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Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many
life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections
in cystic fibrosis, complex urinary tract infections and endocarditis. Although
aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their
selective toxicity to the kidney and inner ear continue to be unraveled despite more than
70 years of investigation. The following mechanisms each contribute to aminoglycoside-
induced toxicity after systemic administration: (1) drug trafficking across endothelial
and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption
of intracellular physiological pathways. Specific factors can increase the risk of
drug-induced toxicity, including sustained exposure to higher levels of ambient sound,
and selected therapeutic agents such as loop diuretics and glycopeptides. Serious
bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic
inflammatory responses that also potentiate the degree of ototoxicity and permanent
hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular
function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell
uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.

Keywords: aminoglycosides, gentamicin, ototoxicity, cochleotoxicity, nephrotoxicity, inflammation, systemic
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AMINOGLYCOSIDE ANTIBIOTICS

Aminoglycosides are among the most efficacious antibiotics used to treat serious Gram-negative
infections by Pseudomonas, Salmonella and Enterobacter species (Forge and Schacht, 2000).
The first identified aminoglycoside, streptomycin, was isolated from Streptomyces griseus in
1944 (Schatz et al., 1944), followed by neomycin from Streptomyces fradiae (Waksman and
Lechevalier, 1949). In 1957 and 1963, kanamycin and gentamicin (Figure 1) were isolated from
Streptomyces kanamyceticus (Umezawa et al., 1957) and the actinomycete Micromonospora
purpurea (Weinstein et al., 1963) respectively, followed by tobramycin from Streptomyces
tenebrarius (Wick and Welles, 1967) and amikacin, a semi-synthetic derivative of kanamycin A
(Kawaguchi et al., 1972). Aminoglycosides with the–mycin suffix are derived from Streptomyces
genera, while those fromMicromonospora genera have the suffix–micin. Aminoglycosides can also
treat selected Gram-positive infections like tuberculosis due to the intracellular Mycobacterium
tuberculosis (Forge and Schacht, 2000). Clinically, aminoglycosides are often used in combination
with β-lactams (like ampicillin) for combinatorial synergistic efficacy against a broad range of
bacteria, especially when the causative microbe(s) is unknown (Dressel et al., 1999), and has been
well-characterized for Pseudomonas and other Gram-negative bacteria (Niederman et al., 2001).

Nonetheless, these drugs can induce acute dose-dependent kidney failure (nephrotoxicity),
and permanent hearing loss (cochleotoxicity; defined here as hearing loss in the conventional
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FIGURE 1 | Chemical structures of selected aminoglycoside antibiotics. For gentamicin C1: R1 = R2 = CH3; gentamicin C2: R1 = CH3, R2 = H; and gentamicin C1A:
R1 = R2 = H. For kanamycin A: R1 = NH2, R2 = OH; kanamycin B: R1 = R2 = NH2; and kanamycin C: R1 = OH, R2 = NH2.

frequency range, i.e., <8 kHz) and/or balance disorders
(vestibulotoxicity). Aminoglycoside-induced vestibulotoxicity
and/or cochleotoxicity occurs in as many as 20% of patients
who received these drugs intravenously for multiple days (Ariano
et al., 2008; Al-Malky et al., 2015; Garinis et al., 2017a). Hearing
loss delays speech acquisition, education and psychosocial
development, reducing employability, income and tax revenues
(Jones andWhite, 1990; Järvelin et al., 1997; Mehl and Thomson,
1998; Naramura et al., 1999; Tambs, 2004), with a socioeconomic
burden >$1,393,000 in 2015 dollars over the life-time of each
pre-lingually deafened child (Mohr et al., 2000). Similarly, for
each adult that acquires hearing loss, the socioeconomic burden
is >$350,000 in 2015 dollars over their remaining lifespan.

The bactericidal efficacy of aminoglycosides against a broad
range of bacteria is directly related to peak concentration in the
blood. Yet aminoglycosides have a narrow therapeutic index, and
it is crucial to maintain or enhance their therapeutic efficacy
while minimizing their side effects. The increasing prevalence
of bacterial resistance to more commonly-used antibiotics,
e.g., ampicillin, β-lactams (Puopolo and Eichenwald, 2010; Tsai
et al., 2014) has resulted in the retention of aminoglycosides
as a clinically necessary alternative treatment. Aminoglycosides
also remain an attractive clinical antibiotic strategy due to
their chemical stability at ambient temperature (particularly in
sub-Sahara Africa), rapid bactericidal effect, lower incidence of
resistance, and relative lower cost compared to newer, synthetic,
more costly non-ototoxic medications.

Advances in molecular biology have enabled the bactericidal
mechanisms of aminoglycosides, and subsequent emergence of
bacterial resistance to these drugs, to be studied extensively

(Shakil et al., 2008). Furthermore, the emerging bioactivities
and potential applications of aminoglycosides continue to
be extensively investigated. For example, the K20 derivative
of kanamycin A with an octanesulfonyl chain is a broad-
spectrum antifungal that targets fungal plasma membranes
to protect agricultural crops (Shrestha et al., 2014). Selected
aminoglycosides are being tested for their ability to read-through
premature stop-codons in genetic mutations for the cystic
fibrosis transmembrane conductance regulator (CFTR) and
selected cancers (Du et al., 2006; Baradaran-Heravi et al., 2017).

Currently nine aminoglycosides are approved by the US
Food and Drug Administration (FDA) for clinical use in the
United States. Of these, gentamicin, tobramycin, and amikacin
are the most common parental agents. Gentamicin is often
preferred because of its low cost and reliable bactericidal
activity. It is administered systemically in neonatal intensive
care units (NICU), mostly for prophylaxis in preterm infants,
and discontinued once sepsis is ruled out <72 h. If sepsis is
confirmed, treatment may continue for another 10–15 days.
Tobramycin is primarily used for treating Pseudomonas
aeruginosa-induced respiratory infections in patients with
cystic fibrosis. Amikacin is particularly effective against bacteria
that are resistant to other aminoglycosides, since its chemical
structure makes it less susceptible to inactivating enzymes.
Gentamicin and tobramycin are considered more vestibulotoxic,
while amikacin, neomycin and kanamycin are considered more
cochleotoxic, though each drug affects both sensory systems to
varying degrees.

Almost all cells take up aminoglycosides, and most cells
are able to clear these drugs from their cytoplasm relatively
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quickly, by mechanisms as yet undetermined, except for inner
ear hair cells and renal proximal tubule cells which retain
these drugs for extended periods of time (Dai et al., 2006).
It is thought that this retention of aminoglycosides, plus the
higher metabolic rate of hair cells and proximal tubules cells,
contributes to their susceptibility to these drugs. This review
will focus on the trafficking and cellular uptake of systemically-
administered aminoglycosides, and their subsequent intracellular
cytotoxic mechanisms. We also review factors that potentiate
ototoxicity, and approaches to ameliorate aminoglycoside-
induced ototoxicity.

FUNCTIONAL ANATOMY OF THE
COCHLEA AND KIDNEY

Cochlea
Within the temporal bone, the cochlea is a coiled, bony
tube divided into three fluid-filled compartments by two
tight junction-coupled cellular barriers located on Reissner’s
membrane and the basilar membrane (Figure 2A). The organ
of Corti, residing on the basilar membrane, consists of sensory
hair cells and adjacent supporting cells coupled together by
apical tight junctions to form a reticular lamina. There are
typically three rows of outer hair cells (OHCs), and a single
row of inner hair cells (IHCs). The upper and lower fluid
compartments, the scala vestibuli and scala tympani, respectively,
are filled with perilymph similar to cerebrospinal fluid. These
two compartments sandwich the inner compartment, the scala
media, filled with endolymph. Uniquely, endolymph has high K+

concentrations due to active trafficking via Na+-K+-ATPases,

Na+-K+-Cl− co-transporters and rectifying potassium channels
(Kir4.1) within the stria vascularis that generates an endocochlear
potential (EP) as high as +100 mV. The stria vascularis
is also a tight junction-coupled compartment and with the
reticular lamina and Reissner’s membrane encloses the scala
media, ensuring electrochemical separation of endolymph and
perilymph (Figure 2A).

Sound pressure waves entering the cochlea tonotopically
vibrate the basilarmembrane, deflecting the stereocilia projecting
from the apices of hair cells into endolymph. These deflections
gate the mechano-electrical transduction (MET) channels on
the stereociliary membrane, enabling depolarizing transduction
currents that trigger the release of the neurotransmitter
glutamate, which in turn induces action potentials in the
innervating afferent auditory neurons (Nordang et al., 2000;
Oestreicher et al., 2002). Loss of the EP reduces cochlear
sensitivity to sound.

Kidney Tubules (Nephron)
Drugs and toxins in the blood are excreted via ultra-filtration
by the kidney. Renal arterial blood undergoes extravasation in
kidney glomeruli, and the ultrafiltrate passes into the lumen
of the proximal convoluted tubule (Figure 2B). Epithelial cells
lining the proximal convoluted tubule are characterized by their
extensive brush border of microvilli, maximizing the surface
area available to incorporate ion channels, active transporters
or exchangers and electrogenic symporters. The majority of
essential nutrients, including 90% of glucose and amino acids, are
resorbed from the ultrafiltrate in the proximal tubule. The tubule
then descends into themedulla of the kidney and sharply reverses

FIGURE 2 | (A) Cross-section of the cochlear duct, illustrating the perilymph-filled scala vestibuli and scala tympani, separated from the scala media by tight
junctions between adjacent cells (black line) of Reissner’s membrane and reticular lamina of the organ of Corti resting on the basilar membrane. Within the organ of
Corti are four longitudinal rows of sensory hair cells (in sky blue), under the tectorial membrane. The hair cells are innervated by afferent and efferent fibers (blue lines).
Within the lateral wall of the cochlea is the highly-vascularized stria vascularis (upper right); enclosing several capillary beds (red circles) lined by
tight-junction-coupled endothelial cells (black lines enclosing red circles) that form the cochlear BLB. (B) A nephron (kidney tubule) showing the glomerulus
encapsulating a single capillary bed that gathers the ultrafiltrate from blood. The proximal tubule has a brush border of microvilli that recovers the majority of essential
nutrients and ions, and the distal tubule recaptures the remaining nutrients, and excretes specific ions. Sites of major ion movements are shown. Both schematic
diagrams are not to relative scale.
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direction to ascend back to the kidney cortex, and is collectively
called the loop of Henle. In the descending limb, water is
readily resorbed, increasing the osmolarity of the ultrafiltrate,
which enables additional essential ions (Na+, K+ and Cl−) to
be resorbed in the ascending limb. As the tubule progresses into
distal convoluted tubule, further cation reclamation (K+, Ca2+)
occurs as H+ is secreted into the remaining fluid, now recognized
as urine that drains into the collecting duct and bladder prior to
being voided.

Similarities and Differences between
Cochlea and Kidney
There are many physiological similarities between the cochlea
and kidney, principally the active transport of electrolytes or
nutrients, and consequently, water follows to maintain iso-
osmolarity. Gene expression analysis has identified at least
36 genes that are significantly expressed in both cochlea and
kidney (Liu et al., 2004). More striking is the correlation of
genetic syndromes that affect both cochlear and renal function
(Izzedine et al., 2004). Both renal tubules and the stria vascularis
are closely associated with basement membranes (of similar
collagenous composition) that enclose blood vessels. Mutations
in genes for collagen result in Alport’s syndrome characterized
by progressive glomerular kidney disease and high frequency
hearing loss (Gratton et al., 2005). Bartter’s syndrome results
from a mutation in the gene for the protein barttin, a required
subunit of voltage-gated chloride channels essential for salt
and ion homeostasis in both the stria vascularis and renal
ascending limb of Henle and distal tubule (Kramer et al., 2008).
Hearing loss is associated in patients with lower estimated
glomerular filtration rate and late chronic kidney disease (Seo
et al., 2015).

Aminoglycosides are readily taken up by renal proximal
tubule cells and cochlear cells (Dai et al., 2006), and more
pertinently, they preferentially induce cytotoxicity in inner ear
sensory hair cells and proximal tubule cells in vivo than for most
other cell types (Humes, 1999). Other ototoxic compounds, like
cisplatin and loop diuretics are also directly toxic to both organs
(Humes, 1999). In addition, there is increased expression of
Mpv17, a peroxisomal protein that metabolizes reactive oxygen
species in renal glomeruli and the stria vascularis of the cochlea
following aminoglycoside exposure (Meyer zum Gottesberge
et al., 2002).

TRAFFICKING OF AMINOGLYCOSIDES
IN VIVO

Intra-Cochlear Trafficking after Systemic
Administration
In the 1980s, aminoglycosides were readily detected only in
perilymph, but not endolymph, following intravenous infusion
(Tran Ba Huy et al., 1986). Parental injection of gentamicin
attenuated efferent inhibition of auditory neurons within
1–2 h, presumptively by blocking cholinergic activity at efferent
synapses at the base of OHCs immersed in perilymph (Avan
et al., 1996; Blanchet et al., 2000). The degree of the loss

of inhibition may be predictive of subsequent permanent
sensorineural hearing loss (Halsey et al., 2005).

In vitro, aminoglycosides are effective blockers of the MET
channel on hair cell stereociliary membranes (Kroese et al.,
1989) that, in vivo, are immersed in endolymph. Similar
experiments then demonstrated that aminoglycosides rapidly
permeate through MET channels into hair cells (Marcotti
et al., 2005). Endolymph has a +80 mV potential, and
when coupled with the cochlear hair cell receptor potential
of −45 mV (IHCs) to −70 mV (OHCs), the potential
across the apical membrane of hair cells of ∼125–150 mV
(Pickles, 2012). Surprisingly, adjacent supporting cells can
have resting potentials between −80 mV and −100 mV
(Russell and Sellick, 1978, 1983). This potent electrophoretic
force likely drives cations, including aminoglycosides, across
membranes through open (non-selective) cation channels with
the requisite physicochemical properties for aminoglycoside
permeation.

To test whether aminoglycosides could enter hair cells from
endolymph in vivo, perfusion of the scala tympani with artificial
perilymph (to prevent aminoglycoside access to the basolateral
membranes of hair cells) did not visibly affect hair cell uptake
of intravenously-administered aminoglycosides. However, when
aminoglycoside-laden artificial perilymph was perfused though
the scala tympani, hair cell uptake of aminoglycosides over
their basolateral membranes was markedly reduced compared
to systemic delivery (Li and Steyger, 2011). These data strongly
suggest that systemic aminoglycosides are predominantly and
rapidly trafficked across the blood-labyrinth barrier into the
stria vascularis, and cleared into endolymph prior to entering
hair cells across their apical membranes. Aminoglycosides are
taken up by most other cochlear cells, including fibrocytes
in the lateral wall, spiral ganglion neurons, supporting cells
in the organ of Corti (Imamura and Adams, 2003; Kitahara
et al., 2005; Dai et al., 2006). Aminoglycosides are cleared
from non-sensory cells, but can be retained by surviving
hair cells for as long as 6 months (Imamura and Adams,
2003).

Cellular Changes Following
Aminoglycoside Administration
After parental injection, basal OHCs preferentially take up
aminoglycosides prior to hair cell death (Hiel et al., 1993).
Multiple dosing with aminoglycosides can induce cell-specific
changes in ion channel expression (see below) that may enhance
drug uptake following subsequent aminoglycoside dosing, e.g.,
spiral ganglion cells (Kitahara et al., 2005). Aminoglycoside-
induced hair cell death typically occurs in basal OHCs, and
extends to IHCs and more apical OHCs with increasing
cumulative dose (Forge and Schacht, 2000). The apices of dying
hair cells are extruded as the surrounding supporting cell apices
expand to seal the reticular lamina and prevent mixing of
endolymph and perilymph, and retain optimal cochlear function
in surviving hair cells. The expanded supporting cell apices, or
scar, is characterized by the deposition of new junctional and
cytoskeletal proteins at the site of the missing hair cell (Leonova
and Raphael, 1997; Steyger et al., 1997). The hair cell bodies are
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typically phagocytosed by adjacent supporting cells and resident
macrophages (Monzack et al., 2015).

Chronic kanamycin treatment leads to the selective loss of
basal OHCs, presumptively isolating IHCs and their innervating
afferent neurons which display a loss of auditory frequency
selectivity and sensitivity (Dallos and Harris, 1978); however
these basal IHCs also have damaged cytoskeletal networks
(Hackney et al., 1990). Interestingly, significant elevations in
auditory threshold occur in cochlear regions where OHCs
appear morphologically intact following chronic aminoglycoside
administration (Nicol et al., 1992; Koo et al., 2015). This may
be due to cochlear synaptopathy, where aminoglycosides have
disrupted the synapses between IHCs and their afferent neurons,
as well as decreased neuronal density in the spiral ganglion of
the cochlea (Oishi et al., 2015). Thus, cochlear synaptopathy may
account for the greater degree of cochlear dysfunction relative to
actual hair cell loss. Aminoglycosides can also induce vestibular
synaptopathy, as described elsewhere in this Research Topic
(Sultemeier and Hoffman, under review).

Nephrotoxicity
In the kidney, systemic administration of aminoglycosides can
induce severe toxicity in the proximal tubule that preferentially
takes up aminoglycosides compared to more distal tubular
regions (Dai et al., 2006). Distal tubule cells are also functionally
disrupted by aminoglycoside block of magnesium and other
cation channels, leading to magnesium wasting and block of
ion channel function (Kang et al., 2000). Overall, disruption of
kidney function tends to be short-lived, as damaged and dying
proximal tubule cells are replaced through cellular proliferation
(Xie et al., 2001).

CELLULAR UPTAKE OF
AMINOGLYCOSIDES

A major factor in susceptibility to aminoglycoside-induced
toxicity is the cellular uptake of these drugs prior to inducing cell
death.

Endocytosis
Aminoglycosides are endocytosed at the apical membranes of
hair cells, i.e., from endolymph, and transported to lysosomes
(Hashino et al., 1997; Hailey et al., 2017). Sufficient lysosomal
sequestration of aminoglycosides was hypothesized to induce
lysosomal lysis, releasing both aminoglycosides and catabolic
hydrolases, to initiate cell death (Hashino et al., 1997; Kroemer
and Jäättelä, 2005). However, blockade of endocytosis only
marginally reduced hair cell uptake of aminoglycosides and
did not prevent hair cell death (Alharazneh et al., 2011;
Hailey et al., 2017). Aminoglycosides in the cytoplasm can
be sequestered by endosomes prior to being trafficked to
lysosomes, a novel form of autophagy (Hailey et al., 2017).
Impeding the lysosomal trafficking of aminoglycoside-laden
endosomes potentiated drug-induced hair cell death, suggesting
that endosomal sequestration of aminoglycosides can partially
protect hair cells (Hailey et al., 2017).

In the kidney, megalin, also known as the low density
lipoprotein-related protein 2 (LRP2), associates with cubulin, a
co-receptor, and when bound to aminoglycosides, the complex is
endocytosed (Christensen and Nielsen, 2007). Megalin-deficient
mice are profoundly deaf by 3 months of age (early-onset
presbycusis) and have reduced renal uptake of aminoglycosides
(Schmitz et al., 2002; Köonig et al., 2008). In the cochlea,
megalin is expressed near the apical (endolymphatic) membrane
of strial marginal cells, but is not expressed in cochlear hair
cells (Köonig et al., 2008). This suggests that megalin-dependent
endocytosis of aminoglycosides by marginal cells, i.e., clearance
from endolymph, could provide partial otoprotection for hair
cells.

Ion Channels
Aminoglycosides can permeate many ubiquitously-expressed
non-selective cation channels with the requisite physicochemical
properties to accommodate aminoglycosides. In addition to
the inner ear and kidney, aminoglycosides are readily taken
up by sensory neurons in the dorsal root and trigeminal
ganglia, linguinal taste receptors, and sensory neurons of hair
follicles (Dai et al., 2006). Each location expresses a variety of
aminoglycoside-permeant ion channels, including non-selective
Transient Receptor Potential (TRP) cation channels.

In the inner ear, aminoglycosides readily permeate the
non-selective MET cation channel expressed on the stereociliary
membranes of hair cells (Marcotti et al., 2005). Although
the identity of MET channels (pore diameter ∼1.25 nm)
remain uncertain, their electrophysiological properties
are well-characterized and major components, including
transmembrane channel-like (TMC) 1 and TMC2 proteins, have
been identified (Farris et al., 2006; Kawashima et al., 2011).
Mutations in myosin VIIA, another component of the MET
complex, dysregulate MET channel conductance, reducing drug
uptake by hair cells (Kros et al., 2002). Extracellular cadherin-23
and protococadherin-15 proteins form the stereociliary tip-links
that mechanically gate the MET channel, and mutation in these
genes reduced aminoglycoside uptake, prolonging hair cell
survival compared to wild-type hair cells (Vu et al., 2013). The
conductance of MET channels is modulated by extracellular
[Ca2+], and reduced by channel blockers like amiloride, curare
or benzamil; each can reduce hair cell uptake of aminoglycosides
and/or prolong hair cell survival (Marcotti et al., 2005; Coffin
et al., 2009; Alharazneh et al., 2011; Hailey et al., 2017). Increasing
the membrane potential difference between the extracellular
fluid and the negatively-polarized cytoplasm increases cellular
uptake of the cationic aminoglycosides in hair cells and renal
cells (Marcotti et al., 2005; Myrdal and Steyger, 2005).

Several identified non-selective cation channels are candidates
for aminoglycoside permeation, particularly TRP channels with
pore diameters sufficient to admit the maximal cross-sectional
diameter of aminoglycosides (0.8–0.9 nm). The TRP vanilloid
receptor 1, TRPV1, was identified using a number of channel
modulators (Myrdal and Steyger, 2005). TRPV1 is activated by
heat (>43◦C), and is also stimulated by capsaicin (or analogs) and
protons (Caterina et al., 1997; Vellani et al., 2001). TRPV1 has a
pore diameter of ∼1 nm (Jara-Oseguera et al., 2008) that can be
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further dilated by agonists (Bautista and Julius, 2008). Capsaicin
activation of cells heterologously expressing TRPV1 induces
rapid cell death in streptomycin-containing culture media
(Caterina et al., 1997), suggestive of aminoglycoside permeation
and subsequent cytotoxicity. TRPV1 is expressed by hair cells
and plays a critical role in cisplatin-induced toxicity (Zheng et al.,
2003; Mukherjea et al., 2011).

TRPV4 channels are temperature-sensitive (25–34◦C) cation
channels that are also activated by osmotic swelling of cells, and
chemically activated by 4α-phorbol 12,13-didecanoate (Liedtke
et al., 2000; Vriens et al., 2004). TRPV4 has a large pore
diameter (Shigematsu et al., 2010), is expressed on the apical
surface of hair cells, and is aminoglycoside-permeant when
overexpressed in kidney proximal tubule cell lines (Karasawa
et al., 2008). Low [Ca2+] increase the open probability of
TRPV4 channels (Banke, 2011). Crucially, endolymph has
low [Ca2+] (Wangemann and Schacht, 1996), increasing the
likelihood of aminoglycosides entering the cytoplasm of cells
with membranous TRPV4 channels bathed by extracellular
endolymph.

TRPA1 (TRP channel, subfamily A, member 1) channels are
inflammatory, irritant and oxidative stress sensors (Kwan et al.,
2006; Macpherson et al., 2007; Bessac et al., 2008), and appear to
reside in the basolateral membrane of OHCs (Stepanyan et al.,
2011). TRPA1 channels have a pore diameter of 1.1 nm and
show agonist-induced dilation (to ∼1.4 nm; Karashima et al.,
2010), larger than the molecular diameter of aminoglycosides.
The TRPA1 agonists, cinnamaldehyde and 4-hydroxynonenal
(4-HNE), both increased OHC uptake of aminoglycosides,
presumptively across their basolateral membranes in vitro
(Stepanyan et al., 2011), suggesting that endogenous intracellular
activation of basolateral TRPA1 channels due to oxidative stress,
induced by noise (Henderson et al., 2006) or aminoglycoside
exposure (Lesniak et al., 2005), could augment hair cell
uptake of aminoglycosides from the scala tympani. The
promiscuous permeation of several non-selective cation channels
by aminoglycosides suggest that additional aminoglycoside-
permeant channels will be identified (based on permeation by
other cationic organic compounds). These include connexins
(or gap junctions), pannexins (hemi-channels), canonical
TRPC3 with a large inner chamber (∼6 nm diameter) and P2X
channels among others (Weber et al., 2004; Mio et al., 2007;
Crumling et al., 2009; Torres et al., 2017).

Transporters
An electrogenic Na+-ligand symporter, sodium glucose
transporter 2 (SGLT2), resorbs 90% of lumenal glucose
from renal ultra-filtrate in proximal tubules (Kanai et al.,
1994). Inhibitors of SGLT2 inhibitors significantly block
renal glucose reabsorption (Ghosh et al., 2012). SGLT2 has a
large, hydrophilic and elastic vestibule, with an internal pore
diameter of 3 nm, and an exit pore (into cytosol) of 1.5–2.5 nm,
sufficient for aminoglycoside permeation. Aminoglycosides
are complex sugars connected by glycosidic linkage (Neu
and Gootz, 1996), and overexpression of SGLT2 in cell lines
increased cellular uptake of aminoglycosides and exacerbated
subsequent cytotoxicity (Jiang et al., 2014). Inhibition of

SGLT2 by phlorizin reduced aminoglycoside-induced toxicity
in proximal tubule cells in vitro and in vivo. However, phlorizin
inhibition of SGLT2 in vivo did not reduce cochlear loading
of aminoglycosides, potentially due to low cochlear expression
levels of SGLT2, and/or by the phlorizin-induced elevation of
serum aminoglycoside levels (Jiang et al., 2014). Since acute
pharmacological inhibition or genomic loss of SGLT2 function
did not affect auditory function (Jiang et al., 2014), this
suggests that aminoglycoside (and glucose) trafficking across
the blood-labyrinth barrier is accomplished by other molecular
mechanisms, such as the facilitated glucose transporters
(GLUTs; Ando et al., 2008). It is not yet known whether GLUTs
are aminoglycoside-permeant and their pore dimensions remain
to be determined, although it is known that the stria vascularis
and organ of Corti both express GLUT5 (Belyantseva et al.,
2000).

NOISE AND AMINOGLYCOSIDES

Loud sounds affect almost all cochlear cell types, including
physically disrupting hair cell stereocilia, mitochondria, and
the loss of synapses between hair cells and afferent neurons
leading to transient and permanent hearing losses that accelerate
the onset of presbycusis (Bohne et al., 2007; Kujawa and
Liberman, 2015). Exposure to loud sounds synergistically
potentiates the ototoxicity of aminoglycosides (Brown et al.,
1978), presumptively by the summation of reactive oxygen
species generated by each insult alone (Kopke et al., 1999).
Loud sounds also break tip-links between stereocilia, closing
the mechanically-gated MET channels (Husbands et al., 1999;
Kurian et al., 2003). Sound levels that induce temporary
threshold shifts (TTS) enhancedOHC uptake of aminoglycosides
in mice, yet significantly reduced the number of tip links
between OHC stereocilia (Li et al., 2015). This indicates that
increased uptake of aminoglycosides by hair cells occurs by a
mechanism distinct from MET channels. Loss of tip links would
hyperpolarize hair cells, increasing the electrophoretic driving
force from endolymph into hair cells, facilitating aminoglycoside
permeation of other non-selective cation channels (Li et al.,
2015).

The synergistic ototoxicity of loud sounds and
aminoglycosides is not confined to simultaneous exposure. Loud
sound exposure weeks prior to treatment with aminoglycosides
can also potentiate aminoglycoside-induced hearing loss (Ryan
and Bone, 1978). Low doses of aminoglycosides prior to
loud sound exposure can reduce hearing loss compared to
those exposed to loud sounds alone, a phenomenon called
preconditioning (Fernandez et al., 2010), yet this is dependent
on dosing regimen, age of treatment, anti-oxidant defenses and
genetic background (Lautermann and Schacht, 1996; Kopke
et al., 1999; Ohlemiller et al., 2011). Identifying the physiologic
or genetic mechanisms behind these variations could establish
who is at elevated risk of acquired hearing loss. These studies
are clinically relevant as aminoglycosides are systemically
administered in NICU, where sustained levels of higher ambient
sound levels (Williams et al., 2007; Garinis et al., 2017b) could
increase the risk of aminoglycoside-induced cochleotoxicity.
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CO-THERAPEUTICS THAT POTENTIATE
AMINOGLYCOSIDE-INDUCED
OTOTOXICITY

Most prominent are the loop diuretics, administered to reduce
high blood pressure and edema. In sufficient dosing it will
cause temporary, or in some cases permanent, hearing loss.
Loop diuretics block Na+-K+-Cl− co-transporter trafficking
of potassium into marginal cells, resulting in a loss of the
EP (Higashiyama et al., 2003). This drug-induced loss of
EP facilitates (by unknown mechanisms) greater entry of
aminoglycosides into endolymph, and once the EP is restored,
rapid and greater hair cell death (Rybak, 1982; Tran Ba Huy
et al., 1983). This outcome is used experimentally to accelerate
experimental timeframes in studies of cochlear repair and
regeneration processes in mammals (Taylor et al., 2008).

Vancomycin, a glycopeptide antibiotic commonly-prescribed
in the NICU (Rubin et al., 2002), can enhance aminoglycoside-
induced ototoxicity in preclinical models (Brummett et al., 1990).
Vancomycin alone induced acute nephrotoxicity in ∼1–9% of
neonates (Lestner et al., 2016), yet conflicting evidence for stand-
alone vancomycin-induced ototoxicity in humans and preclinical
models suggest that potential confounders and clinical settings
(e.g., inflammation, see ‘‘Inflammation and Aminoglycosides’’
Section below) need to be considered in the analyses.

INFLAMMATION AND AMINOGLYCOSIDES

Until recently, the inner ear has been considered an
immunologically-privileged site, as major components of
the inflammatory response (e.g., immune cells, antibodies) are
largely excluded by the blood-labyrinth barrier from inner ear
tissues (Oh et al., 2012). This barrier is considered to reside at the
endothelial cells of the non-fenestrated blood vessels traversing
through the inner ear. However, recent pioneering studies show
active inner ear participation in classical local and systemic
inflammatory mechanisms, with unexpected and unintended
consequences.

Middle ear infections increase the permeability of the round
window to macromolecules, enabling pro-inflammatory signals
and bacterial endotoxins in the middle ear to penetrate the
round window into cochlear perilymph (Kawauchi et al., 1989;
Ikeda et al., 1990). Spiral ligament fibrocytes lining the scala
tympani respond to these immunogenic signals by releasing
inflammatory chemokines that attract immune cells to migrate
across the blood-labyrinth barrier into the cochlea, especially
after hair cell death—another immunogenic signal (Oh et al.,
2012; Kaur et al., 2015), and reviewed elsewhere in this
Research Topic (Wood and Zuo, 2017). In addition, perivascular
macrophages adjacent to cochlear blood vessels (Zhang et al.,
2012), and supporting cells in the organ of Corti, exhibit
glial-like (anti-inflammatory) phagocytosis of cellular debris
following the death of nearby cells (Monzack et al., 2015).
These data imply that inner ear tissues can mount a sterile
inflammatory response similar to that observed after noise-
induced cochlear cell death (Hirose et al., 2005; Fujioka et al.,
2014).

In contrast, systemic inflammatory challenges experimentally
do not generally modulate auditory function (Hirose et al.,
2014b; Koo et al., 2015), with meningitis being a major
exception. Nonetheless, systemic inflammation changes cochlear
physiology, vasodilating cochlear blood vessels, although the
tight junctions between endothelial cells of cochlear capillaries
appear to be intact (Koo et al., 2015). Systemic inflammation
also induces a 2–3 fold increase in the permeability of
the blood-perilymph barrier (Hirose et al., 2014a), and
increased cochlear levels of inflammatory markers (Koo
et al., 2015). Systemic administration of immunogenic stimuli
together with aminoglycosides triggered cochlear recruitment
of mononuclear phagocytes into the spiral ligament over
several days (Hirose et al., 2014b). Thus, cochlear tissues
participate in the systemic inflammatory response induced
by systemic immunogenic stimuli, as well as middle ear or
intra-cochlear immunogenic stimuli from bacteria or cellular
debris.

To date, most studies of aminoglycoside-induced ototoxicity
have been conducted in healthy preclinical models, unlike
the administration of aminoglycosides to those with severe
infections (and consequent inflammation) in clinical settings.
Preclinical models with systemic inflammation, induced by
low doses of bacterial lipopolysaccharides displayed increased
cochlear uptake of aminoglycosides, and enhanced levels
of cochleotoxicity without altered serum drug levels (Koo
et al., 2015). Inflammation also potentiates cisplatin-induced
ototoxicity (Oh et al., 2011). The potential mechanisms by
which systemic inflammation enhances aminoglycoside-induced
ototoxicity is discussed elsewhere in this Research Topic (Jiang
et al., under review). Much further work is required to unravel
how inflammation affects: (i) cochlear physiology; and (ii) repair
of cochlear lesions following noise exposure or ototoxicity,
as discussed elsewhere in this Research Topic (Kalinec et al.,
2017).

INTRACELLULAR MECHANISMS OF
AMINOGLYCOSIDE COCHLEOTOXICITY

Although molecular mechanisms involving reactive oxygen
species, c-Jun N-terminal kinase (JNK) and caspase signaling
cascades have been described elsewhere in detail (Ylikoski et al.,
2002; Matsui et al., 2004; Lesniak et al., 2005; Coffin et al.,
2013), there are still gaps in understanding how aminoglycosides
induce cytotoxicity. Below, we focus how mitochondria and
endoplasmic reticula (ER) are also primary induction sites for
aminoglycoside-induced cytotoxicity.

As antimicrobial agents, aminoglycosides target bacterial
ribosomes and induce misreading during protein synthesis
(Cox et al., 1964; Davies and Davis, 1968). A genetic study
demonstrated that aminoglycoside susceptibility can be
transmitted by matrilineal descent, suggesting mitochondrial
inheritance (Hu et al., 1991). Analysis of mitochondrial
ribosomes revealed that the A1555G polymorphism in 12S
rRNA is associated with aminoglycoside-induced hearing
loss (Prezant et al., 1993). Other mitochondrial 12S rRNA
mutations, including C1494T and T1095C, also increase
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susceptibility to aminoglycoside ototoxicity (Zhao H. et al.,
2004; Zhao L. et al., 2004). Mitochondrial mutations that lead
to 12S rRNA binding with a higher affinity to aminoglycosides
can cause misreading of the genetic code and mistranslated
proteins is a primary mechanism of cytotoxicity (Hobbie
et al., 2008; Qian and Guan, 2009). The variety of novel
aminoglycoside-interacting proteins involved in mitochondrial
respiration, in addition to other ribosomal or nuclear-
targeting proteins with a basic-peptide motif, supports the
hypothesis that mitochondrial function is a primary site
of aminoglycoside-induced cytotoxicity (Kommareddi and
Schacht, 2008). Additionally, mutations in TRMU, a nuclear
modifier gene, can modulate the phenotypic manifestation
of deafness-associated 12S rRNA mutations (Guan et al.,
2006).

Aminoglycosides also induce ribotoxic stress by
binding to cytosolic rRNA to inhibit protein synthesis
in eukaryotes (Francis et al., 2013). Aminoglycosides
have a higher binding affinity (Kd of 1.7 µM) for the
28S rRNA than for 12S rRNA, a concentration readily
reached in hair cells at clinically-relevant concentrations
(Marcotti et al., 2005; Francis et al., 2013). Through these
mechanisms, aminoglycosides could further inhibit eukaryotic
protein synthesis, and activate stress-induced apoptosis
mechanisms.

Many cytosolic proteins also bind to aminoglycosides
(Karasawa et al., 2010). Calreticulin, an ER chaperone protein
(Horibe et al., 2004; Karasawa et al., 2011), assists in
protein folding, quality control and degradation (Williams,
2006). Although calreticulin is ubiquitously expressed, it
is highly expressed in cochlear marginal cells, and hair
cell stereocilia (Karasawa et al., 2011). Calreticulin binds
to Ca2+ and aminoglycosides at the same site (Karasawa
et al., 2011). Aminoglycoside binding to calreticulin likely
disrupts the chaperone activity, homeostatic calcium buffering
or regulation of calreticulin activity in these cells that
becomes cytotoxic (Bastianutto et al., 1995; Mesaeli et al.,
1999). Aminoglycosides also dysregulate intracellular Ca2+

stores to facilitate toxic transfers of Ca2+ from the ER into
mitochondria via inositol-1,4,5-triphosphate (IP3) receptors
(Esterberg et al., 2013). This, in turn, elevatesmitochondrial Ca2+

that underlies elevated levels of both mitochondrial oxidation
and cytoplasmic ROS prior to cell death (Esterberg et al.,
2016).

Aminoglycosides can bind to another ER protein, CLIMP-63
(Karasawa et al., 2010), thought to anchor microtubules to the ER
(Sandoz and van der Goot, 2015). CLIMP-63 is highly expressed
in cultured HEI-OC1 cells derived from the murine organ of
Corti. Aminoglycosides oligomerize CLIMP-63 that then bind
to 14-3-3 proteins; knockdown of either CLIMP-63 or 14-3-3β
suppressed aminoglycoside-induced apoptosis (Karasawa et al.,
2010). 14-3-3 proteins are implicated in both pro- and
anti-apoptosis mechanisms that involve p53, tumor suppressor
gene, and binding of 14-3-3 proteins to MDMX, a negative
regulator of p53, induces apoptosis (Okamoto et al., 2005).
Thus, aminoglycoside binding to CLIMP-63 may promote
p53-dependent apoptosis via 14-3-3 inhibition of MDMX.

POTENTIAL CLINICAL APPROACHES TO
REDUCE AMINOGLYCOSIDE UPTAKE OR
OTOTOXICITY

Over 5% of the world’s population, ∼360 million people,
have hearing loss (WHO, 2012; Blackwell et al., 2014).
Two major otoprotective strategies against aminoglycoside-
induced hearing loss have been proposed. One is to reduce
drug uptake by cells to prevent cytotoxicity; another is
to interfere with mechanisms of aminoglycoside-induced
cytotoxicity.

Reducing Cellular Uptake of
Aminoglycosides
In the NICU, aminoglycosides, especially gentamicin, are often
obligatory treatments to treat life-threatening sepsis (Cross et al.,
2015). NICU environments have loud ambient sound levels
(Williams et al., 2007; Garinis et al., 2017b), and a significantly
increased incidence of hearing loss in NICU graduates (Yoon
et al., 2003) that may be due to the synergistic effect of ambient
sound levels increasing cochlear uptake of aminoglycosides (Li
et al., 2015). Thus, efforts to reduce ambient sound levels in the
NICU will be welcomed.

Inflammation caused by severe bacterial infections
also increase cochlear uptake of aminoglycosides and
subsequent ototoxicity (Koo et al., 2015). Administration of
anti-inflammatory agents prior to or during aminoglycoside
treatment may be effective as for etanercept, an antibody,
that blocks the pro-inflammatory signaling receptor TNFα,
in ameliorating noise-induced hearing loss (Arpornchayanon
et al., 2013). Etanercept and perhaps other anti-inflammatory
agents can reduce cochlear inflammation (Satoh et al., 2002),
and could also reduce cochlear uptake of aminoglycosides, to
better preserve auditory function, similar to glucocorticoids
restoring auditory function by improving the ion homeostatic
(mineralocorticoid) activity of the blood-labyrinth barrier
(MacArthur et al., 2015).

The zebrafish lateral line is an excellent model to conduct
high throughput screening of compounds that protect
hair cells from ototoxicity (Harris et al., 2003). A recent
screening of over 500 natural compounds identified four novel
bisbenzylisoquinoline derivatives, berbamine, E6 berbamine,
hernandezine, and isotetrandrine, as otoprotective agents that
reduce hair cell uptake of aminoglycosides (Kruger et al.,
2016; Kirkwood et al., 2017). Since these compounds block
the aminoglycoside-permeant MET channels, these drugs
are also expected be effective in reducing mammalian hair
cell uptake of aminoglycosides in vitro, yet, verification is
crucial (Majumder et al., 2017). It is also crucial to test in vivo
following local or systemic administration to ensure these
compounds can enter the compartmentalized endolymphatic
fluids.

Reducing Aminoglycoside Cytotoxicity
Several anti-oxidants like N-acetylcysteine, D-methionine
and edaravone reduce aminoglycoside-induced ototoxicity
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in preclinical models (Somdaş et al., 2015; Campbell et al.,
2016; Turan et al., 2017), suggesting that drug-induced
generation of reactive oxygen species leads to aminoglycoside-
induced ototoxicity. Several anti-oxidants show otoprotection
against both aminoglycosides and cisplatin, implying that
induction of oxidative stress is a shared mechanism of
cytotoxicity for these ototoxins (Lorito et al., 2011; Tate
et al., 2017). If this is the case, then dosing regimens reducing
cisplatin-induced ototoxicity may also translate to being
otoprotective for aminoglycoside-induced ototoxicity. An
in vitro screen to test for the otoprotective (or ototoxic)
properties of antioxidants in the organ of Corti explants is
described elsewhere in this Research Topic (Noack et al.,
2017).

Another innovative strategy is to develop aminoglycosides
like apramycin with minimal affinity for eukaryotic
mitochondrial ribosomes while retaining strong activity against
clinical pathogens (Matt et al., 2012). An alternative, pioneering
method is to modify specific amine groups of sisomicin (a
biosynthetic precursor of gentamicin), generating several
designer aminoglycosides. One modified aminoglycoside,
N1MS, displayed significantly reduced ototoxicity while
retaining bactericidal efficacy in preclinical models (Huth et al.,
2015).

Acetylation of histones, proteins required for chromatin
regulation of gene transcription, is associated with gene
transcription activation, and histone deacetylases (HDACs)
regulate this process. Aminoglycosides also hypo-acetylate
histones, reducing transcription factor binding to DNA, causing
decreased levels of gene expression (Chen et al., 2009). Since
HDACs remove histone acetylation, inhibitors of HDACs were
found to provide otoprotection in cochlear explants (Chen
et al., 2009), but not in vivo (Yang et al., 2017). In contrast,
systemic HDAC inhibition using suberoylanilide hydroxamic
acid (SAHA) resulted in almost complete protection against
combined kanamycin and furosemide-induced ototoxicity,
and this mechanism involved activating the NF-κB pathway
(Layman et al., 2015), indicating that verification of candidate
otoprotective agents requires testing in models that more
closely resemble clinical situations, i.e., chronic dosing with
aminoglycosides, preferably in the setting of inflammation (Koo
et al., 2015). In the same vein, interfering with cell death signaling
pathways also promoted acute hair cell survival and attenuated
drug-induced hearing loss following chronic aminoglycoside
dosing (Ylikoski et al., 2002).

Another promising approach involves activating heat shock
proteins (HSPs), including HSP70, to promote hair cell
survival against aminoglycoside ototoxicity (Taleb et al., 2008).

Heat shock induces expression and secretion of HSP70 by
supporting cells to effect otoprotection of hair cells (May et al.,
2013). Intriguingly, exposure to sound sufficient to transiently
stress the cochlea (without inducing permanent hearing loss,
i.e., preconditioning) upregulated the expression of HSP70
(and HSP32) expression to significantly reduce aminoglycoside-
induced hearing loss in preclinical models (Roy et al., 2013).
Further discussion of the pro-survival and cell death factors
influencing hair cell survival and hair cell death via autonomous
and non-autonomous mechanisms are discussed elsewhere in
this Research Topic (Francis and Cunningham, 2017).

CONCLUSION

Aminoglycoside antibiotics remain crucial
pharmacotherapeutics for severe bacterial infections, despite
their known side effects and the emergence of other (more
labile) classes of broad-spectrum antibiotics. Aminoglycosides
are also preferred due to their robust stability at ambient
temperatures when used by itinerant healthcare providers in the
field, and because of their bactericidal efficacy against bacteria
resistant to other antibiotics. Increasing our understanding of
aminoglycoside-induced (oto)toxicity requires greater insight
into the mechanisms of cellular uptake kinetics, transcellular
trafficking and intracellular disruption of physiological activities
by aminoglycosides, especially in models that better mimic
clinical settings such as exposure to higher levels of ambient
sounds, co-therapeutics and/or inflammation that potentiate the
degree of ototoxicity. Modifying dosing protocols, the structure
of current aminoglycosides, and/or increased verification of
candidate otoprotective agents could all enable aminoglycosides
to be used more readily with reduced risks of lifelong ototoxicity
in hospital.
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