reads were trimmed using ReadTools version 0.2.1 (https://github.
com/magicDGS/ReadTools) to remove low quality bases (Phred
score ,18) at 39 end of reads (parameters: --minimum-length 50 --no-
5p-trim --quality-threshold 18 --no-trim-quality). The trimmed reads
were mapped using bwa (version 0.5.8c; aln algorithm; parameters: -o
1 -n 0.01 -l 200 -e 12 -d 12) (Li and Durbin 2009) to the D. simulans
reference genome (Palmieri et al. 2015) on aHadoop cluster withDistmap
version 1.0 (Pandey and Schlötterer 2013). Reads in the bam files were
sorted and duplicates were removed with Picard version 1.140 (http://
broadinstitute.github.io/picard). Reads with low mapping quality and im-
proper pairing were removed (parameters: -q 20 -f 0x0002 -F 0x0004 -F
0x0008) and the bam files were converted tompileup files using SAMtools
version 1.2 (Li et al. 2009). The mpileup files were converted to a syn-
chronized pileup file using PoPoolation2 (parameter: --min-qual 20)
(Kofler et al. 2011). Furthermore, repeats (identified by RepeatMasker,
http://www.repeatmasker.org) and 5-bp regions flanking indels (identified
by PoPoolation2: identify-genomic-indel-regions.pl --indel-window 5
--min-count 5) were masked using PoPoolation2 (identify-indel-regions.
pl --min-count 2% of the average coverage across all founder libraries).

SNPswere called from the founder populations; in brief, initially the
SNPswithminimumbasequalityof 40present in at least one replicateof

the three founder populations were selected for further analyses. To
improve the reliability of the pipeline, the polymorphic sites lying in the
upper and lower 1% tails of the coverage distribution (i.e., $423·
and#11·, respectively; upper tail based on the library with the high-
est sequencing depth, lower tail estimated from total coverage of all
replicates and time points) were removed. Further, we masked
200-bp flanking SNPs specific to autosomal genes translocated to
the Y chromosome (R. Tobler, V. Nolte, and C. Schlötterer, unpub-
lished data). In total, 4,391,296 SNPs on chromosomes 2 and 3
were used for subsequent analysis [644,423 SNPs on X chromosome
were used for effective population size (Ne) estimation but were
excluded from other analyses, see below]. For all SNP sites remain-
ing after the filtering steps, we determined the allele frequencies
using only reads with a quality score of at least 20 at the SNP
position.

Genome sequencing and mapping
of D. melanogaster data
The D. melanogaster data used in this study are part of an ongoing
experiment (founder population from Orozco-terWengel et al. 2012;
F59 populations from Franssen et al. 2015). Similar to D. simulans,
temperature and light was cycled every 12 hr between 18 and 28�,
corresponding to night and day. To increase the coverage of libraries
for the founder populations, additional sequencing was performed (see
Table S1 for details of DNA extraction and library preparation). The
final average genome-wide coverage of the founder and evolved pop-
ulations was�190· and�83·, respectively. Read processing andmap-
ping are described in Tobler et al. (2014). Similar to the D. simulans
data set, SNPs were called from the base population with base quality of
40. Then, SNPs lying in the upper and lower 1% tails of the coverage
distribution (i.e.,$328· and#9·, respectively; upper tail based on the
library with the highest sequencing depth, lower tail estimated sepa-
rately from total coverage of all replicates and time points) were re-
moved. 2,934,945 SNPs on chromosomes 2 and 3 were used for further
analyses. SNPs on the X chromosome (408,982) were only used for Ne

estimation. Allele frequencies were determined based on reads with
base quality of at least 20.

Candidate SNP inference in D. simulans and
D. melanogaster
To compare the selected genomic regions between D. simulans and
D. melanogaster, the sequencing reads were downsampled using Picard
(DownsampleSam, http://broadinstitute.github.io/picard) to obtain
similar mean genome-wide coverage of the libraries in both species
(Table S2). To identify SNPs with pronounced allele frequency changes
(AFC), we contrasted the founder and evolved populations (at gener-
ation 60 for D. simulans and 59 for D. melanogaster) using the
Cochran–Mantel–Haenszel (CMH) test (Agresti 2002). For each spe-
cies, we estimatedNe in windows of 1000 SNPs across all chromosomes
and replicates using Nest (function estimateWndNe, method Np.planI;
Jónás et al. 2016). Averaging the medians of the Ne values across rep-
licates, we obtained the Ne estimate for autosomes and the X chromo-
some of each species. The estimated Ne for the X chromosome (Ne =
224) was approximately three-quarters of autosomes (Ne = 285) in
D. simulans, whereas in D. melanogaster, the Ne of the X chromosome
(Ne = 301) was 1.5 times higher than that of the autosomes (Ne = 201).
This discrepancy in D. melanogaster has been noted before
(Orozco-terWengel et al. 2012; Jónás et al. 2016) and has been
attributed to an unbalanced sex ratio, background selection, and a larger
number of SNPs being affected by selection on the autosomes. Because it
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is not clear whether these pronounced differences reflect differences in
selection or mating patterns, we excluded the X chromosome from the
analysis. Since the CMH test does not account for drift, we inferred
candidate SNPs by simulating drift based on the inferred autosomal Ne

estimates and determined an empirical CMH cutoff using a 2% false
positive rate. Forward Wright–Fisher simulations were performed with
independent loci using Nest (function wf.traj; Jónás et al. 2016). The
simulation parameters (i.e., number of SNPs, allele frequencies in the
founder populations, coverage of libraries, Ne, and number of replicates
and generations) matched the experimental data. To infer the genomic
regions under selection, we computed the average p-value of all

candidate SNPs (above the empirical CMH cutoff: 31 for D. simu-

lans and 27.32 for D. melanogaster) in 200-kb sliding windows with

100-kb overlap. Adjacent windows with the average p-value above

the CMH cutoff were merged.

Data availability
The raw reads for all populations are available from the European
Sequence Read Archive under the accession numbers mentioned in

Table S1. SNP data sets in sync format (Kofler et al. 2011) are available

from the Dryad Digital Repository under http://dx.doi.org/10.5061/

dryad.p7c77.

Figure 1 Allele frequency distribution of candidate SNPs averaged across replicates in (A) D. simulans and (B) D. melanogaster. Founder
population (top panels), generation 60/59 (middle panels), and frequency change (bottom panels) of candidate SNPs. Candidate SNPs were
determined from an empirical 2% false positive rate determined by neutral simulations assuming no linkage.
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RESULTS
Three replicates of a D. simulans founder population were maintained
in a hot temperature environment for 60 nonoverlapping generations.
We sequenced pooled individuals of the three founder populations and
three evolved populations, and compared these data toD.melanogaster,
which evolved for 59 generations under the identical selection regime
(Orozco-terWengel et al. 2012; Franssen et al. 2015). SNPs with pro-
nounced AFC across the three replicates were identified with the CMH
test by contrasting the founder and evolved populations of each species.
While the CMH test is a powerful tool for identifying putative targets of
selection (Kofler and Schlötterer 2014), it is not sufficient for determin-
ing which outlier loci are deviating from neutral expectations. Conse-
quently, we estimated the Ne for each species based on genome-wide
AFC between founder and evolved populations (Jónás et al. 2016). We
then performed neutral simulations with the predicted Ne for auto-
somes to derive an empirical CMH cutoff based on a 2% false positive
rate. We identified 918 candidate SNPs in D. simulans; whereas in
D. melanogaster, 11,115 SNPs were identified as outliers (Figure 1
and Figure 2). In both species, the majority of candidate SNPs start
from a low frequency. D. melanogaster has more SNPs starting at in-
termediate frequencies that reach higher frequencies after 59 genera-
tions (Figure 1). Nonetheless, despite the rapid frequency change in
response to the hot environment, only a small fraction of candidate
SNPs (1.2% in D. simulans and 6.3% in D. melanogaster) approached
fixation (major allele frequency $0.9) after 60 generations.

Neutral SNPs linked to a target of selection change their frequencies
more than expected by chance, which results in a characteristic peak
structure observed in Manhattan plots. Such selection peaks can be

recognized above the dotted line, which separates candidate SNPs in
D. simulans based on the empirical 2% false positive rate from non-
selected SNPs (Figure 2, upper panel). Visual inspection of the Man-
hattan plots for both species revealed that D. simulans had narrower
and more distinct peak structures than D. melanogaster (Figure 2).
While a pronounced peak structure narrows the genomic region af-
fected by selection, a peak also indicates that SNP-based analyses are
not informative and can bemisleading: many nonselected SNPs show a
selection signature due to linkage with the target of selection. Thus, the
identification of peak structures is a prerequisite for determining selec-
tion targets. To this end, we explored several peak finding procedures
(e.g., Futschik et al. 2014; Beissinger et al. 2015), but complex selection
signatures in our data sets makes this a challenging task, even for
D. simulans which has much clearer peak structures. One of the chal-
lenges we encountered in our efforts to separate distinct peaks was that
very narrow peaks were not recognized due to too few candidate SNPs.
We therefore employed an approximate method to determine the frac-
tion of the genome affected by selection. Averaging the p-value of all
candidate SNPs in 200-kb sliding windows, we distinguished between
regions influenced by directional selection from those evolving neu-
trally (Figure 3 and Figures S1 and S2 in File S1). Using this method, we
detected 46 peaks covering �22.6 Mb (25.3% of chromosomes 2 and
3 of the reference genome) in D. simulans, and 31 peaks covering 84.4
Mb (87.4%) in D. melanogaster. Particularly striking is the difference
between the two species on chromosome 3R, which contains three
segregating, overlapping inversions [In(3R)Payne, In(3R)Mo, and
In(3R)C] in the D. melanogaster population (Kapun et al. 2014). Al-
most the entireD.melanogaster 3R chromosome was characterized as a

Figure 2 The genomic distribution of candi-
date SNPs in D. simulans (top panel) and
D. melanogaster (bottom panel): The Manhattan
plots show the negative log10-transformed p-val-
ues of SNPs corresponding to the genomic po-
sitions. The p-values were determined using
CMH test by comparing the founder and
evolved populations using the same sequencing
coverage for both species. The dotted lines
show the CMH cutoff based on empirical 2%
false positive rate determined by neutral simula-
tions assuming no linkage. Because the relative
Ne estimates of X chromosomes and autosomes
were nonconcordant between both species, we
did not determine outlier SNPs for the X
chromosome.
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genomic region affected by selection, while in D. simulans several dis-
tinct peaks could be recognized (Figure 3). Moreover, in chromosome
2 ofD. melanogaster, the regions near the centromere spanning to both
chromosome arms contained numerous candidate SNPs forming
broad peaks, probably due to a reduced recombination in this region
(Figure 2, Figure 3, and Figure S1 in File S1).

DISCUSSION
The different genomic signatures of D. simulans and D. melanogaster
induced by adaptation to high temperature can be attributed to species-
specific characteristics and the design of the experimental study. Fac-
tors such as chromosomal inversions and low recombination regions
can be associated with broad genomic regions determined to be under
selection in D. melanogaster. Large chromosomal inversions are com-
mon in natural D. melanogaster populations, suppressing recombina-
tion over extensive genomic regions (Kirkpatrick 2010). In the
D. melanogaster experimental populations, these inversions have con-
tributed in two ways to the large number of observed candidate SNPs:
first, the suppression of recombination has resulted in the association of
SNPs effectively across entire chromosomes—even under the influence
of drift alone. Second, inversion In(3R)C showed a consistent increase
in frequency across multiple replicates, suggesting that it harbors, or is
linked to, some selection targets (figure 4 in Kapun et al. 2014), exac-
erbating the impact of the inversions on chromosome 3R. On top of
this, in D. melanogaster large parts of the chromosomes are affected by

the reduced recombination rate toward the centromeres (True et al.
1996 and Comeron et al. 2012). Consistent with low recombination
affecting the selection signature, we observed a broad peak near the
centromere in chromosome 2 spanning both chromosome arms (Fig-
ure 2, bottom panel; Figure 3; and Figure S1 in File S1). The impact of
recombination was also noted previously (Franssen et al. 2015), where
low recombination regions were associated with high LD (1–10Mb) in
a D. melanogaster experimental evolution data set.

Because the selection signature inD. melanogaster extends to linked
neutral SNPs over large genomic regions, almost no specific selected
targets could be distinguished. However, several regions with presum-
ably distinct selection targets could be identified forD. simulans (Figure
2 and Figure 3), a species that lacks large segregating inversions (Aulard
et al. 2004) and has a 1.3· higher genome-wide recombination rate,
with a much less pronounced recombination depression close to cen-
tromeres and telomeres (True et al. 1996). Contrasting the patterns of
nucleotide polymorphism in natural populations of both species (Nolte
et al. 2013), the difference in recombination landscape between
D. melanogaster and D. simulans is evident (Figures S3–S6 in File
S1), suggesting the smaller genomic region with suppressed recom-
bination toward the centromeres in D. simulans contributes to a
clearer selection signature.

In D. melanogaster, it has been proposed that LD and long-range
hitchhiking caused by low frequency adaptive alleles result in a large
number of false positive candidate SNPs (Tobler et al. 2014; Franssen

Figure 3 Identification of selected regions on two chromosome arms: Manhattan plots of chromosome arms 2R (left panels) and 3R (right panels)
are shown for D. simulans (top panels) and D. melanogaster (bottom panels). The CMH p-values of candidate SNPs (black dots) were averaged
across 200-kb windows, over sliding intervals every 100 kb. Adjacent windows with average p-values above CMH cutoffs (see Materials and
Methods) were merged (red lines). Boundaries of the inversion in 2R [In(2R)Ns] are shown in dashed lines. Three overlapping inversions in 3R, i.e.,
In(3R)Payne, In(3R)Mo, and In(3R)C are indicated with dashed, dotted, and solid lines, respectively.
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et al. 2015). TheD. simulans founder population hadmore LD than the
D.melanogaster population (D. Gómez-Sánchez, R. Poupardin, V. Nolte,
and C. Schlötterer, unpublished data; Figure S7 in File S1), which
is most likely a consequence of their different demographic histories
(Hamblin and Veuille 1999 and the references therein). This in-
creased LD is expected to have the opposite effect, resulting in a
higher mapping accuracy in D. melanogaster. However, our results
indicate that despite higher LD in D. simulans, the genomic regions
under selection in this species are still narrower than inD. melanogaster.
One alternative explanation for the difference in mapping resolution of
D. melanogaster and D. simulansmay be that the genetic architecture of
adaptation differs between the two species. Nevertheless, we consider this
unlikely. First, most of the candidates in both D. melanogaster and
D. simulans (Figure 1) start from low frequency, indicating that selection
is acting on rare variants in both species. Hence, it is not likely that the
selected alleles occurring at lower frequency in D. melanogaster would
result inmore hitchhiking of linked variants than inD. simulans. Second,
in natural populations the genetic architecture seems to be similar be-
tween the two species. In North America and Australia, parallel clines
have been described for D. simulans and D. melanogaster (Reinhardt
et al. 2014; Zhao et al. 2015; Machado et al. 2016; Sedghifar et al. 2016).
Remarkably, more genes share the pattern of clinal variation in both
species than expected by chance (Reinhardt et al. 2014; Machado et al.
2016; Sedghifar et al. 2016). Furthermore, several clinal genes were
also differentially expressed at high and low temperatures in both
D. melanogaster and D. simulans (Zhao et al. 2015). While the strength
and stability of the clines differ betweenD.melanogaster andD. simulans,
the observation that both species share genes with clinal variation and
differential expression in response to temperature treatment, strongly
suggests that there are similarities in the genomic architecture of tem-
perature adaptation between both species.

Computer simulations indicated that the mapping accuracy in-
creases with the number of founder chromosomes (Baldwin-Brown
et al. 2014; Kofler and Schlötterer 2014; Kessner and Novembre
2015). The founder population of D. melanogaster encompassed only
113 isofemale lines, while the D. simulans experiment was started from
202 isofemale lines. Notably, while it is difficult to determine to what
extent the various factors have contributed to the higher resolution of
theD. simulans E&R study, the presence of distinct peaks inD. simulans
suggests that the large segregating chromosomal inversions, low recombi-
nation rate, and, likely, fewer founder chromosomes, among other factors,
contributed most to the low resolution of the D. melanogaster E&R
experiment.

While the higher recombination rate inD. simulans and the absence
of segregating inversions support our observation thatD. simulansmay
be better suited for E&R studies thanD.melanogaster, it is important to
keep inmind that we tested only a single selection regime, and for other
traits D. melanogaster may have a cleaner selection response. While
possible, we do not consider this very likely because other studies
selecting for different traits in D. melanogaster also identified a large
number of loci deviating from neutral expectations (Burke et al. 2010;
Turner et al. 2011; Zhou et al. 2011; Orozco-terWengel et al. 2012;
Remolina et al. 2012; Tobler et al. 2014).

Our results show that using inversion-free D. simulans with low
recombination depression toward the centromeres improves the reso-
lution of E&R studies, resulting in identification of narrower and more
precise genomic regions under selection than in D. melanogaster
(Orozco-terWengel et al. 2012; Tobler et al. 2014; Franssen et al.
2015). Even though the selection signatures in D. simulans were sub-
stantially more distinct than those in D. melanogaster, we caution that
subsequent characterization of the selection targets is still challenging.

More refined methods need to be developed that separate the selection
signatures from adjacent targets of selection by accounting for the dif-
ferences in starting frequencies of the SNPs and selection intensities.
Thus, the comparison of selection targets between both species is not
informative unless at least for one species the target of selection can be
further narrowed down using, for example, expression profiling in
combination with Pool-Seq selection signatures. Furthermore, im-
provements in the experimental design, e.g., using more replicates
and more founder chromosomes (Baldwin-Brown et al. 2014; Kofler
and Schlötterer 2014; Kessner and Novembre 2015) can further in-
crease the accuracy of mapping the selected targets.
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