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Abstract

Species of colourful arboreal snails of the genus Amphidromus from Southeast Asia com-

monly exhibit high intraspecific variation in shell morphology. Although highly polymorphic

Amphidromus specimens with different colouration have been collected at the same locality

and were revealed to possess similar genital organs, there is yet no morphometric or DNA

analyses of these different shell morphs. This study is the first to reveal that both striped and

stripeless morphs of A. cruentatus from Laos and Vietnam belong to the same mitochondrial

(COI and 16S rRNA) lineage. Although the shell colouration between the striped and stripe-

less morphs is markedly different, morphometric and shell outline-based analyses indicated

an overall similarity in shell shape. We also revised the systematics of A. cruentatus, in

which we treated similar related species, namely A. eudeli, A. fuscolabris, A. thakhekensis,

A. gerberi bolovenensis, A. goldbergi, A. pengzhuoani, A. eichhorsti and A. pankowskiae as

junior synonyms of A. cruentatus. Amphidromus daoae, A. anhdaoorum, A. stungtrengen-

sis, A. yangbayensis and A. yenlinhae, which were formerly regarded as junior synonyms,

are considered as species different from A. cruentatus based on shell morphology and mor-

phometric analyses. Preliminary phylogenetic analyses also retrieved some Amphidromus

species groups as distinct mitochondrial lineages.

Introduction

Southeast Asia, while facing dramatic biodiversity loss, still harbors an exceptionally high

degree of biodiversity and endemism among its terrestrial fauna [1–3]. Land snails are one

such group that has begun to gain more attention from local researchers, and its diversity has
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been recently revealed by molecular phylogenetics [4–6]. The arboreal snail genus Amphidro-
mus Albers, 1850 is one of the most diverse groups of colorful tree-dwelling snails, but its

molecular systematics has not yet been studied intensively. This genus has a distribution rang-

ing from Southern China in the north, covering most of the Southeast Asian mainland, and is

limited by Weber’s Line in the southeast [7], with an exceptional single species reported from

Northern Australia [8]. Most Amphidromus species are known only from shell characters, and

exhibit extremely high intraspecific and interspecific variation of shell colouration [7, 9, 10].

Internal anatomical features have been described for a few species and are regarded as more

informative in developing hypotheses on systematic relationships [9–11].

A recent revision of A. fuscolabrisMöllendorff, 1898 from Laos revealed that two distinct

shell morphs found in sympatry had identical genitalia [9]. The first morph [9: figs 9e, 13j, k]

exhibited a shell closely similar to the holotype [9: fig. 13i]. The second morph was mono-

chrome yellowish in colour [9: figs 9f, 13l, m] and closely similar to A. cruentatus (Morelet,

1875) [12: fig. 6f]. Amphidromus eudeli Ancey, 1897, another species described from Binh

Dinh, Annam, and which is similar to A. fuscolabris, has so far been accepted as a distinct spe-

cies [7, 9, 13].

In the past decade, several Amphidromus species similar to A. cruentatus, A. eudeli and A.

fuscolabris have been described from Laos and Vietnam [14–19]. This has led to some argu-

ments both for and against synonymization of these taxa. Amphidromus thakhekensis Thach &

Huber, 2017 was firstly treated as a synonym of A. fuscolabris [20]. Later, A. daoae Thach, 2016

and A. daoae robertabbasi Thach, 2017 were synonymized with A. cruentatus; A. yangbayensis
Thach & Huber, 2016 and A. yenlinhae Thach & Huber, 2017 with A. eudeli; and A.

anhdaoorum Thach, 2017, A. goldbergi Thach & Huber, 2018, A. pengzhuoani Thach, 2018,

and A. stungtrengensis Thach & Huber, 2018 with A. fuscolabris [13]. However, some argu-

ments against these synonymizations were provided in defense of the validity of these recently

described taxa [18, 21, 22].

The conflict in treating the status of those Amphidromus taxa either as synonyms or valid

species has occurred because Amphidromus commonly exhibits intraspecific shell variability

[9–11]. This conflict is also caused by the adoption of different species concepts; some authors

followed the typological species concept [23] and examined only shell-based morphology,

while disregarding other lines of evidence and not taking meaningful estimates of intraspecific

diversity into account. In order to resolve this conflict, we treat species as scientific hypotheses

and test their biological status against well-defined criteria. Therefore, we apply an integrative

approach, combining morphometric and molecular phylogenetic analyses to scrutinize the

taxonomic status of A. cruentatus, A. eudeli, A. fuscolabris and those conchologically similar

nominal species.

Materials and methods

Specimen preparation

This study is mainly based on shells and preserved specimens from Laos and Vietnam, and

type specimens of A. cruentatus and conchologically similar nominal species (Figs 1–4,

Table 1). Three shell morphs of newly collected specimens were discriminated following

Inkhavilay et al. [9] and Sutcharit et al. [12]: (1) the monochrome yellow stripeless morph of

“A. cruentatus” collected from Samphanh, Phongsali, Laos (Figs 2A and 3A–3C), (2) the

striped morph of “A. fuscolabris” collected from the same locality (Figs 2B and 3D–3F), and (3)

the striped morph of “A. eudeli” collected from Chu Prong, Gia Lai, Vietnam (Figs 2C and

3G–3I). At each collecting site, the specimens were collected within an area of approximately

100 m2. Additional voucher specimens of A. fuscolabris from Ban Phone, La-Marm, Sekong
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(Fig 4A–4D) and Ban Xai Na Pho, Phatumphone, Champasak, Laos (Fig 4E and 4F) from the

collection of Chulalongkorn University Museum of Zoology (CUMZ), containing both striped

and stripeless morphs [9] were also included in this study. Shells of A. atricallosus (Gould,

1843) and A. inversus (Müller, 1774) from Myanmar, Thailand and Malaysia were included for

comparison in the morphometric analysis (Table 1).

Living specimens were placed in a -20˚C freezer and subsequently transferred to 95% etha-

nol following the two-step method for euthanasia [24]. All specimens were compared with the

relevant type specimens. The type locality provided is from the original publication in the orig-

inal wording and language. If possible, the modern name and/or regional names of the type

locality are provided in square brackets. The newly obtained specimens were deposited as

vouchers in the National Museum of Natural Science of Taiwan (NMNS).

Fig 1. Occurrence records of Amphidromus cruentatus examined in this study. No. 1: Samphanh, Phongsali, Laos;

2: Ban Phone, La-Marm, Sekong, Laos; 3: Ban Xai Na Pho, Phatumphone, Champasak, Laos; 4: Chu Prong, Gia Lai,

Vietnam; 5: Binh Dinh, Vietnam, type locality of A. eudeli; 6: Thakhek, Khammouane, Laos, type locality of A.

thakhekensis; 7: Naoh, Boloven Plateau, Attapeu, Laos, type locality of A. gerberi bolovenensis; 8: Salavan, Laos, type

locality of A. goldbergi; 9: Luang Namtha, Laos, type locality of A. pengzhuoani; 10: Northwestern District, Khánh Hòa,

Vietnam, type locality of A. pankowskiae. Orange shaded area indicates Boloven Plateau, type locality of A. fuscolabris.
The type localities of A. cruentatus and A. eichhorsti (Cambodia and North Laos, respectively) are general and not

indicated in the figure. The map was produced using QGIS (3.16.0) with SRTM Downloader plugin (https://github.

com/hdus/SRTM-Downloader), retrieving SRTM data from NASA Earth Data server (https://urs.earthdata.nasa.gov/).

https://doi.org/10.1371/journal.pone.0272966.g001
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Molecular phylogenetic analysis

Mitochondrial COI and 16S sequences were obtained from eight specimens of stripeless “A.

cruentatus” and nine specimens of striped “A. fuscolabris” from Samphanh, Laos, and three

specimens of striped “A. eudeli” from Chu Prong, Vietnam (S1 Table). Genomic DNA was

extracted from foot tissue of snails using CTAB method [25]. Fragments of mitochondrial

cytochrome c oxidase subunit 1 (CO1) and large ribosomal RNA (16S) were amplified using

universal primers LCO1490 and HCO2198 for COI [26] and 16Sar and 16Sbr for 16S [27].

The PCR protocol followed Huang et al. [28]. PCR products were checked via gel electropho-

resis and sequenced by Genomics or Mission Biotech (Taiwan). Sequences were checked man-

ually using BioEdit version 7.2.6 [29], and primer sequences were trimmed before alignment.

Fig 2. Type specimens of Amphidromus cruentatus. A. Holotype of Bulimus cruentatus, NHMUK 1893.2.4.163; B. Holotype of A.

zebrinus fuscolabris, SMF 7641; C. Syntype of A. eudeli, RBINS 617427; D. Holotype of A. thakhekensis, MNHN-IM-2000-33216; E.

Holotype of A. gerberi bolovenensis, MNHN-IM-2000-34074; F. Holotype of A. goldbergi, MNHN-IM-2000-34073; G. Holotype of A.

pengzhuoani, NHMUK. 20180243; H. Holotype of A. eichhorsti, MNHN-IM-2000-35554; and I. Holotype of A. pankowskiae,
MNHN-IM-2000-35543. Credit: V. Héros, P. Maestrati (D–F, H, I).

https://doi.org/10.1371/journal.pone.0272966.g002
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We incorporated DNA sequences of other Amphidromus species available in GenBank [30–

33] into the dataset (S1 Table). Sequences of Camaena cicatricosa (Müller, 1774) (type species

of Camaena), C. poyuensis Zhou, Wang & Ding, 2016 and Trichelix hiraseana (Pilsbry, 1905)

(Camaeninae), and Cornu aspersum (Müller, 1774) (Helicidae) were also retrieved [34, 35] and

used as outgroup.

Multiple sequence alignment was conducted using ClustalW [36] implemented in BioEdit.

Maximum likelihood (ML) phylogeny of the concatenated dataset was reconstructed using

IQTREE webserver (http://iqtree.cibiv.univie.ac.at) with integrated ModelFinder function

[37–39]. One hundred thousand replicates of ultrafast bootstrap approximation were con-

ducted using UFBoot [40], and the Shimodaira and Hasegawa-approximate likelihood-ratio

(SH-aLRT) test and the approximate Bayes (aBayes) test [41] were also conducted in order to

assess the support for nodes of phylogeny. Kakusan4 [42] was implemented to prepare the

Fig 3. Specimens of Amphidromus cruentatus. A–C. Stripeless morph and D–F. striped morph from Samphanh, Phongsali, Laos;

G–I. Striped morph from Chu Prong, Gia Lai, Vietnam.

https://doi.org/10.1371/journal.pone.0272966.g003
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Fig 4. Specimens of Amphidromus cruentatus and type specimens of other nominal Amphidromus species. A–F. Specimens of

A. cruentatus; A, B. Stripeless morph and C, D. striped morph from Ban Phone, La-Marm, Sekong, Laos; E. Stripeless morph and

F. striped morph from Ban Xai Na Pho, Phatumphone, Champasak, Laos; G. Holotype of A. daoae, RMNH.5004201; H. Holotype

of A. yangbayensis, MNHN-IM-2000-32435; I. Holotype of A. yenlinhae, MNHN-IM-2000-33230; J. Holotype of Amphidromus
stungtrengensis, MNHN-IM-2000-34084; and K. Holotype of A. anhdaoorum, MNHN-IM-2000-33232. Credit: J. Goud (G), V.

Héros, P. Maestrati (H–K).

https://doi.org/10.1371/journal.pone.0272966.g004
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concatenated dataset with the best-fitting model adjustment for Bayesian inference (BI) analy-

ses. The BI analysis was performed with the best-fitting models of each gene fragment and

each codon position of COI using MrBayes on XSEDE v.3.2.6 [43] in the CIPRES Science

Gateway [44]. Two independent analyses were run simultaneously, each consisting of four

chains of 10 million generations. The sampling rate was 500 generations, and the first 50% of

Table 1. List of Amphidromus specimens used in morphometric analyses.

Species Locality Voucher number No. of specimen and

chirality

Figure

A. cruentatus Samphanh, Phongsali, Laos NMNS-8476-034 to NMNS-8476-051 (stripeless morph) 18S Fig 3A–3C

NMNS-8476-001 to NMNS-8476-033 (striped morph) 33S Fig 3D–3F

Ban Phone, La-Marm, Sekong, Laos CUMZ 7042 (stripeless morph) 20S Fig 4A and

4B

CUMZ 7040 (striped morph) 20S Fig 4C and

4D

Ban Xai Na Pho, Phatumphone,

Champasak, Laos

CUMZ 7044/2 (stripeless morph) 1S Fig 4E

CUMZ 7044/1 (striped morph) 1S Fig 4F

Chu Prong, Gia Lai, Vietnam NMNS-8476-052 to NMNS-8476-066 (striped morph) 15S Fig 3G–3I

Cambodia Holotype NHMUK 1893.2.4.163 1S Fig 2A

near Binh Dinh, Vietnam Syntype of A. eudeli Ancey, 1897, RBINS 617427 1S Fig 2C

Boloven Plateau, Paksong, Champasak, Laos Holotype of A. zebrinus fuscolabrisMöllendorff, 1898, SMF

7641

1S Fig 2B

Thakhek, Khammouane, Laos Holotype of A. thakhekensis Thach & Huber, 2017,

MNHN-IM-2000-33216

1S Fig 2D

Naoh, Attapeu, Laos Holotype of A. gerberi bolovenensis Thach & Huber, 2018,

MNHN-IM-2000-34074

1S Fig 2E

Salavan, Laos Holotype of A. goldbergi Thach & Huber, 2018, MNHN-IM-

2000-34073

1S Fig 2F

Luang Namtha, Laos Holotype of A. pengzhuoani Thach, 2018, NHMUK 20180243 1S Fig 2G

North Laos Holotype of A. eichhorsti Thach, 2020, MNHN-IM-2000-

35554

1S Fig 2H

Northwestern District of Khánh Hòa,

Vietnam

Holotype of A. pankowskiae Thach, 2020, MNHN-IM-2000-

35543

1S Fig 2I

A. daoae Ea Tu Commune, Banmethuot City, Dak

Lak, Vietnam

Holotype RMNH.5004201 1S Fig 4G

A. yangbayensis Yangbay, Khanh Vinh, Vietnam Holotype MNHN-IM-2000-32435 1S Fig 4H

A. yenlinhae Mangto, North of La Nga River, Binh

Thuan, Vietnam

Holotype MNHN-IM-2000-33230 1S Fig 4I

A.

stungtrengensis
Stung Treng, Cambodia Holotype MNHN-IM-2000-34084 1S Fig 4J

A. anhdaoorum Krong Bong, Daklak, Vietnam Holotype MNHN-IM-2000-33232 1S Fig 4K

A. atricallosus Buddha Cave, Lenya, Tanintharyi,

Myanmar

CUMZ 5277 6D+3S -

Kui Buri, Prachuap Khiri Khan, Thailand CUMZ 5276 5D+5S -

Ban Takhun, Surat Thani, Thailand CUMZ 5278 3D+3S -

Phung Chang Cave, Phang Nga, Thailand CUMZ 2279 5D+5S -

A. inversus Pulau Kapas, Terengganu, Malaysia CUMZ 2327 5D+5S -

Na Muang Waterfall, Samui Island, Surat

Thani, Thailand

CUMZ 5275 5D -

Phai Island, Chon Buri, Thailand CUMZ 2037 10D -

Elar Island, Chon Buri, Thailand CUMZ 2229 10D -

Kaeng Lamduan, Ubon Ratchathani,

Thailand

CUMZ 5274 3D+2S -

https://doi.org/10.1371/journal.pone.0272966.t001
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sampled trees were discarded as burn-in. A clade was considered to be well supported if the

ultra-fast bootstrap support (BS) values were� 95%, aBayes support values� 0.95, SH-aLRT

support values� 80% and Bayesian posterior probability values (PP) were� 0.95 [40, 41, 45].

The resulting phylogeny was visualized in FigTree version 1.4.4 [46].

Both COI and 16S haplotypes were identified by using DnaSP version 6.12.01 [47]. A

median-joining network [48] was generated and visualized using POPART version 1.7 [49].

The genetic distances within the same morph and pairwise distances among different morphs

within the same and between different collecting sites, along with intra- and interspecific dis-

tances were calculated using p-distance by MEGA X [50].

Morphological analyses

Shell and genitalia photographs were taken by Nikon D850 digital single-lens reflex camera.

Shell banding patterns were described following Inkhavilay et al. [9] and Wu et al. [34], and

genital morphology was examined following Inkhavilay et al. [9]. Shell dimensions including

shell height (H), last whorl height (LWH), shell width (D), penultimate whorl width (PW),

apertural height (AH), and apertural width (AW) (Fig 5) were measured in mm by digital

Fig 5. Shell dimensions of Amphidromus used in this study. Shell height (H), last whorl height (LWH), shell width

(D), penultimate whorl width (PW), apertural height (AH), and apertural width (AW).

https://doi.org/10.1371/journal.pone.0272966.g005
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Vernier caliper (Mitutoyo, CD-6 CS). The shell height other than last whorl (H-LWH) was cal-

culated via shell height minus last whorl height, and spire height (SpH) was calculated via shell

height minus apertural height. The ratios of shell height to shell width (H/D), apertural height

to apertural width (AH/AW), shell height to apertural height (H/AH), shell width to apertural

width (D/AW), shell height to last whorl height (H/LWH), last whorl height to shell height

other than last whorl (LWH/(H-LWH)), last whorl height to apertural height (LWH/AH),

spire height to apertural height (SpH/AH), shell width to penultimate whorl width (D/PW),

and penultimate whorl width to apertural width (PW/AW) were calculated. Number of whorls

was counted to the nearest 0.25 (1/4 whorl) following Haniel [10].

We used Welch’s t-test in PAST version 4.04 [51] to analyze the variation in shell parame-

ters between different morphs within the same collecting site and compared among different

collecting sites regardless of morph membership. The sequential Bonferroni correction was

applied to adjust for multiple test comparisons. Measurements of all shells, including types,

were analyzed using principal component analysis (PCA) in Clustvis web tool [52], applying

unit variance scaling and singular value decomposition (SVD) with imputation. 0.95-probabil-

ity prediction ellipses were determined for each morph of A. cruentatus separately and all

morphs combined. For the shell outline-based analysis, specimen photographs were converted

to thin plate spline (TPS) format via tpsUtil version 1.79 [53]. The shell shape outline was digi-

talized using tpsDig version 2.31 [54], and the mean shell shape of each morph was calculated

via Morphomatica version 1.6 [55]. Specimens from Ban Xai Na Pho and all type specimens

were not included in the Welch’s t-test and shell outline-based analyses due to a small sample

size of fewer than 10 individuals.

Results

Molecular phylogenetic analysis

The COI dataset comprised 29 sequences with lengths between 563 and 642 bp, including 265

variable and 236 parsimony-informative sites, from an alignment length of 642 bp. The 16S

rRNA dataset comprised 63 sequences with lengths between 350 and 388 bp. The 16S rRNA

alignment including gaps was 403 bp, including 173 variable and 153 parsimony-informative

sites.

The best-fitting models of each gene fragment and each codon position of COI for Bayesian

phylogram construction are as follows: GTR+G for the first, F81+G for the second, and

HKY+G for the third codon position of COI and 16S rRNA. The ML and BI phylogenetic anal-

yses based on the concatenated datasets yielded consistent topologies (Fig 6, showing ML

topology). However, some clades in the Bayesian phylogram received insufficient statistical

support by means of Bayesian posterior clade probabilities. All specimens of “A. cruentatus”,

“A. fuscolabris”, and “A. eudeli” were retrieved together in the same clade which was well-sup-

ported by all support values, while no taxa were retrieved as monophyletic. Therefore, we

regard all specimens of “A. fuscolabris” and “A. eudeli” in this study as the striped morph of the

oldest valid taxon, A. cruentatus.
The overall relationships among Amphidromus species yielded an unresolved polytomy,

although some Amphidromus species belong to the same clade. For example, A. pictus, A.

adamsii and A. principalis belong to the same clade, while A. atricallosus, A. leucoxanthus, A.

palaceus, A. perversus, A.martensi and A. similis belong to another clade (Fig 6). The percent-

ages of uncorrected intraspecific and pairwise interspecific p-distances for 16S rRNA ranged

between 0.77 and 10.92% (average 4.27 ± 3.35%) and between 4.06 and 19.58% (average

14.70 ± 3.72%), respectively (S2 Table). The average of pairwise interspecific p-distances for

16S rRNA between A. cruentatus and other Amphidromus species was 16.51 ± 1.25%.
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There was a total of six COI haplotypes and three 16S haplotypes of A. cruentatus, and the

haplotypes from Samphanh were separated from those from Chu Prong, Gia Lai, Vietnam by

53 and 9 mutations for COI and 16S, respectively, in the minimum spanning network (Fig 7).

Genetic distances between striped and stripeless specimens from the same location were lower

Fig 6. Phylogenetic tree based on maximum likelihood analysis. Nodal support values are given as SH-aLRT/aBayes/

ultra-fast bootstrap (IQ-TREE, ML)/posterior probability (MrBayes, BI). Two asterisks on the branch indicate a clade

with all well-supported values (SH-aLRT� 80%, aBayes� 0.95, BS� 95%, PP� 0.95), whereas one asterisk indicates

a clade well supported by ML but not by BI.

https://doi.org/10.1371/journal.pone.0272966.g006
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than the distances between Lao and Vietnamese specimens regardless of morph membership

(Table 2). Genetic p-distances within the Lao specimens were 0.96% and 0.52% for COI and

16S, respectively, and pairwise genetic p-distances between Lao and Vietnamese specimens

were 8.52% and 2.91% for COI and 16S, respectively.

Fig 7. Mitochondrial haplotype minimum spanning networks of Amphidromus cruentatus. A. COI and B. 16S

rRNA. The size of each circle corresponds to the frequency of that haplotype, also shown as the number in that circle.

The cross bars on the branches indicate the number of transitions between haplotypes. Specimen codes correspond to

those in Table 1.

https://doi.org/10.1371/journal.pone.0272966.g007
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Morphological analysis

The results from Welch’s t-test revealed that the two morphs of A. cruentatus found at the

same sites did not differ from each other in most shell parameters with statistical significance.

In contrast, shells from different sites differed significantly from each other in some shell

parameters regardless of morph membership (Table 3, S3 Table).

The PCA of all shell parameters (Fig 8A and 8B) identified PC1 and PC2, which explained

50.2% and 21.4% of the total variance, respectively. The three highest loadings of shell parame-

ter variables accounting for PC1 are shell width (0.329), penultimate whorl width (0.326) and

apertural width (0.326). The three highest loadings accounting for PC2 are the ratios of shell

Table 2. Percentage of pairwise p-distances among different morphs of Amphidromus cruentatus within the same

and between different collecting sites for partial COI (above the diagonal) and 16S rRNA (below the diagonal)

gene fragments. Genetic distances within the same morph for COI/16S are shown on the diagonal.

Morph 1. 2. 3.

1. Stripeless morph from Samphanh 1.11/0.59 0.93 8.52

2. Striped morph from Samphanh 0.52 0.90/0.44 8.51

3. Striped morph from Chu Prong 2.84 2.97 0.21/0.00

https://doi.org/10.1371/journal.pone.0272966.t002

Table 3. Welch’s t-test between different morphs of Amphidromus cruentatus within the same collecting site and between different collecting sites regardless of

morph membership.

Shell parameters Comparison within the same collecting site Comparison among different collecting sites regardless of morph

membership

between stripeless and striped

morphs from Samphanh

between stripeless and striped

morphs from Ban Phone

between Samphanh

and Ban Phone

between Chu Prong

and Samphanh

between Chu Prong

and Ban Phone

H 1.482 0.032 8.755��� 6.016��� 12.424���

D 0.414 0.510 9.299��� 5.909��� 11.684���

AH 0.887 0.703 10.663��� 6.064��� 13.310���

AW 0.250 0.529 5.071��� 4.596��� 7.757���

LWH 1.460 0.024 9.730��� 6.808��� 14.361���

PW 1.578 0.215 8.485��� 7.055��� 12.787���

H-LWH 1.324 0.040 6.385��� 4.341��� 8.686���

SpH 1.749 0.462 6.560��� 5.406��� 10.347���

H/D 2.305 0.876 2.824�� 2.882 5.411���

AH/AW 2.571 0.203 13.831��� 4.574��� 14.414���

H/AH 1.802 1.211 1.636 0.197 0.888

D/AW 1.298 0.190 8.669��� 2.991�� 10.770���

H/LWH 0.550 0.111 0.242 0.396 0.267

LWH/(H-LWH) 0.495 0.339 0.118 0.485 0.420

LWH/AH 2.194 1.727 2.373 0.018 1.765

SpH/AH 1.802 1.235 1.636 0.197 0.888

D/PW 2.037 1.940 3.820��� 0.906 3.406��

PW/AW 3.345�� 1.420 3.823��� 1.083 3.481��

critical t value

(p = 0.05)

2.0096 2.0244 1.987 1.9977 2.0057

�p< 0.05,

��p< 0.01,

���p< 0.001

(p-value adjusted after sequential Bonferroni correction)

https://doi.org/10.1371/journal.pone.0272966.t003
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height to last whorl height (0.413), last whorl height to shell height other than last whorl (0.398),

spire height to apertural height and shell height to apertural height (having the same third high-

est score 0.396). The PCA of the shell ratios only (Fig 8C and 8D) identified PC1 and PC2,

which explained 43.8% and 19.3% of the total variance, respectively. The three highest loadings

of shell ratio accounting for PC1 are the ratios of spire height to apertural height (0.450), shell

height to apertural height (0.450) and shell height to last whorl height (0.413), while the three

highest loadings accounting for PC2 are the ratios of penultimate whorl width to apertural

width (0.665), shell width to apertural width (0.631) and shell height to shell width (0.294).

The 0.95-probability prediction ellipses of different A. cruentatusmorphs overlap one

another in both PCA plots. By combining data of all morphs, the data points of the type speci-

mens of A. eudeli, A. fuscolabris, A. thakhekensis, A. daoae, A. gerberi bolovenensis, A. goldbergi,
A. pengzhuoani, A. eichhorsti and A. pankowskiae are well within the 0.95-probability predic-

tion ellipse of A. cruentatus. However, the data points of the type specimens of A. anhdaoorum,

Fig 8. Principle component analyses of shell parameters. A, B. All shell parameters, and C, D. only shell ratios, with separate ellipses (A, C) for each A.

cruentatusmorph, and one ellipse (B, D) for all A. cruentatus specimens with dark blue circles indicating data points of type specimens of nominal species

synonymized under A. cruentatus. Prediction ellipses are based on probability of 0.95 with star as centroid of each ellipse (N = 197 data points).

https://doi.org/10.1371/journal.pone.0272966.g008
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A. stungtrengensis, A. yangbayensis and A. yenlinhae remain outside the 0.95-probability pre-

diction ellipse of A. cruentatus. The PCA of all shell parameters also revealed that the ellipse of

A. cruentatus does not significantly overlap with those of A. atricallosus and A. inversus. We

observed no differences in genitalia or in mean shell shape from the outline-based analysis

with respect to site and morph membership of A. cruentatus (Figs 9 and 10, S1 Fig).

Fig 9. Mean shell shape of Amphidromus cruentatus specimens. A. Samphanh, Laos B. Ban Phone, Laos and C. Chu Prong, Vietnam.

https://doi.org/10.1371/journal.pone.0272966.g009
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Discussion

Taxonomy and systematics of the Asian arboreal snail genus Amphidromus rely predomi-

nantly on conchological characters, such as shell shape and colouration which have been con-

sidered particularly informative at the species level [7, 12]. However, extensive intraspecific

variation in shell colouration has been reported in some species [9–11]. Uncertainty about the

amounts of intraspecific variation in other Amphidromus species renders their correct delinea-

tion difficult. Species that were described based on rather minor differences in shell features

are particularly likely to contribute to taxonomic inflation [13, 21].

The term polymorphism in a wide sense denotes the presence of two or more distinct

morphs in a single interbreeding population, determined by genetics, environmental cues, or

an interaction between genes and the environment [56]. The study of shell polymorphism in

Amphidromus has mainly focused on their chirality [31, 33, 57], whereas the polymorphism of

shell colouration has been extensively studied in the European land snails Cepaea and Theba
of the family Helicidae [58–61]. This study is thus the first to demonstrate the extent of shell

colouration polymorphism in A. cruentatus. On one hand, the result reveals that both contrast-

ing striped and stripeless morphs from Laos and Vietnam belong to the same mitochondrial

lineage. On the other hand, the PCA and shell outline-based analysis indicate an overall simi-

larity in their shell shape, adding to the previous record of genitalia similarity between the two

morphs living in sympatry [9]. Thus, the observed differences in shell colouration among the

Lao and Vietnamese populations are considered to be well within the range of A. cruentatus
intraspecific variation. The notably high variation in shell colouration within the same genetic

lineage has also been reported in the arboreal genus Aegistohadra from the same family [33].

The occurrence of shell colouration polymorphism has been explained by several mecha-

nisms such as environment-related frequency differences, background matching, microhabitat

distribution, physiological differences between morphs, selective predation and frequency-

dependent predation (apostatic selection) [62]. Although shell colouration polymorphism in

Fig 10. Genital system of Amphidromus cruentatus specimen NMNS-8476-058 (ZY6) from Chu Prong, Vietnam. A. General view

of genitalia and B. internal wall sculpture of penis and vagina.

https://doi.org/10.1371/journal.pone.0272966.g010
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arboreal snails has been attributed to camouflage from predation [30, 63, 64], other factors

such as physiological adaptation to microclimate [65] and differential shell strength [66] could

not be disregarded. Further field surveys and experiments are thus needed to elucidate the

underlying causes of shell colouration polymorphism in A. cruentatus.
The examination of type specimens of A. eudeli, A. fuscolabris, A. thakhekensis, A. gerberi

bolovenensis, A. goldbergi, A. pengzhuoani, A. eichhorsti and A. pankowskiae revealed that these

nominal species fall within the intraspecific variation range of A. cruentatus. Amphidromus
thakhekensis and A. eichhorsti correspond to the stripeless morph, whereas the remaining

nominal species correspond to the striped morph. Apart from the similarity in shell shape as

revealed by PCA, the other characters shared by all these nominal species are their exclusively

sinistral shell; the occurrence of pale pink to carmine-purple parietal wall, columella, apical

whorls and expanded lip; and a yellow to orange-red subsutural band. Therefore, we agree

with some part of synonymizations proposed by Páll-Gergely et al. [13] and regard these nomi-

nal species as junior synonyms of A. cruentatus (Table 4).

Pairwise uncorrected interspecific p-distances for 16S rRNA among Amphidromus species

in this study are found to be higher than other genera in the Camaenidae, e.g., Aegistohadra
from China and Vietnam (5.97–11.86%) [33], Camaena from China (5–15%) [35], Euhadra
(5.8–16.5%) andMandarina (0–10.7%) from Bonin Islands, Japan [67], while comparable to

Acusta from East Asia (5.3–18.8%) [68]. Although most relationships among Amphidromus
species still involved an unresolved polytomy, some relationships could be inferred to some

extent. Four out of seven Amphidromus species groups in the strict sense of Laidlaw and

Solem [7], namely A. atricallosus (including A. leucoxanthus), A. perversus, A.martensi

Table 4. Summary of the status of Amphidromus cruentatus and similar related species.

Nominal species Shell

morph

Revised

taxonomy

Remarks

A. cruentatus (Morelet, 1875) stripeless A. cruentatus The oldest nominal taxon among the synonyms of A. cruentatus.
A. eudeli Ancey, 1897 striped Synonyms of A. cruentatus due to the shell morphometric analyses and the sharing of these shell

characters: exclusively sinistral shell; the occurrence of pale pink to carmine-purple parietal wall,

columella, apical whorls and expanded lip; and a yellow to orange-red subsutural band. Striped and

stripeless morphs from the same collecting locality also belong to the same mitochondrial lineage.

A. fuscolabrisMöllendorff, 1898 striped

A. thakhekensis Thach &

Huber, 2017

stripeless

A. gerberi bolovenensis Thach &

Huber, 2018

striped

A. goldbergi Thach & Huber,

2018

striped

A. pengzhuoani Thach, 2018 striped

A. eichhorsti Thach, 2020 stripeless

A. pankowskiae Thach, 2020 striped

A. daoae Thach, 2016 stripeless A. daoae Distinct from the stripeless morph of A. cruentatus by a thin and transparent parietal callus, a darker

apertural lip, a pinkish columella and a fainter subsutural band, but not distinct from A. cruentatus
in PCA.

A. yangbayensis Thach &

Huber, 2016

striped A. yangbayensis Distinct from the striped morph of A. cruentatus by a more elongate and slender shell, a thin and

transparent parietal callus, a whitish apertural lip, a pinkish columella, and PCA.

A. yenlinhae Thach & Huber,

2017

striped A. yenlinhae Distinct from the striped morph of A. cruentatus by a more elongate and slender shell, a thin and

transparent parietal callus, a whitish apertural lip, a pinkish columella, a greenish subsutural band,

and PCA.

A. anhdaoorum Thach, 2017 striped A. anhdaoorum Distinct from the striped morph of A. cruentatus by a thin and transparent parietal callus, a whitish

subsutural band, a darker apertural lip and columella, and PCA.

A. stungtrengensis Thach &

Huber, 2018

striped A.

stungtrengensis
Distinct from the striped morph of A. cruentatus by a thin and transparent parietal callus, a reddish

subsutural band, a darker apertural lip and columella, and PCA.

https://doi.org/10.1371/journal.pone.0272966.t004
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(including A. similis) and A. palaceus species groups, belong to the same mitochondrial lineage

revealed in this study. Two out of six species groups classified in the subgenus Syndromus [7],

namely A. xiengensis (including A. flavus and A. areolatus) and A. porcellanus species groups,

constitute the same mitochondrial lineage. Our molecular analyses also retrieved the A. adam-
sii species group [7] as a distinct lineage, containing A. adamsii and A. pictus from Borneo,

and interestingly with the addition of A. principalis from Kra Island in the Gulf of Thailand,

which is 1,700 km far from Borneo.

Systematic description

Family Camaenidae Pilsbry, 1895

Genus Amphidromus Albers, 1850. Type species.Helix perversa Linnaeus, 1758, by subse-

quent designation by von Martens [69].

Amphidromus cruentatus (Morelet, 1875)

Figs 2, 3, 4A–4F, 7, 9 and 10

Bulimus cruentatusMorelet, 1875: 264, 265, pl. 13, fig. 5. Type locality: Cambodje [Cambo-

dia] [70]. Pfeiffer, 1877: 24, 25 [71].

Amphidromus cruentatus—Fischer, 1891: 31 [72]. Fulton, 1896: 89 [73]. Pilsbry, 1900: 187,

pl. 60, figs 39, 40 [74]. Fischer and Dautzenberg, 1904: 405 [75]. Laidlaw and Solem, 1961: 524,

614 [7]. Richardson, 1985: 15 [76]. Sutcharit et al., 2015: 67, figs 1e, 6f [12]. Páll-Gergely et al.,
2020: 51, 52 [13].

Amphidromus eudeli Ancey, 1897: 63. Type locality: near Binh Dinh, Annam [central Viet-

nam], in forests [77]. Fischer and Dautzenberg, 1904: 405 [75]. Páll-Gergely et al., 2020: 52

[13]. New synonym.

Amphidromus zebrinus fuscolabrisMöllendorff, 1898: 75. Type locality: Boloven [Boloven

Plateau, Paksong, Champasak, Laos] [78]. Pilsbry, 1900: 199, 200 [74]. Fischer and Dautzen-

berg, 1904: 407 [75]. Zilch, 1953: 134, pl. 23, fig. 22 [79]. New synonym.

Amphidromus zebrinus var. eudeli—Pilsbry, 1900: 199, 200, pl. 63, figs 87, 88 [74]. Richard-

son, 1985: 48 [76].

Amphidromus (Syndromus) zebrinus eudeli—Laidlaw and Solem, 1961: 564, 617 [7].

Amphidromus (Syndromus) zebrinus fuscolabris—Laidlaw and Solem, 1961: 564, 621 [7].

Richardson, 1985: 49 [76].

Syndromus zebrinus eudeli—Schileyko, 2011: 52 [80].

Syndromus zebrinus fuscolabris—Schileyko, 2011: 52 [80].

Amphidromus (Syndromus) fuscolabris—Inkhavilay et al., 2017: 32–34, figs 9e, f, 12g–i, 13j–

m, 14c, d [9]. Inkhavilay et al., 2019: 89, 90, figs 43a, b, 57g, h [20]. Páll-Gergely et al., 2020: 52

[13].

Amphidromus thakhekensis Thach & Huber in Thach, 2017: 48, figs 553–556. Type locality:

Thakhek, Khammouane, South-Central Laos [14]. Inkhavilay et al., 2019: 89, 90 [20]. Páll-Ger-

gely et al., 2020: 52, 76 [13]. Thach, 2020: 79, 80 [18].

Amphidromus gerberi bolovenensis Thach & Huber in Thach, 2018: 52, 53, figs 663–667.

Type locality: Naoh, Attapeu, Boloven Plateau, South Laos [17]. Páll-Gergely et al., 2020: 73

[13]. New synonym.

Amphidromus goldbergi Thach & Huber in Thach, 2018: 53, figs 678–683. Type locality: Sar-

avan [Salavan], South Laos [17]. Páll-Gergely et al., 2020: 52, 73 [13].

Amphidromus pengzhuoani Thach, 2018: 34, 35, pl. 2, figs 11–13. Type locality: Luang

Namtha, Northwest Laos [19]. Páll-Gergely et al., 2020: 52, 75 [13].

Amphidromus eichhorsti Thach, 2020: 57, 58, figs 660–665. Type locality: North Laos [18].

New synonym.
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Amphidromus pankowskiae Thach, 2020: 72, figs 587–591. Type locality: Northwestern Dis-

trict of Khánh Hòa, Central Vietnam [18]. New synonym.

Materials examined. Holotype of Bulimus cruentatusMorelet, 1875: NHMUK

1893.2.4.163 (Fig 2A). Syntype of A. eudeli Ancey, 1897: RBINS 617427 (Fig 2C). Holotype of

A. zebrinus fuscolabrisMöllendorff, 1898: SMF 7641 (Fig 2B). Holotype of A. thakhekensis
Thach & Huber, 2017: MNHN-IM-2000-33216 (Fig 2D). Holotype of A. gerberi bolovenensis
Thach & Huber, 2018: MNHN-IM-2000-34074 (Fig 2E). Holotype of A. goldbergi Thach &

Huber, 2018: MNHN-IM-2000-34073 (Fig 2F). Holotype of A. pengzhuoani Thach, 2018:

NHMUK 20180243 (Fig 2G). Holotype of A. eichhorsti Thach, 2020: MNHN-IM-2000-35554

(Fig 2H). Holotype of A. pankowskiae Thach, 2020: MNHN-IM-2000-35543 (Fig 2I). Sam-

phanh, Phongsali, Laos: NMNS-8476-001 to NMNS-8476-051 (stripeless morph: 10 shells and

8 specimens in ethanol; Fig 3A–3C; striped morph: 24 shells and 9 specimens in ethanol; Fig

3D–3F). Chu Prong, Gia Lai, Vietnam: NMNS-8476-052 to NMNS-8476-066 (striped morph:

5 shells and 10 specimens in ethanol; Fig 3G–3I). Ban Phone, La-Marm, Sekong, Laos: CUMZ

7040, 7042 (stripeless morph: 83 shells; Inkhavilay et al, 2017: 17, fig. 13l, m [9], Fig 4A and 4B;

striped morph: 34 shells; Inkhavilay et al, 2017: 17, fig. 13j, k [9]; Fig 4C and 4D). Ban Xai Na

Pho, Phatumphone, Champasak, Laos: CUMZ 7044 (stripeless morph: 1 shell; Fig 4E; striped

morph: 1 shell; Fig 4F).

Diagnosis. Peristome pale pink to carmine-purple on the broadly expanded lip, columella,

and parietal wall; roseate to brownish tint on the apical two whorls; subsutural bands yellow to

orange-red; monochrome yellow shell or with green to brown-black axial stripes.

Measurements. Shell height: range 22.0–45.0 mm and average 33.5 ± 4.6 mm. Shell width:

range 12.1–22.4 mm and average 16.9 ± 1.9 mm.

Description. Shell medium, rather thin and glossy, elongated-conical, monomorphic

sinistral. Spire conical with nearly smooth surface; suture wide and shallow. Apex acute, with-

out black spot; following two whorls roseate to brownish tint. Whorls 6 to 7 with little convex

whorls. Periostracum thin corneous and transparent. Shell background white to yellow; shell

colouration varying from monochrome yellow or green (stripeless morph) to with variegated

brown to dark-green slanted blotches or axial stripes (striped morph); subsutural band always

present with yellow to orange-red color. Last whorl large, rounded, sometimes sub-peripheral

bands partially present; varix wanting. Parietal callus thick or thin, stained with pale pink to

carmine-purple. Aperture elongated auriform and angulated below; peristome slightly thick-

ened, expanded and not reflected. Lip stained with white or pale pink to carmine-purple;

inside aperture pale pink to carmine-purple. Columella somewhat thickened, straight, dilated

margin, pale pink to carmine-purple. Umbilicus imperforate; umbilical area pale yellow to

orange (Figs 2, 3 and 4A–4F).

Shell variation. There are two different major patterns in A. cruentatus: (a) stripeless

morph: monochrome yellow without stripes (Figs 2A, 2D and 2H, 3A–3C, 4A and 4B and 5E),

and (b) striped morph: with green to brown-black axial slanted streaks or merged blotches on

teleoconch (Figs 2B, 2C, 2E–2G and 2I, 3D–3I and 4C, 4D and 4F). The striped morph is also

different from the stripeless morph in having mild to moderate roseate to brownish tint on the

apical two whorls, and distinct reddish-brown dots on the second and third whorls.

Genitalia. Correspond to the genitalia description of A. fuscolabris in Inkhavilay et al.
(2017: fig. 14c, d) [9] (Fig 10).

Distribution.

1. Stripeless morph only: Cambodia [70]; Thakhek, Khammouane, Laos [14]; North Laos

[18].
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2. Striped morph only: Binh Dinh, Vietnam [75, 77]; Paksong, Champasak, Laos [78]; Atta-

peu, Laos; Salavan, Laos [17]; Luang Namtha, Northwest Laos [19]; Khanh Hoa, Vietnam

[18]; Chu Prong, Gia Lai, Vietnam.

3. Both morphs coexist: Ban Phone, La-Marm, Sekong, and Ban Xai Na Pho, Phatumphone,

Champasak, Laos [9]; Samphanh, Phongsali, Laos (Fig 1).

Remarks. Five nominal species were previously treated as junior synonyms of A. cruenta-
tus [13], but they are retained as valid in this study based on some shell characters and PCA

(Table 4). Although the data point representing the A. daoae holotype is well within the

0.95-probability prediction ellipse of A. cruentatus in both PCA, we decide to retain A. daoae
and its subspecies as distinct from A. cruentatus based on shell characters, in contrast to Páll-

Gergely et al.’s treatment as junior synonyms [13]. Amphidromus daoae (Fig 4G) and A. daoae
robertabbasi are slightly different from the stripeless morph of A. cruentatus by having a thin

and transparent parietal callus, a darker apertural lip, a pinkish columella and a fainter subsu-

tural band [16], while not having the pale pink to carmine-purple parietal wall and apical

whorls, and a yellow to orange-red subsutural band as in A. cruentatus. Both PCA and shell

characters suggest that A. anhdaoorum, A. stungtrengensis, A. yangbayensis and A. yenlinhae
are distinct from A. cruentatus. This is in contrast to Páll-Gergely et al.’s treatments of A.

anhdaoorum and A. stungtrengensis as junior synonyms of A. fuscolabris, and A. yangbayensis
and A. yenlinhae as junior synonyms of A. eudeli [13]. Amphidromus yangbayensis and A. yen-
linhae are very similar, but they differ from the striped morph of A. cruentatus by having a

more elongate and slender shell, a thin and transparent parietal callus, a whitish apertural lip, a

pinkish columella, and an additional greenish subsutural band in A. yenlinhae (Fig 4H and 4I).

This distinction from the striped morph of A. cruentatus was previously pointed out in the case

of A. yenlinhae [22]. Furthermore, A. stungtrengensis differs from the striped morph of A. cruen-
tatus by having a thin and transparent parietal callus, a reddish subsutural band, and a darker

apertural lip and columella (Fig 4J). Amphidromus anhdaoorum also differs by having a thin

and transparent parietal callus, a whitish subsutural band, and a darker apertural lip and colu-

mella (Fig 4K). Although A. yangbayensis and A. yenlinhae are very similar in shell shape and

colouration, the consideration of their species’ distinction is beyond the scope of this study.
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70. Morelet A. Séries conchyliologiques comprenant l’énumération de mollusques terrestres et fluviatiles
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