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Abstract: Ceramides, abundant sphingolipids on the cell membrane, can act as signaling molecules to
regulate cellular functions including cell viability. Exogenous ceramide has been shown to exert potent
anti-proliferative effects against cancer cells, but little is known about how it affects reactive oxygen species
(ROS) in lung cancer cells. In this study, we investigated the effect of N-octanoyl-D-erythro-sphingosine
(C8-ceramide) on human non-small-cell lung cancer H1299 cells. Flow cytometry-based assays indicated
that C8-ceramide increased the level of endogenous ROS in H1299 cells. Interestingly, the ratio of
superoxide dismutases (SODs) SOD1 and SOD2 seem to be regulated by C8-ceramide treatment.
Furthermore, the accumulation of cell cycle G1 phase and apoptotic populations in C8-ceramide-treated
H1299 cells was observed. The results of the Western blot showed that C8-ceramide causes a dramatically
increased protein level of cyclin D1, a critical regulator of cell cycle G1/S transition. These results suggest
that C8-ceramide acts as a potent chemotherapeutic agent and may increase the endogenous ROS level by
regulating the switch of SOD1 and SOD2, causing the anti-proliferation, and consequently triggering the
apoptosis of NSCLC H1299 cells. Accordingly, our works may give a promising strategy for lung cancer
treatment in the future.
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1. Introduction

Lung cancer is a leading cause of cancer death worldwide, including in the Taiwan region.
Small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) are the primary types of
lung cancer. About 90% of lung cancer cases are diagnosed at an advanced stage where treatment
is not available [1–4]. Approximately 80% of lung cancer belongs to NSCLC histologically [5].
The progression of the epithelial cells with undetermined clinical significance affects cell proliferation,
apoptosis, angiogenesis, and activation of oncogenes [6,7]. Because NSCLC easily metastasizes into
nearby tissues or other parts of the body, NSCLC patients have a relatively high mortality rate,
and therefore, an effective treatment for NSCLC patients is urgent [8].

Ceramides, composed of fatty acid and sphingosine, are abundant sphingolipids on the cell
membrane. Ceramides have been reported to act as signaling molecules to regulate cellular
functions [9], including cellular proliferation and viability [10]. Additionally, it was well-documented
that ceramides act as essential mediators in apoptosis pathways [11,12]. Exogenous ceramides have
been reported as anti-cancer potential chemotherapeutics in malignancies, including pancreatic [13],
breast [14], gastric [15], and hematologic [16] cancer cells. Furthermore, a previous study
showed that exogenous ceramides sensitized gemcitabine-induced premature senescence [17].
Studies regarding exogenous short carbon-chain ceramides such as C2- or C6-ceramides were
well-documented [12,14,18,19]. In contrast, the bioactivities of long carbon-chain ceramide were less
addressed except some skin disease being used [20], because of its limited membrane permeability [21].

Superoxide dismutases (SODs), endogenous reactive oxygen species (ROS) scavenging enzymes,
involves the regulation of ROS level in cells. There are three types of SODs, SOD1 (CuZn-SOD) is found
in intracellular cytoplasmic spaces, SOD2 (Mn-SOD) is primarily found in the mitochondrial spaces
and SOD3 (EC-SOD) is found in extracellular spaces [22]. SOD1 overexpression is frequently observed
in many cancers [23], whereas SOD2 is downregulated [24]. SOD1 inhibition is considered to induce
cell death potentially [25], and targeting SOD1 in lung cancer has been reported [11]. Furthermore,
the expression ratio of SOD1/SOD2 seems to be a switch and plays an essential physiological role in
breast cancer cells [26]. Therefore, the modulation in the ratio of SOD1/SOD2 may be a promising
strategy for treating cancer cells.

Cyclin D1, an abundant protein in the G1 phase of the cell cycle, can induce global transcriptional
downregulation in lymphoid neoplasms [27], and also can be critical for proliferating cells in G1/S
transition [28,29]. Deregulation of cyclin D1 has been reported to be observed in cancers including
breast cancer and lung cancer cells [30,31]. Cyclin D1 has been thought to promote the cellular
proliferation and survival. Cyclin D1 composes a feedback loop of positively contributing to tumor
growth in gastric cancer reported by Hayakawa et al. [32], and cyclin D1 links the signal of extracellular
environment to upregulate proliferation of cancers including prostate cancer [33], breast cancer [34],
and bladder cancer [35]. The proliferation [36] and invasion [37] of lung cancer cells can be promoted
by regulating the expression of cyclin D1. However, the overexpression of cyclin D1 was also reported
to be correlated with apoptosis under specific concomitant signals of arrest such as serum starvation or
proliferation arrest [38]. For example, the increase of cyclin D1 artificially is sufficient to induce
the apoptosis both in neural and non-neural cell types [39]. Additionally, it was also reported
that dysfunction of cyclin D1 induces apoptosis of rat pheochromocytoma PC12 cells [40], and the
expression level changes of cyclin D1 are related to apoptosis via G1 arrest of the cell cycle in gastric
cancer cells [32].

In the study, we examined the growth inhibitory effects of C8-ceramide in NSCLC H1299 cells.
Besides, the underlying mechanism of apoptosis, especially the role of cyclin D1 and the regulation of
SOD1 and SOD2 was also discussed.
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2. Results

2.1. C8-ceramide Exerts the Anti-Proliferation Potential against H1299 Lung Cancer Cells.

H1299 lung cancer cells were treated with increasing concentrations of C8-ceramide for 24 h,
and proliferation rates were determined using Trypan blue assay. The rate of cellular proliferation
of C8-ceramide-treated H1299 lung cancer cells decreased in a dose-dependent manner. The 50%
inhibitory concentration (IC50, 24 h) of C8-ceramide for H1299 cells was 22.9 µM (Figure 1B).

Figure 1. (A) Structure of the C8-ceramide (N-octanoyl-D-erythro-sphingosine). (B) The quantitative
analysis of cell proliferation assay showed the inhibition of growth in a dose-dependent manner
(* p < 0.05, ** p < 0.001 for C8-ceramide treatment versus respective control).

2.2. C8-Ceramide May Cause the G1 Arrest of H1299 Cells

The cell cycle profiles of C8-ceramide treated H1299 lung cancer cells was examined using
flow cytometry. Cells accumulated in the G1 phase when treated with 20 and 30 µM C8-ceramide.
An increased sub-G1 population was observed at 30 and 50 µM C8-ceramide treated cells (Figure 2).

Figure 2. C8-ceramide-induced cell arrest of G1 in H1299 cells. Cells were treated with indicated
concentrations (from 10 to 50 µM) of C8-ceramide for 24 h respectively. (A) Representative cell cycle
distribution in C8-ceramide-treated H1299 cells. (B) The results of quantitative analysis. C8-ceramide
induces the apoptosis of H1299 cells in a dose-dependent manner.
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In Figure 3A, the profiles of Annexin V/PI -positive percentages were shown for the treatments
with vehicle control (0.5% DMSO) or indicated concentrations (from 10 to 50 µM) of C8-ceramide for
48 h respectively. After 48 h of the C8-ceramide treatment, the Annexin V-positive percentages of H1299
cells rose in a dose-dependent manner, and the level of cleaved caspase-3 was shown (Figure 3B,C).

Figure 3. C8-ceramide-induced apoptotic profiles of lung cancer H1299 cells. Cells were treated
with indicated concentrations (from 10 to 50 µM) C8-ceramide for 24 h and 48 h respectively. (A)
Representative profiles of apoptosis detected by Annexin V/PI double staining in C8-ceramide-treated
H1299 cells for 48 h. (B) Population assessment of early and late-stage apoptosis. * p < 0.05, ** p < 0.001
for C8-ceramide treatment versus respective control. (C) The results of the quantitative analysis for
apoptosis population (%). Data, mean ± SD (n = 3). (D) The proteolytic activation (cleaved form) of
caspase-3 in C8-ceramide treated H1299 cells. β-actin as an internal control.

2.3. The Detection of Endogenous ROS in C8-Ceramide-Treated H1299 Cells

To explore whether C8-ceramide affects the endogenous ROS level of H1299 cells, we
analyzed ROS generation of C8-ceramide-treated H1299 cells using flow cytometer-based
2′,7′-dichlorofluorescein diacetate (DCFDA) staining. The changes in endogenous ROS level by
C8-ceramide treatment for 24 h were shown (Figure 4A). The levels of endogenous ROS were
significantly increased in H1299 cells in a dose-dependent manner (* p < 0.05 and ** p < 0.001) following
C8-ceramide treatment (** p < 0.001) (Figure 4B).
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Figure 4. C8-ceramide increases the level of ROS in H1299 cells. (A) Flow cytometry-based ROS
assessment for C8-ceramide-treated cells. Cells were treated with indicated concentrations (from 0
to 30 µM) of C8-ceramide for 24 h respectively. Positive % was indicated in each panel. PC: positive
control, 1 mM H2O2. CON: vehicle control. NC: negative control, unstained cells. Quantitative analysis.
Data presented as mean ± S.D. in triplicate. Asterisks indicated statistically significant differences
compared with those of the control (* p < 0.05 and ** p < 0.001 for control versus C8-ceramide treatment
respectively). (B) The quantitative analysis. Data presented as mean ± S.D. in triplicates. Five µM
of camptothecin (CPT) as a positive control. Asterisks indicated statistically significant differences
compared with those of the control (** p < 0.001 for C8-ceramide treatment versus respective control in
6 and 12 h).

2.4. Assessment of Migration in C8-ceramide-treated H1299 cells

To examine whether C8-ceramide affects the cellular migration, a critical index of cancer metastasis,
the wound healing assay was conducted. Image panel shows the results of wound healing assay and
Boyden’s transwell assay (Figure 5). As shown in Figure 5A,B, the results showed the moderately
inhibitory effect of C8-ceramide on the migration of H1299 cells, whereas the no significant changes
were observed when we further assessed the anti-migration effect of C8-ceramide, showing that
sub-IC50 dose (below 20 µM) of C8-ceramide is ineffective to suppress the invasion of H1299 lung
cancer cells (Figure 5C,D). Therefore, the results suggesting that C8-ceramide induces anti-proliferation
and apoptosis rather than anti-migration and anti-invasion in NSCLC cancer cells.

Figure 5. The effects of C8-ceramide on the migration and invasion of H1299 lung cancer cells. (A) A
confluent culture of H1299 cells was seeded onto a 12-well plate, and cells have created a gap with
a 200 µL tip. The cells were treated with indicated concentrations (from 0 to 50 µM) of C8-ceramide
for 24 h respectively. (B) Quantitative analysis of (A) (* p < 0.05 and ** p < 0.001 for C8-ceramide
treatment versus respective control). (C) Boyden’s transwell assay was conducted to examine the effect
of C8-ceramide on the invasion of H1299 cells. (D) Quantitative analysis of (C) Magnification: 100×.
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2.5. The Modulation of SOD1 and SOD2 in C8-Ceramide Treated H1299 Cells

The C8-ceramide-induced treatment modulated the levels of SOD1 and cyclin D1 in H1299 lung
cancer cells on a protein level, which was examined by Western blotting in the present study. Both SOD1
(decreased) and cyclin D1 (increased) levels in C8-ceramide-treated H1299 cells were significantly
changed at the concentration of 20 and 30 µM (Figure 6). In contrast, the protein levels of SOD2 were
upregulated dramatically (Figure 6).

Figure 6. Regulation of SOD1/2 and cyclin D1 proteins induced by C8-ceramide. After C8-ceramide
treatment, SOD1 downregulation may be controlled by ROS, which can negative feedback to SOD1
switched SOD2 and then modulated the expression of cyclin D1. β-actin as an internal control.

3. Discussion

The modulations of ceramides as the strategy for lung cancer therapies have been
reported [12,14,41]. Both exogenous and endogenous ceramides have been reported to play essential
roles in the apoptotic death of cancer cells induced by ionizing radiation [42] or chemotherapeutic
agents [43,44]. However, little is known regarding the effects of long carbon-chain ceramides [45].
Among the subtype of NSCLC cells, large cell carcinoma has been reported to exhibit higher
invasiveness, and it is difficult for treatment [46,47]. Therefore, we first used H1299 cells, a cell
line of large cell carcinoma to examine the anti-lung cancer activity of C8-ceramide in the study.
We also observed the correlations of ROS and SOD expression in lung cancer H1299 cells following
exogenous C8-ceramide treatment.

The modulation of endogenous ROS are essential for cellular survival and proliferation [48]
and increased ROS level could provide cancer cells with advantages of survival and growth [49].
However, excessive oxidative stresses may cause cell death. A previous study showed that superoxide
dismutase SOD1 acts as an endogenous ROS scavenger and a potential contributor to the survival of
the cancer cell under conditions of high oxidative stress [50]. In the study, our results showed that the
C8-ceramide treatment causes the decreased expression of SOD1 concomitantly increased the level of
ROS stress.

Cyclin D1 has been thought to be oncogenic [51], and cyclin D1 overexpression was frequently
observed in cancers. In addition, the upregulated expression of cyclin D1 promotes the proliferation
of HT29 human colon cancer cells [52]. Crebanine, an aporphine alkaloid, was reported to exert an
anti-cancer activity through down-regulating cyclin D1 expression in lung adenocarcinoma A549 [53].
On the contrary, cyclin D1 overexpression was also reported to be correlated with apoptosis under
specific concomitant signals of arrest such as serum starvation or proliferation arrest [38], which may
due to the feedback loop between cyclin D1 and tumor suppressors. Recently, Sun’s work suggested
that cyclin D1 is required for miRNA let-7-induced cancer repression and the cell death [54].

Papa and Manfredi showed that cancer cells have elevated levels of reactive oxygen species
(ROS), which are generated by modulating superoxide dismutase (SOD) as an essential antioxidant
enzyme [25]. Furthermore, the activity of SOD2 was decreased to 87% of breast cancer cases, whereas
the levels of SOD1 and ROS were upregulated. The ratio of SOD2 to SOD1 seems to be critical
for maintaining endogenous ROS in cells. Therefore, the switch mechanism of SOD1 to SOD2 may
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play a significant role in cellular physiology, such as invasion or proliferation of breast cancer cells.
Consistently, the decrease of SOD1 and SOD2 ratio was also observed in H1299 cells following
C8-ceramide treatment, suggesting that the anti-lung cancer effects of C8-ceramide may be closely
correlated with the mechanism of SOD1 to SOD2 switch.

Recent studies regarding cell apoptosis showed the biological correlation between cyclin D1
and SOD1 in various human diseases, including genetic diseases and cancers [28,31,55]. The cell
proliferation and cell cycle are regulated by directly interacting with cyclin D1. Cyclin D1 was
up-regulated when it was involved in neurodegenerative processes related to SOD1 [30]. Furthermore,
recent evidence strongly suggested the relationship between SOD and cyclin D, for example, a cell
cycle signaling that is cyclin D at the neuronal G1-S checkpoint may be critical for the neuronal cell
death caused by mutant SOD1 [28].

However, according to the results of those above studies, likewise, our findings suggest
that C8-ceramide causes a high level of ROS that was contributed by down-regulated SOD1 and
up-regulated cyclin D to promote cell cycle G1 arrest, the growth inhibition, and apoptosis of H1299
cells. Our results indicate that a cell cycle signaling changed by the up-regulation of ROS may
reconstitute a critical step in the cell death pathway caused by SOD1 and cyclin D1, which was treated
by exogenous long carbon-chain C8-ceramide.

Importantly, the results of our study showed that C8-ceramide induces apoptosis of H1299
cells, indicating the potential of C8-ceramide against human lung cancer cells. Menon et al.’s work
investigated the regulatory role of SOD2 (MnSOD) and cyclin D1 in N-acetyl-L-cysteine (NAC)-induced
G1 phase arrest in mouse fibroblast [56], and their results suggested that NAC upregulates endogenous
O2 pathway and induces G1-arrest through both increasing SOD2 activity and decreasing cyclin
D1 [56]. However, our results showed both SOD2 and cyclin D1 are significantly accumulated in
C8-ceramide-induced G1-arrest, suggesting the cell types and drug treatments cause the different
mechanism from Menon’s work.

In the study, C8-ceramide treatment may cause the switch of SOD1/SOD2 expression and
the up-regulation of cyclin D1, which could sensitize NSCLC cells towards proliferation inhibition
and apoptosis, and we herein presented a proposed model of the pathway accordingly (Figure 7).
This model illustrated that the down-regulation of SOD1 was controlled by ROS, which resulted
in negative feedback to SOD1, causing the excessive level of cyclin D1 in the H1299 cells.
The up-regulation of ROS level and SOD2 were increased, and while the expression of SOD1 was
decreased by the switching mechanism of SOD1/SOD2, which resulted in the up-regulation of cyclin
D1 and the arrest of cell cycle G1 phase. Eventually, the cellular apoptosis is initiated, and the effector
caspase-3 is activated, causing apoptosis of H1299 cells. The results of our study suggested that the
anti-growth potential of exogenous long carbon-chain C8-ceramide against human non-small-cell lung
cancer cells may occur through the modulation of the ratio of SOD1 and SOD2. Accordingly, the study
suggested that C8-ceramide could be used for chemoprevention or chemotherapeutics of lung cancer
treatment in future applications.
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Figure 7. A proposed model of C8-ceramide-induced apoptosis and anti-proliferation of non-small-cell
lung cancer cells by modulating the differential expressions of superoxide dismutases and cell
cycle G1 arrest. After C8-ceramide treatment, the SOD1 to SOD2 switch stimulated by ROS
induces the excess accumulation of cyclin D1, a feedback loop, which in turn causes cell cycle
G1 arrest. Eventually, C8-ceramide induces the growth arrest and the apoptotic cell death in lung
cancer H1299 cells. The upwards arrows and downwards arrows indicate the upregulation and
downregulation respectively.

4. Materials and Methods

4.1. Preparation of C8-Ceramide

C8-Ceramide (D-erythro-Sphingosine, N-Octanoyl) was purchased from Calbiochem-Behring
Corp. (#219540, La Jolla, CA, USA). C8-ceramide was dissolved in DMSO (as stock solutions at 5 mM),
and the aliquots were stored at −20◦C before assays.

4.2. Cell Cultures

Human non-small-cell lung cancer H1299 cells (large cell carcinoma) were maintained in a DMEM
medium (Invitrogen, Carlsbad, CA, USA) with 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA,
USA), 100 µg/mL streptomycin, 100 U/mL penicillin, 0.03% glutamine and 1 mM of sodium pyruvate.
The cells were cultured kept at 37 ◦C in a humidified atmosphere with 5% CO2.

4.3. Cell Proliferation Assay

The proliferation rate was determined by a Trypan blue dye exclusion assay as previously
described [57,58]. In brief, 1 × 105 H1299 cells were seeded onto a 12-well culture plate. The cells were
treated with C8-ceramide at indicated concentrations for 24 h respectively. Afterward, 0.2% Trypan
blue was added to the wells. Finally, the viable cells were counted by Countess® Automated Cell
Counter (Invitrogen, San Diego, CA, USA). The assay was performed in triplicates, and the IC50 was
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calculated from the slope and intercept accordingly to the concentrations of C8-ceramide between the
half-maximal proliferative inhibitions.

4.4. Apoptosis Assessment

Apoptosis was detected by Annexin/PI double staining as previously described with minor
modifications [59]. Cells were treated with indicated concentrations of C8-ceramide for 24 h respectively.
Cells were harvested and stained with 10 µg/mL of Annexin V-fluorescein isothiocyanate and 5 µg/mL
of PI. Then cells were measured with a flow cytometer (FACSCalibur, Becton-Dickinson, Mansfield,
MA, USA). Healthy cells (Annexin V−/PI−), the necrotic (Annexin V−/PI+), early apoptotic (Annexin
V+/PI−) and late apoptotic cells (Annexin V+/PI+).

4.5. Cell Cycle Distribution

Propidium iodide (PI) (Sigma-Aldrich St. Louis, MO, USA) was used for assessing DNA
content. In brief, cells were treated with indicated concentrations of C8-ceramide for 24 h respectively.
After harvest, cells were fixed with 70% ethanol and washed with phosphate-buffered saline (PBS).
After centrifugation, cells were incubated with 10 µg/mL RNase A and 10 µg/mL propidium iodide
in PBS for 15 min at room temperature in the dark. The distributions of the cell cycle were analyzed
using a BD LSRII flow cytometer (Becton Dickinson, San Jose, CA, USA).

4.6. Flow Cytometry-based ROS assessment

The changes in endogenous ROS levels were assessed using the redox-sensitive fluorescence
indicator 2′,7′-dichlorofluorescein diacetate (DCFDA) (Sigma-Aldrich, St. Louis, MO, USA). The ROS
assessment was described previously [56]. Briefly, cells were treated with or without C8-ceramide
for 24 h respectively and then harvested and stained with the oxidative dye 100 nM DCFDA in
PBS for 30 min at 37 ◦C. The measurement wavelengths for excitation and emission were 485 and
530 nm, respectively.

4.7. Wound Healing Assay

The cells were seeded and grown on a 12-well plate for overnight. Then cells were scratched by a
200 µL tip to generate a wound area. Cells were further incubated with medium containing 8% FBS
media at 37 ◦C for 12 h for reconstructing the wound area. The wound areas were measured by a
software TScratch (http://www.cse-lab.ethz.ch) [59].

4.8. Boyden’s Transwell Assay

The invasion ability was performed by a 12-well plate combined with inserts with polycarbonate
filters (8-µm pore size). Briefly, the lower well contained 800 µL of medium containing 10% FBS.
One hundred thousand H1299 cells in serum-free medium were seeded onto a transwell insert (Greiner)
and were incubated for 16 h. Invaded cells were fixed with 4% paraformaldehyde and then stained with
Giemsa (Merck). All stained cells were counted under a microscope (TE2000-U; Nikon, Tokyo, Japan)

4.9. Western Blotting Assay

In brief, cells were collected for lysate preparation. Forty µg of protein lysates were loaded and
electrophoresed on 10% SDS-polyacrylamide gel and then transferred to nitrocellulose membranes,
and then were blocked with 5% nonfat milk. Subsequently, the membranes were reacted with primary
antibodies against SOD1 (GeneTex Co., Cat No. GTX100659, Irvine, CA, USA), SOD2 (GeneTex Co.,
Cat No. GTX116093, Irvine, CA, USA), cyclin D1 (GeneTex Co., Cat No. GTX112874, Irvine, CA, USA),
caspase-3 (Imgenex, Cat No. IMG-144A, Imgenex, San Diego, CA, USA), β-actin (Santa Cruz Biotech,
Cat No. #sc-8432, Santa Cruz, CA, USA). The membranes were further reacted with the corresponding

http://www.cse-lab.ethz.ch
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secondary antibodies. The chemiluminescence detection kit (ECLTM, Amersham Piscataway, NJ, USA)
was used for detecting specific proteins.

4.10. Statistical Analysis

All data of the study were presented as mean ± S.D. Differences between vehicle controls and
experimental groups were analyzed by one-way ANOVA test.
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