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Highlights Impact and implications

� A human mAb that targets HBsAg was developed.

� This human mAb prevents HBV and HDV infection
in permissive cell lines and in human-liver chimeric
mice.

� The human mAb prevents, or at least attenuates,
HDV superinfection in vivo.

� This mAb also showed therapeutic potential in vivo.
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Patients chronically infected with HBV may eventually
develop liver cancer and are at great risk of being
superinfected with HDV, which worsens and acceler-
ates disease progression. Unfortunately, current
treatments can rarely eliminate both viruses from
chronically infected patients. In this study, we present
data on a novel antibody that is able to prevent
chronic HBV/HDV infection in a mouse model with a
humanized liver. Moreover, antibody treatment of
HBV/HDV-infected mice strongly diminishes viral
loads during therapy. This antibody is a valuable
candidate for further clinical development.
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Background & Aims: Elimination of chronic HBV/HDV infection remains a major global health challenge. Targeting excessive
hepatitis B surface antigen (HBsAg) release may provide an interesting window of opportunity to break immune tolerance and
to achieve a functional cure using additional antivirals.
Methods:We evaluated a HBsAg-specific human monoclonal antibody, as part of either a prophylactic or therapeutic strategy,
against HBV/HDV infection in cell culture models and in human-liver chimeric mice. To assess prophylactic efficacy, mice were
passively immunized prior to infection with HBV or HBV/HDV (coinfection and superinfection setting). Therapeutic efficacy
was assessed in HBV and HBV/HDV-coinfected mice receiving 4 weeks of treatment. Viral parameters (HBV DNA, HDV RNA
and HBsAg) were assessed in mouse plasma.
Results: The antibody could effectively prevent HBV/HDV infection in a dose-dependent manner with IC50 values of �3.5 ng/
ml. Passive immunization showed complete protection of mice from both HBV and HBV/HDV coinfection. Moreover, HDV
superinfection was either completely prevented or at least attenuated in HBV-infected mice. Finally, antibody treatment in
mice with established HBV/HDV infection resulted in a significant decline in viremia and a concomitant drop in on-treatment
HBsAg, with a moderate viral rebound following treatment cessation.
Conclusion: We present data on a valuable antibody candidate that could complement other antivirals in strategies aimed at
achieving functional cure of chronic HBV and HDV infection.
Impact and implications: Patients chronically infected with HBV may eventually develop liver cancer and are at great risk of
being superinfected with HDV, which worsens and accelerates disease progression. Unfortunately, current treatments can
rarely eliminate both viruses from chronically infected patients. In this study, we present data on a novel antibody that is able
to prevent chronic HBV/HDV infection in a mouse model with a humanized liver. Moreover, antibody treatment of HBV/HDV-
infected mice strongly diminishes viral loads during therapy. This antibody is a valuable candidate for further clinical
development.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Despite the availability of safe and efficacious HBV vaccines,
approximately 300 million people worldwide are currently
chronic carriers of hepatitis B surface antigen (HBsAg).1 Chronic
HBV infection may eventually lead to cirrhosis and hepatocellular
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carcinoma (HCC) development. HBV is responsible for a heavy
disease burden and an estimated 820,000 liver-related deaths
annually.2,3 Moreover, at least 12 million and up to 60 million
patients with chronic HBV are estimated to suffer from a
concomitant HDV infection.4–7 Since HDV infection greatly exac-
erbates disease progression by rapidly inducing cirrhosis, liver
dysfunction andHCC, it is considered themost severe formof viral
hepatitis.5 Patients coinfected with HBV and HDV usually recover
spontaneously through immune-mediated viral elimination.
However, in 80% of cases, patients with chronic HBV who become
superinfected with HDV progress to a chronic disease state,
resulting in rapid deterioration of the pre-existing HBV-related
liver damage and very high mortality rates.8

Current lifelong HBV therapy with nucleos(t)ide analogues
(NAs) suppresses viral replication, but only about 10% of all
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treated HBeAg-positive patients (and 1% in HBeAg-negative pa-
tients) may achieve a functional cure, i.e. complete HBsAg loss
with/without seroconversion after a 5-year follow-up.9–11

Therefore, NAs will not eliminate the risk of cancer develop-
ment. Regarding HDV therapy, this virus does not code for
polymerases or proteases that could be therapeutically targeted
as is the case for HBV or HCV, but relies on both the host repli-
cative machinery and on the helper function of HBV to complete
its life cycle.12 Therefore, the only recommended clinical regimen
remains pegylated-IFNa, a therapy showing poor efficacy and
infrequent long-term responses.13 Specifically, only 28% of
treated patients achieved clearance of serum HDV 6 months after
cessation of a 48-week regimen and 50% of responders experi-
enced late HDV RNA relapse during longer follow-up.14–16 While
phase III results are still pending, in 2020 the European Medi-
cines Agency conditionally approved the entry-inhibitor Myr-
cludex B (bulevirtide), a preS1-derived peptide able to block the
HBV/HDV host receptor sodium taurocholate co-transporting
polypeptide (NTCP), for the treatment of patients with
compensated chronic HDV infection.17–20 Several other HDV
treatment options are currently being assessed in clinical trials.21

However, it is widely accepted that a combination of antiviral
compounds targeting different steps in the viral life cycle will be
required to eliminate both viruses.

In this study, we evaluated the capacity of a previously gener-
ated HBsAg-specific human monoclonal antibody (hu-mAb) to
prevent and treatHBVandHDV infectionboth invitroand invivo.22

Targeting the entry-step in combination with diminishing circu-
lating HBsAg would simultaneously block viral spread and
potentially provide awindowof opportunity for other antivirals to
break immune tolerance in the context of chronic infection.
Materials and methods
More details can be found in the supplementary materials and
methods.

Human monoclonal anti-HBsAg production and purification
The human monoclonal anti-HBsAg-specific antibody was pro-
duced using classical hybridoma technology, more specifically by
fusion of SCID-engrafted human peripheral blood lymphocytes
isolated fromavaccinated individual (6,981mIU/ml anti-HBsAg at
time of blood donation) with K6H6/B5 heteromyeloma cells as
previously described.22 Fused cells were then seeded in culture
medium supplemented with hybridoma growth factors and the
selection drugs hypoxanthine-aminopterin-thymidine and
ouabain. Anti-HBs-positive cultures were sequentially cloned and
several monoclonal hybridoma lines were isolated and confirmed
via commercial anti-HBs ELISA (DiaSorin, Italy). The hu-mAb was
then purified from collected supernatant using conventional
Protein G columns (Hitrap Protein GHP, SigmaAldrich, USA). After
evaluation by serum protein electrophoresis (SAS-MX Serum
Protein-10, Sysmex, Japan), the antibody was concentrated
(Amicon Ultra-15 50k, Sigma Aldrich, USA) and its concentration
was determined using spectrophotometry at 280 nm.

In vitro prevention of HBV and HDV infection
For in vitro prevention of HBV infection, anti-HBsAg was applied
to HepG2.hNTCP cells in duplicate at 5-fold serial dilutions
ranging from 10 lg/ml to 0.128 ng/ml. Two hours later, cells were
infected with HBV (4,990 IU/cell; genotype D) and after 1 week,
infection was assessed using immunofluorescent (IF) staining of
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hepatitis B core antigen-positive cells. Images were captured by
automated spinning disk microscopy using a 40x objective (CSU-
X1, Nikon). Per condition, a 20 x 10 field was captured (in
duplicate) and positive cells were automatically counted using
ImageJ software v1.53c. In vitro prevention of HDV infection
(genotype 1) was examined in the same manner, but in three
different cell lines (HepG2.hNTCP, Huh7.5.hNTCP and NEB2.7).
Imaging was performed using the Leica TCS-SPE microscope
with a 20x objective. Per condition, three random pictures were
taken (in duplicate) and HDV-positive cells were automatically
counted using ImageJ software v1.53c. More details are provided
in the supplementary materials and methods.

Mice
All mice were bred under sterile conditions and all experiments
were approved by the Animal Ethics Committee of the Faculty of
Medicine and Health Sciences of Ghent University. Human-liver
chimeric mice were generated by transplanting 106 primary
human hepatocytes (donor C342, C399 and HH223 from Corning,
the Netherlands; and donor L191501 from Lonza, Switzerland)
into homozygous uPA+/+-SCID mice as previously described.23,24

Human albumin was quantified in mouse plasma to evaluate
successful humanization of the mouse liver using conventional
ELISA (Bethyl Laboratories, USA). Mice with albumin levels
ranging between 2-10 mg/ml were selected for this study and
groups were randomized, taking into consideration human al-
bumin levels, infection levels and general condition (e.g. based
on body weight). Mice were 8- to 9-weeks-old at the start of
infection.

In vivo prevention of HBV, HBV/HDV and HDV superinfection
For in vivo prevention of HBV, human-liver chimeric mice (n = 6)
repopulated with human hepatocytes from two different donors
(n = 3 for C342 and n = 3 for HH223) were passively immunized
through intraperitoneal (IP) administration of 1 mg hu-mAb 3
days before challenge with HBV (patient serum, 106 IU/mouse).
As controls, six additional mice were infected without prior
passive immunization. For prevention of HBV/HDV coinfection,
humanized mice (n = 4) engrafted with hepatocytes from donor
C342 were passively immunized (1 mg hu-mAb, IP) 3 days prior
to HBV/HDV coinfection with cell culture-derived virus (5 x 106

IU HBV DNA/mouse and 2.3 x 106 IU HDV RNA/mouse). As con-
trols, three additional mice were coinfected with HBV/HDV
without prior passive immunization. Mice (co-)infected with
HBV or HBV/HDV were monitored until week 12-13 post-
inoculation. Finally, for prevention of HDV superinfection, hu-
manized mice were first infected with either patient-derived
HBV (106 IU/mouse, n = 7, mice engrafted with donor L191501
hepatocytes) or cell culture-derived HBV (5 x 106 IU per mouse,
n = 14, i.e. five donor C342 and nine C399 engrafted mice). Mice
were superinfected with patient or cell culture-derived HDV
(both 2.55 x 105 IU/mouse) 6 or 8 weeks later, respectively. Three
days prior to superinfection, 5/7 mice infected with patient-
derived HBV and 9/14 mice infected with cell culture-derived
HBV were passively immunized with 1 mg of hu-mAb IP. Mice
superinfected with HDV were monitored for 9-10 weeks
following HDV inoculation. Blood plasma was collected every 1-2
weeks (depending on the condition of the mouse and the timing
post-infection) and HBV DNA and HDV RNA levels were quanti-
fied via commercial HBV/HDV RealStar® (reverse transcription-)
qPCR (Altona Diagnostics, Germany) or the RealTime m2000 HBV
assay (Abbot, USA). Anti-HBsAg ELISA was performed using a
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commercially available quantitative kit (Beijing Wantai Biolog-
ical, China).
Treatment of HBV and HBV/HDV (co-)infected mice
Human-liver chimeric mice (n = 7) transplanted with donor C342
hepatocytes were chronically infected with cell culture-derived
HBV (5 x 106 IU/mouse). Four out of seven mice received 1 mg
hu-mAb (IP) twice a week for 4 consecutive weeks (eight doses
in total), starting at week 11 post viral inoculation. The remain-
ing three infected mice were left untreated as controls. In a
second treatment experiment, 13 human-liver chimeric mice
transplanted with donor L191501 hepatocytes were first infected
with cell culture-derived HBV (5 x 106 IU/mouse) before being
superinfected with cell culture-derived HDV (2.55 x 105 IU/
mouse) 6 weeks later. At week 10, 7/13 mice received 1 mg hu-
mAb (IP) twice a week for 4 consecutive weeks (nine doses in
total). The six remaining coinfected mice did not receive any
treatment (control). Blood plasma was collected every 1 to 2
weeks (depending on the condition of the mouse and the timing
post-infection) and the levels of HBV DNA, HDV RNA and hu-
mAb were determined as described above. Plasma samples
were analyzed by SDS-PAGE and western blot was used to assess
HBsAg levels.
SDS-PAGE and western blot analysis
Exactly 0.5 ll of mouse plasma was used for sample preparation
and denaturation (70 �C, 10 min), and subjected to SDS-
polyacrylamide gel (12%) electrophoresis, with proteins trans-
ferred to a PVDF membrane. Membranes were blocked (5% skim
milk in TBS-T) and HBsAg was detected by a primary goat anti-
HBsAg antibody (70-HG15; Fitzgerald industries; 1/1,000), fol-
lowed by a horse radish peroxidase-conjugated rabbit anti-goat
antibody (31402; Thermo Fisher Scientific; 1/20,000). Immuno-
blots were developed using the SuperSignalTM West Femto
Maximum Sensitivity Substrate kit (Thermo Fisher Scientific,
USA) and exposed to the ImageQuant LAS4000 chemilumines-
cent imaging system (GE Healthcare, Diegem, Belgium). More
details are provided in the supplementary materials and
methods.
A
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Statistical analysis
GraphPad Prism v9.3.1 was used for graph visualization and
statistical analyses. IC50 values were calculated using non-linear
regression (curve fit). Normality tests and Mann-Whitney U tests
enabled comparisons between normalized log mean virus levels
of treated vs. non-treated mice. Data were considered statisti-
cally significant if p <0.05.
Results
In vitro prevention of HBV infection
The HBV-permissive cell line HepG2.hNTCP was (pre-)incubated
with 5-fold serial antibody dilutions before, during and after
viral inoculation. Infected cells were visualized via immunoflu-
orescent staining (hepatitis B core antigen) after 1 week. Near
complete abrogation of infection was shownwhen at least 80 ng/
ml hu-mAb was applied, while an overall dose-dependent
inhibitory effect was observed with an IC50 value of 3.531 ng/
ml (Fig. 1).

In vitro prevention of HDV infection
The HDV inoculum was pre-incubated with 5-fold serial hu-mAb
dilutions and three cell lines were subjected to this virus-
antibody mixture. Antibodies were maintained for 1 week until
visualization of infected cells by IF. As shown in Fig. 2, infection
was nearly completely abrogated using at least 16 ng/ml hu-mAb
for all three cell lines tested. A clear dose-dependent inhibitory
effect was observed with IC50 values of 3.275 ng/ml, 4.393 ng/ml
and 3.080 ng/ml for HepNB2.7, HepG2.hNTCP and Huh7.5.hNTCP
cells, respectively.

In vivo prevention of HBV infection
Six human-liver chimeric mice (repopulated with hepatocytes
from two distinct donors) were passively immunized (1 mg hu-
mAb/mouse) 3 days prior to HBV inoculation. As controls, six an-
imals were injected with the virus without prior passive immu-
nization. In donor C342 engrafted mice, no virus was detected in
the three passively immunized mice until at least week 6 (on
which two were found dead) and one mouse experienced HBV
DNAbreakthrough atweek10,while the controls showed strongly
B
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increasing levels from week 4 onwards (Fig. 3A). This was also
confirmed in mice repopulated with donor HH223 hepatocytes:
two out of three passively immunized mice remained HBV DNA
negative until at least week 12 post-infection (end of the obser-
vation period), one mouse only showed signs of infection at week
12 and all three control mice demonstrated increasing HBV DNA
levels from week 3 onwards (Fig. 3B). In the two passively
immunizedmice that reboundedatweek10and12post-infection,
circulatingplasmaanti-HBsAgwasno longerdetectable as ofweek
6 (Fig. S1).

In vivo prevention of HBV/HDV coinfection
Four human-liver chimeric mice were injected with 1 mg of hu-
mAb (IP), 3 days prior to inoculation of a viral preparation con-
taining 5 x 106 IU HBV and 2.28 x 106 IU HDV (both cell culture
produced). Control mice (n = 3), injected with the same virus
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prep without prior passive immunization, experienced
increasing plasma levels of HBV DNA (Fig. 4A) and HDV RNA
(Fig. 4B) from week 4 and 8 onwards, respectively. Interestingly,
all passively immunized mice did not show any signs of infection
until 13 weeks post-infection when the experiment was termi-
nated. Anti-HBs antibody levels exceeded 1,000 mIU/ml during
the first 2-4 weeks following passive immunization, gradually
declined over time and became undetectable in our assay at
around 8-10 weeks post antibody injection (Fig. S2).

In vivo prevention of HDV superinfection
To evaluate whether a single antibody injection could avert an
HDV infection in mice with pre-existing HBV infection, human-
liver chimeric mice engrafted with donor L191501 hepatocytes
(n = 7) were first infected with HBV and 6 weeks later, five out of
seven mice were passively immunized with the antibody 3 days
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prior to HDV superinfection (Fig. 5A-B). At the moment of HDV
inoculation (week 6), theHBVDNAplateauhad been reached in all
mice (Fig. 5A). In both control mice, HDV RNA levels could already
be detected 1 week after HDV inoculation and these increased
steeply to 108 IU/ml at week 10. In most passively immunized
mice, HDV RNAwas only detected at week 10with a delayed peak
at week 14 (Fig. 5B). Accordingly, circulating anti-HBs was lost
between week 8 and 14 for all passively immunized mice
(Fig. S3A). This experimental setup was repeated in 14 mice
engrafted with either donor C342 or C399 hepatocytes, but here,
passive immunization (in 9/14 mice) and HDV superinfectionwas
performed at week 8 (Fig. 5C-D). Interestingly, eight mice were
completely protected from HDV superinfection and the five ani-
mals that reached the endpoint of the observation period (week
16-17) were still HDV RNA negative (Fig. 5D). The single passively
immunizedmouse that became HDV RNA positive at week 12 also
lost its circulating anti-HBs at week 9 (Fig. S3B).
Treatment of chronic HBV infection
Humanized mice with an established HBV infection were treated
twice a week for 4 consecutive weeks with 1 mg of hu-mAb (IP;
n = 4). While non-treated HBV-infected controls (n = 3)
demonstrated quite stable or moderately increasing plasma HBV
DNA levels, all antibody-treated mice showed strongly, although
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not statistically significantly, decreasing viral levels on therapy
(Fig. 6A-B and Table S1). Specifically, already after 1 week of
therapy, mean plasma HBV DNA levels were reduced by 1.78 x
log10 compared to non-treated mice. HBV DNA even became
undetectable in our assay in one mouse (M240L). On week 2, 3
and 4 (end) of treatment, we observed a 1.55 x log10, 2.09 x log10
and 2.02 x log10 fold reduction, respectively, compared to the
controls. Importantly, only one (M257RR) out of four mice
rebounded after treatment cessation and this coincided with a
complete loss of circulating anti-HBs antibodies (Fig. 6C). Three
weeks post-therapy, a mean difference of 2.03 x log10 was still
present between the two groups.
Treatment of HBV/HDV-coinfected mice
Sixweeks post HBV infection,13 humanizedmicewere inoculated
with HDV to obtain HBV/HDV-coinfected mice. Four weeks later,
the animalswere divided in two groups: thefirst group (n = 7)was
treated with hu-mAb for 4 weeks, while the second group (n = 6)
served as untreated controls. At the start of therapy, plasma HBV
DNA levels ranged between 106 and 109 IU/ml, while HDV RNA
levels were more diverse, varying from just above the limit of
detection (LOD) to almost 108 IU/ml, with one mouse (M264RL)
having undetectable HDV RNA in our assay (Fig. 7A,C). Twoweeks
following the onset of therapy, mean HBV DNA and HDV RNA
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levels were significantly reduced compared to controls: 1.96 x
log10 (p <0.01) and 2.82 x log10 (p <0.05) difference, respectively
(Fig. 7A-D and Table S2). Evenmore pronouncedmean differences
could be observed after 4weeks (end of therapy): -2.82 x log10 and
-3.15 x log10 (both p <0.01) for HBV DNA and HDV RNA, respec-
tively, while stable or even increasing viral loads were measured
in the controls. Two and 4 weeks after treatment cessation, mean
differences of -1.97 x log10 and -1.69 x log10 for HBV DNA,
respectively, and -3.20 x log10 and -3.10 x log10 for HDV RNA,
respectively, were observed; these differences were accompanied
by hu-mAb plasma levels exceeding 1,000 mIU/ml in treated an-
imals. However, two mice (M241R and M298R) demonstrated
HBV/HDV rebound at week 2-4 post-therapy, which coincided
with hu-mAb loss at these time points (Fig. 7E). Remarkably,
HBsAg was observed at the onset of therapy in the treated mice
(week 10) but was undetectable on therapy (based on western
blot analysis) (Fig. 7F). For the two mice showing strongly
diminished or even absent viral loads post-therapy (M296 and
M296R), HBsAg was still absent. On the other hand, the post-
therapy viral rebound observed in M241R (at week 16) and
M298R (at week 18) was accompanied by recurrence of HBsAg.
Discussion
The excessive HBsAg release in patients with chronic HBV tol-
erizes antibody- and cell-mediated immune responses, repre-
senting a major obstacle to viral eradication with current
treatments.25,26 Consequently, it is of utmost importance to find
ways to break immune tolerance, enabling the host to mount
effective immune responses to clear the virus and to prevent
HDV superinfection. Herein, we demonstrate the prophylactic
and therapeutic efficacy of a hu-mAb targeting the HBV envelope
in the context of HBV and HDV infection in vitro and in human-
liver chimeric mice.

The hu-mAb neutralized HBV and HDV in vitrowith respective
IC50 values of 3.53 ng/ml (�0.23 nM) and 3.58 ng/ml (�0.24 nM)
and can be considered as highly potent, since Hehle et al.27

evaluated 170 different hu-mAbs isolated from natural HBV
controllers or vaccinated individuals and showed that only 35%
of antibodies harbored IC50 values <50 ng/ml.

Next, we demonstrated efficient prevention of HBVmono- and
HBV/HDV coinfection in human-liver chimeric mice. Conceivably,
once a chronic HBV infection is fully established, preventing HDV
superinfectionmay be evenmore challenging due to the presence
of large quantities of HBsAg. However, depending on the hepato-
cyte donor, we showed either near complete prevention (donor
C342 and C399) or at least delayed HDV RNA levels (donor
L191501). Notably, transplantation of mice with donor L191501
human hepatocytes rendered the animalsmore prone to hepatitis
infection compared toother donors tested (data not shown),which
may explain viral breakthrough. Overall, our HDV superinfection
prevention data is quite impressive since only a single injection of
1 mg hu-mAb was sufficient to overcome the high load of circu-
lating HBsAg and to (partially) neutralize the high-titer HDV
inoculum. Furthermore, since HDV can silently persist and repli-
cate in human hepatocytes for up to 6 weeks, the hu-mAb effec-
tively prohibits entry of HDV virions into hepatocytes.28,29

Notably, antibody half-life varies throughout our experi-
ments, i.e. the antibody is still present in circulation 3-4 weeks or
longer after a 1 mg injection. This may potentially be explained
by variability in body weight (and hence distribution volume)
since we injected 1 mg of antibody irrespective of mouse body
JHEP Reports 2023
weight. Furthermore, antibody clearance might be greatly
accelerated by high replication of the virus (high circulating viral
load). The source of viral inoculum also appears to influence the
success of prevention and lack of viral rebound. For example, in
the prophylactic HBV/HDV coinfection experiment, cell culture-
derived virus was used and no viral rebound was observed,
while in the prophylactic HBV mono-infection experiment,
patient-derived virus was applied and HBV DNA rebound was
observed. Additionally, more animals were protected from HDV
superinfection when infected with cell culture-derived viruses.
Therefore, it seems that primary patient-derived virus prepara-
tions are intrinsically less sensitive to antibody neutralization, or
may contain variants that are.

The therapeutic potential of the hu-mAb was furthermore
demonstrated by (significantly) reduced mean viral plasma
levels at the end of a 4-week treatment in HBV-infected (2.02 x
log10 drop) and HBV/HDV-coinfected mice (2.82 x log10 and 3.50
x log10 drops for HBV and HDV, respectively). Since the repeated
injections of antibody result in a clear drop in HBV DNA (and
HDV RNA levels) in this therapeutic setup, we assume that the
single dose regimen in the HDV superinfection prevention
experiment was insufficient to show an antiviral effect on the
already established HBV infection (i.e. no effect on HBV DNA).
Interestingly, our 4-week treatment data are in line with the
most potent hu-mAb (namely Bc1.187), which was tested by
Hehle et al.27 in HUHEP mice (weekly �1 mg (50 mg/kg) hu-mAb
IP for 3 weeks), and induced a 1.76 x log10 decrease in serum HBV
DNA at the end of therapy. Notably, circulating HBsAg levels
dropped and remained undetectable for 2 weeks following the
last injection in 60% of treated animals. Importantly, these mice
had lower initial HBV DNA levels (<106 IU/ml) compared to mice
in our study. Another hu-mAb (HBC34) was evaluated at a very
comparable schedule, but at lower dose (a 4-week treatment
with 2 IP injections per week of 1 mg/kg) in HBV/HDV-coinfected
USB/USG mice.30,31 They revealed a similar reduction in HBV
DNA and HDV RNA levels (mean 1 to 2.7 x log10 and 2.4 to 2.5 x
log10 reduction, respectively, in both models) and a concomitant
2.7 to 2.8 x log10 reduction of HBsAg levels after 4 weeks. Finally,
we also show on-treatment HBsAg loss with rebound after
treatment cessation, a phenomenon that is frequently noted
upon withdrawal of mAb therapy.27,32 Interestingly, the HBsag
loss might provide a therapeutic window for viral eradication
using NAs, possibly in combination with other antivirals, that
could take advantage of a (partially) reconstituted adaptive im-
mune response.23,24 Interestingly, although no effect on HBsAg
was seen when bulevirtide was used as monotherapy, HBsAg
decreases could be observed when combined with peg-IFNa.17,20

Notably, decreasing HBsAg might be a valuable therapeutic
strategy, but currently no direct evidence is available to support
this hypothesis and therefore, additional studies addressing the
relationship between circulating HBsAg levels and HBV-specific
immune responses are required to provide further insights on
the immunobiology of HBV; presumably, additional immune
activation would be necessary to control the virus.33 Nowadays,
polyclonal antibodies derived from pooled plasma from recov-
ered or vaccinated individuals (hepatitis B immunoglobulin) are
successfully and routinely used in clinical practice as post-
exposure prophylaxis, to avoid HBV recurrence after liver-
transplantation or therapeutic immunosuppression, or to pre-
vent perinatal transmission.34–36 However, only a small antibody
proportion in hepatitis B immunoglobulin preparations is actu-
ally HBV-specific and neutralizing, and blood products always
8vol. 5 j 100646



remain subject to bio-safety concerns, especially for immuno-
suppressed patients.37,38 Consequently, monoclonal antibodies
may be an attractive alternative since they represent a stable,
reproducible source for prolonged immunotherapy. Hu-mAbs
have already been successfully explored in many therapeutic
fields such as oncology,39, auto-immune diseases40 and recently
also for infectious diseases such as SARS-CoV-2.41,42 Our research
group also demonstrated successful hu-mAb use in the context
of HCV infection.43–45 Regarding other HBV-specific hu-mAbs,
previous studies have similarly shown efficient prevention,
delayed infection, or therapeutic efficacy in cell culture,27,46–48,
chimpanzees49–54 and various mouse models.27,38,54–58 Some
have reached clinical stages as well, such as lenvervimab59 and
VIR-3434, the Fc-engineered version of antibody HBC34, with
extended serum half-life; NCT04423393 and NCT04856085.60

Hu-mAb studies involving HDV prophylaxis or therapy are
currently very limited: Li et al.40 demonstrated prevention in a
mouse model harboring human NTCP receptors in the absence of
HBV infection and, moreover, on a mouse background; and
HBC34 led to a potent decrease in HBV/HDV viremia in HBV/
HDV-coinfected USB/USG mice.30,31

Currently evaluated or approved antibody dosages vary
tremendously in human applications, even beyond the field of
infectious diseases. For example, omalizumab, a humanized re-
combinant monoclonal anti-IgE antibody approved for the treat-
ment of allergic asthma is recommended at 75 to 600 mg every 2
weeks.61 Rituximab, a genetically engineered chimeric mouse/
humanmAbapproved for rheumatoid arthritis is recommendedat
two infusions of 1,000 mg IV every 2 weeks.62 Eculizumab, a hu-
manized mAb approved for myasthenia gravis, is administered at
600 mg IV weekly for 4 weeks, followed by 900 mg IV in the 5th
week and then, 900 mg every 2 weeks as maintenance therapy.63

Finally, the FDA recently authorized two mAbs (casirivimab and
imdevimab) for the treatment of COVID-19 disease at dosages as
high as 1,400 mg IV.64,65 These examples illustrate the high vari-
ability of applied doses in various applications, but also that much
higher dosages are achievable and tolerated compared to our
regimen. Assuming an average mouse body weight of 15 g, we
applied about 66.7mg/kg per injection. In the treatment regimen,
we hence administered a total dose of 533 mg over a 4-week
period; clearly in range of what is feasible in humans. However,
dosages used in mice cannot simply be translated into human
doses.More specifically, the commonperception of scaling of dose
based on body weight (mg/kg) alone is not entirely correct. This is
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primarily because the functional systems in species varywhich, in
turn, alters pharmacokinetics.66

Themainputativemechanism of action of theHBsAg-targeting
antibody in the applied mouse model is functional neutralization
of the viral envelope, which directly blocks entry of HBV and HDV,
and consequently prevents spread of infection to naïve hepato-
cytes. Furthermore, the antibody also promotes HBsAg reduction
(or clearance) in the circulation. It has also been shown that
HBsAg-specific antibodies could be internalized into infected cells
and therefore partially inhibit HBsAg secretion from these cells,
implicating intracellular blocking of virion and protein release as
anadditionalmechanismof action.67,68 Importantly, in the context
of infectedpatients, additional intrinsic effector functions could be
induced through the formation of immune complexes. More
specifically, clearance of circulating virions, antigens or infected
cells could be promoted via antibody-dependent cell-mediated
cytotoxicity and/or other Fc-mediated effector responses such as
complement lysis or phagocytosis.55,56,69–73 Accordingly, many
therapeutic advantages could be proposed in a clinical setting: 1)
reductionof thehepatic accumulation of covalently closed circular
DNA, one of themain causes of HBV persistence;74,75 2) mediation
of serum HBV/HDV and HBsAg clearance, which may ultimately
counteract the challenging T-cell exhaustionmechanisms that are
characteristic in patients with chronic HBV infection;76 3) overall
risk reduction of viral reactivation (following liver-trans-
plantation);77 and finally 4) potential allowance of safe with-
drawal of antiviral drugs.78

In conclusion, we show the added value of an entry-inhibiting
hu-mAb in the context of HBV and HDV (super)infection pro-
phylaxis and its potential use as treatment for chronic HBV or
HBV/HDV (co-)infection. For the experiments presented herein,
we used either patient-derived virus or cell culture-derived virus
(genotype D for HBV and genotype 1 for HDV) in human-liver
chimeric mice that were transplanted with hepatocytes from
four different donors. Further confirmation using additional viral
genotypes and various hepatocyte donors with distinct genetic
backgrounds is warranted. Overall, our data suggest that this hu-
mAb is an interesting candidate to complement current thera-
pies or antivirals (under development) to eradicate both HBV and
HDV infections. Decreasing or even eliminating the high levels of
circulating HBsAg in patients with chronic infection may provide
an opportunistic window for other antiviral therapies targeting
later steps in the viral life cycle or the immune system to
eventually cure chronic infection.
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