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In recent years, biologically active natural products have gradually become important
agents in the field of drug research and development because of their wide availability and
variety. However, the target sites of many natural products are yet to be identified, which is
a setback in the pharmaceutical industry and has seriously hindered the translation of
research findings of these natural products as viable candidates for new drug exploitation.
This review systematically describes the commonly used strategies for target identification
via the application of probe and non-probe approaches. The merits and demerits of each
method were summarized using recent examples, with the goal of comparing currently
available methods and selecting the optimum techniques for identifying the targets of
bioactive natural products.
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INTRODUCTION

Natural products (NPs) are a group of diverse and naturally-occurring chemical compounds or
substances with a wide range of biological activities. NPs are considered as a vital source for new drug
development that greatly assisted the field of drug innovation (Newman and Cragg, 2016). Recently,
pharmaceutical companies and drug discovery organizations have identified a large number of
bioactive molecules from NPs (Rodrigues et al., 2016), but the targets of action of these NP are still
unidentified and the underlying mechanisms of action are unclear. Generally, the development of
new drugs involves designing drug molecules based on their specific targets of action. Therefore,
identifying the targets of bioactive NPs is essential for elucidating their mechanisms of action and
optimizing existing drugs for hastening the process of new drug development (Lo et al., 2015; El-
Wakil et al., 2017). A drug target refers to the specific site in which the drug binds to the biomolecules
in the body and produces the desired therapeutic effect for the prevention and treatment of a specific
disease (Zhang, 2012). Traditional drug development was based on the principle of “one ingredient,
one target, one disease,” which indicates that the drug combines with a specific target to treat a
particular disease. However, it is very common for drugs to combine with multiple targets (Klessig
et al., 2016; Peon et al., 2017; Majumder et al., 2018), which can significantly interfere with target
identification and isolation. Interestingly, this offers novel opportunities and possibilities for the
discovery of new targets. Particularly for NPs with multiple effects and targets, the identification and
elucidation of their corresponding targets of action may provide clearer interpretation and
understanding of their biological properties (Zeng, 2018). A list of previously identified NPs,
their specific drug targets, and location of discovery are presented in Table 1.

The target identificationmethods for NPs are generally classified into two strategies (Chen, 2016) :
chemical probe and non-probe. Chemical probe approach includes Compound-centered chemical
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TABLE 1 | Chemical structures, identification methods, specific drug targets, and biological applications of known natural products.

No. Name Chemical structure Method Specific target(s) Location of
discovery

Ref.

1 FK506 (Tacrolimus) CCCP FK506-binding
protein (FKBP12),
dynamin and
neurocalc

Rat brain lysate Mabuchi et al.
(2015)

2 Radicicol ABPP Heat shock protein
90 (HSP90),
ATP citrate lyase

HeLa cells Ki et al. (2000)

3 LAF389 Proteomics METAP MDA-MB435
human breast
cancer xenograft
tumor

Towbin et al.
(2003)

4 FR177391 CCCP Protein
phosphatase 2A
(PP2A)

3T3-L1 fibroblasts Yamaoka et al.
(2005)

5 Cyclosporin A SPROX Cyclophilin A
(CYPA)

Saccharomyces
cerevisiae

West et al. (2010)

ABPP Cyclophilin A
(CYPA)

Protein mixture
consisting of
ovalbumin (OVA),
carbonic
anhydrase (CA),
CYPA, and FK
binding protein
(FKBP)

Lamos et al. (2006)

6 Withaferin A CCCP Intermediate
filament (IF) protein

Bovine aortic
endothelial cells
(BAECs)

Bargagna-Mohan
et al. (2007)

7 Pateamine A CCCP Eukaryotic
translation initiation
factor 4A (eIF4A)

RKO cells Low et al. (2007)

8 Marinopyrrole A

.

ABPP Actin HCT-116 cells Hughes et al.
(2009)

9 Resveratrol DARTS elF4A yeast strains Lomenick et al.
(2009)

10 Rapamycin DARTS FKBP12 Bacillus subtilis Lomenick et al.
(2009)

(Continued on following page)
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TABLE 1 | (Continued) Chemical structures, identification methods, specific drug targets, and biological applications of known natural products.

No. Name Chemical structure Method Specific target(s) Location of
discovery

Ref.

11 Showdomycin ABPP Oxidoreductases
and transferases

Pathogenic
bacteria

Böttcher and
Sieber (2010)

12 Vibralactone ABPP Caseinolytic Clp
protease (ClpP)

Listeria
monocytogenes

Zeiler et al. (2011)

13 Vancomycin ABPP Staphylococcal
autolysin (Atl), ABC
transporter protein

Staphylococcus
aureus and
Enterococcus
faecalis strains

Eirich et al. (2011)

14 Staurosporine ABPP Protein kinase A
(PKA), c-Src,
carboxyl-terminal
Src kinase (CSK),
Bruton’s tyrosine
kinase (BTK), ESIw,
non-protein kinases

HepG2 cancer cells Shi et al. (2011)

15 Diosgenin DARTS 1,25D3-MARRS/
Pdia3/ERp57

5XFAD mice Tohda et al. (2012)

16 Rugulactone ABPP Kinase THID Pathogenic
bacteria

Nodwell et al.
(2012)

17 Duocarmycin ABPP Aldehyde
dehydrogenase 1A1
(ALDH1A1)

A549 cancer cells Wirth et al. (2012)

18 Celastrol CCCP Annexin II, eEF1A,
β-tubulin

Human PANC-1
cells

Klaic et al. (2012)

19 Adenanthin CCCP Peroxiredoxin (Prx) I
and Prx II
peroxisomal
cysteine (CP)

NB4 cells Liu et al. (2012)

20 Eupalmerin acetate SILAC Derlin 1 ,
cytochrome b5 ,
thromboxane A
synthase 1

HL-60 leukemia
cells

Li et al. (2013)

21 Hydroxyderricin ABPP Serine-tRNA
synthetase

Staphylococcus
aureus

Battenberg et al.
(2013)

(Continued on following page)
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TABLE 1 | (Continued) Chemical structures, identification methods, specific drug targets, and biological applications of known natural products.

No. Name Chemical structure Method Specific target(s) Location of
discovery

Ref.

22 Hypothemicin iTRAQ Kinases (e.g.,
TbGSK3short,
TbCLK1, TbCLK2)

Trypanosoma
brucei

Nishino et al.
(2013)

23 Oleocanthal CCCP HSP90 HeLa cells and
histiocytic
lymphoma (U937)

Margarucci et al.
(2013)

24 Scalaradial ABPP PRXs, 14-3-3
soforms,
proteasomes

HeLa cells Cassiano et al.
(2014)

25 Pyrethroid ABPP Cytochrome P450
enzymes

Mouse liver
microsomes

Ismail et al. (2016)

26 N-acetylaspartylglutamate
(NAAG)

ABPP Prostate-specific
membrane antigen
(PSMA)

Prostate cancer
cells

Wang et al.
(2014b)

27 Iberin ABPP Toll-like receptors
(TLRs)

HEK293 cells
expressing TLRs

Shibata et al.
(2014)

28 Eriocalyxin ABPP Cysteine (Cys)62 of
the p50 protein

SMMC-7721 HCC
cells

Kong et al. (2014)

29 Cholesterol CCCP Shh protein HEK293a Shh+

cells
Ciepla et al. (2014)

30 Andrographolide ABPP-
iTRAQ

Multiple targets
(e.g., Cys62 for NF-
lB p50)

Human cancer cell
lines

Wang et al.
(2014a)

31 Acivicin ABPP ALDH4A1,
carboxylesterase 1
(CES1)

Hepatoma cell
lines, mouse liver
tissue

Kreuzer et al.
(2014)

32 Ainsliadimer A CCCP Cys46 of IKKα/β Mouse
macrophage cell
line RAW264.7

Dong et al. (2015)

33 Callyspongynic acid SILAC Various membrane-
associated proteins,
lipid biosynthesis/

HeLa cells,
HEK293 cancer
cells

Nickel et al. (2015)

(Continued on following page)
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TABLE 1 | (Continued) Chemical structures, identification methods, specific drug targets, and biological applications of known natural products.

No. Name Chemical structure Method Specific target(s) Location of
discovery

Ref.

metabolism-related
proteins

34 Cerulenin ABPP Polyamine
transporters (PATs)

Melanoma cells,
HEK293 cells
overexpressing
PATase

Zheng et al. (2015)

35 Ecumicin DARTS ClpC1-ATPase
complex

Mycobacterium
tuberculosis

Gao et al. (2015)

36 Hydroxynonenal ABPP-
SILAC

Multi-reactive Cys RKO colon cancer
cells

Yang et al. (2015)

37 Triptolide CCCP Cys83, Cys173 MDCK cells Zhao et al. (2015)

38 Zerumbone SILAC Multiple proteins HeLa cells Kalesh et al. (2015)

39 Artesunate Proteomics Protein
JCHGC09008,
Plasmodium
berghei cytochrome
oxidase

Schistosoma
japonicum-
susceptible mouse

Kong et al. (2015)

40 Chalcone ABPP β-microtubulin A549 cells Zhou et al. (2016a)

41 Folic Acid ABPP Folate receptor
α (FRα)

Fr-positive ovarian
cancer phase II
clinical trial

Srinivasarao et al.
(2015)

42 Geldanamycin SPORX HSP90 MCF-7 cells Xu et al. (2016)

43 Manassantin A SPORX Filamentin A,
elongation factor 1α

MDA-MB-231 cells Geer Wallace et al.
(2016)

(Continued on following page)
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TABLE 1 | (Continued) Chemical structures, identification methods, specific drug targets, and biological applications of known natural products.

No. Name Chemical structure Method Specific target(s) Location of
discovery

Ref.

44 Daptomycin DRATS Human ribosomal
protein S19

HeLa cells Gotsbacher et al.
(2017)

45 Kongensin CCCP HSP90, Cys420 HeLa-RIPK3 cells Li et al. (2016)

46 Gambogic acid ABPP Thioredoxin-related
transmembrane
protein 1 (TMX1),
TMX2, transferrin
receptor (TFRC),
ribosomal protein
S27a (RPS27A)

Activated HeLa
cells, K562 cells

Zhou et al. (2016c)

47 Curcumin ABPP-
iTRAQ

Multiple proteins HCT116 colon
cancer cell line

Wang et al. (2016)

48 Bile acid ABPP-
SILAC

Takeda G protein-
coupled receptor 5
(TGR5)

HeLa cells Zhuang et al.
(2017)

49 Naringenin DARTS Collagen response
mediator protein 2
(CRMP2)

5XFAD mice Yang et al. (2017)

50 Artemisinin CCCP Gephryin protein Mouse β-cell line
Min6

Li et al. (2017)

51 Betulinic acid CCCP Apoptosis-inducing
factor
mitochondrion-
associated 1
(AIFM1), metadherin
(MTDH), PDEX16

MCF-7 cells Guo et al. (2017)

52 Matrinel ABPP Annexin A2 Hep3B cells (an
HCC cell line prone
to migration and
invasion)

Wang et al.
(2017a)

DARTS HSP90 SCI mice Tanabe et al.
(2018)

53 Pseudolaric acid B ABPP Immunoglobulin C2
(IgC2)

Transmembrane
protein CD147

Zhou et al. (2017)

54 Ramariolide ABPP 30S ribosomal
proteins S4 (RpsD)

Mycobacterium
cells

Lehmann et al.
(2016)

(Continued on following page)
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proteomics (CCCP) and Activity-based protein profiling (ABPP),
while non-probe approach includes biophysics, Omics-based
approaches and computational prediction using chemical
biology data. Currently, chemical probe approaches are more
commonly used than non-probe approaches. However, non-
probe approaches have higher efficiencies and yields (Isgut
et al., 2018). This review will systematically describe the
currently available methods for target identification,

summarize their advantages and disadvantages, and provide
representative examples.

CHEMICAL PROBE APPROACH

Chemical probe approach is a growing field using biology and
chemistry for combining specific substances with NPs molecules

TABLE 1 | (Continued) Chemical structures, identification methods, specific drug targets, and biological applications of known natural products.

No. Name Chemical structure Method Specific target(s) Location of
discovery

Ref.

and S5 (RpsE),
ClpX, Ask, Hsd

55 Spongiolactone ABPP Abhydrolase
domain containing
10 (ABHD10),
ABHD16A, neutral
cholesterol ester
hydrolase 1
(NCEH1)

K562 cells,
leukemia T-cell line
(Jurkat) cells

Wright et al.
(2017b)

56 5-epi-Sinuleptolide DARTS Actin Microtubules Morretta et al.
(2017)

57 Oridonin DARTS Nucleophosmin Jurkat cells, HeLa
cells

Vasaturo et al.
(2018)

58 Gephyronic acid DARTS eIF2α Cancer-derived
related cells

Rishi et al. (2018)

59 Arzanol DARTS Brain glycogen
phosphorylase
(BGP)

HeLa cells Del Gaudio et al.
(2018)

60 Quinine CETSA Phosphorylase of
purine nucleosides
(PfPNP)

Plasmodium
falciparum

Dziekan et al.
(2019)

61 Vioprolide A TPP Nucleoporin 14
(NOP14)

Human acute
lymphoblastic
leukemia (ALL) cells

Kirsch et al. (2020)

62 NPD10084 (from the
chemical library of RIKEN
Natural Products
Depository)

CETSA Pyruvate kinase
muscle isoform 2
(PKM2)

Colorectal cancer
cells

Nagasawa et al.
(2020)

CCCP, compound-lefted chemical proteomics; ABPP, activity-based protein profiling; DARTS, drug affinity responsive target stability; SPROX, stability of proteins from rates of oxidation;
SILAC, stable isotope labeling with amino acids in cell culture; iTRAQ, isobaric tags for relative and absolute quantitation; CETSA, cellular thermal shift assay; TPP, thermal proteome
profiling.
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to form probes. It has become a commonly used method for
target identification as it can specifically identify target proteins
without affecting their biological activity and function. The
probes are generally composed of three components
(Figure 1): 1) the active group is a structure with special
biological activity in the NPs that can directly bind to the

target protein (Chang et al., 2016) ; 2) the reporter group
consists of the tag, which is used for rapid target–probe
complex positioning, enrichment, and purification; and 3) the
linker connecting the active and reporter groups, providing
enough space for the two and ensuring that no interference
with each other (Ma et al., 2018).

FIGURE 1 | Structural composition of chemical probes. (A) Basic structure of chemical probes. (B) Example of commonly used linkers. (C) Example of commonly
used reporter groups.

FIGURE 2 | Schematic diagram of the target hooking technique. The NP is first structurally designed to be anchored to an insoluble support. Elution is performed
after contact with the cell lysate, and the target proteins interacting with the affinity molecules are retained and identified by high-resolution mass spectrometry (MS).
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Depending on the binding site between the NPs and target
protein, the reporter group may be composed of biotin, radio-
labeled and fluorescent-labeled. Biotin is one of the most
widely used reporter groups due to its strong binding
capacity for streptavidin proteins. In practice, the NP is
first modified and linked to the labelled biotin. Then, the
NP is immobilized on a solid-phase carrier using the
interaction between biotin and streptavidin protein. After
co-culturing with the lysed cells and/or tissues for a certain
period, the contact time between the NPs and target proteins
in the cells or lysates is increased. Finally, a suitable lysis buffer
is selected for elution, and the target protein is identified and
isolated for enrichment. For example, Li’s group genetically
modified a mouse β-cell line (Min6) to create a model capable
of inducing aristaless related homeobox (ARX)
overexpression. Min6 was co-cultured with solid-loaded
artemisinin, which was found to bind to specific proteins in

pancreatic islet α cells and activate γ-aminobutyric acid
(GABA) receptors, inducing ARX displacement from the
nucleus to the cytoplasm and thereby promoting the
transformation of pancreatic islet α cells into pancreatic
islet β cells. This study provided new insights for the
treatment of type I diabetes (Li et al., 2017).

Furthermore, many research groups have used radio-
labeled or fluorescent-labeled probes to identify the targets
of a range of bioactive NPs, such as the flavonoid 7-O-
cinnamoyl paclitaxel (Gunesch et al., 2020) , xanthohumol
from hops (Brodziak-Jarosz et al., 2016) , and artemisinin
(Yang J. et al., 2020) . Cephalosporin I, which was recently
synthesized by Amatuni’s group using facile chemoenzymatic
synthesis, exhibited selectivity for proteasome subunits β2 and
β5 after the introduction of fluorescent labels. Further
exploration of the conformational relationships revealed
that macrocyclic seco-alcohols and the unsaturation and

FIGURE 3 | General workflow of the activity-based protein profiling (ABPP) method. The NP is first probed for specific affinity to adsorb the target protein. Affinity
purification and elution are performed after contact with the cell lysate, and identified by sodium dodecyl sulfate (SDS)-PAGE and MS.

FIGURE 4 | Flow diagram of the click chemistry–activity-based protein profiling (CC-ABPP) strategy. It starts with the synthesis of a NP with a terminal alkyne. After
sufficient binding to the target protein, the probe is formed by a click reaction with an azide bearing a fluorescent or radioactive moiety. The target protein is subsequently
identified by SDS-PAGE and MS.
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terminal branching of the lipid tail were essential for high
inhibitory potency (Amatuni et al., 2020).

Compound-Centered Chemical Proteomics
CCCP is a simple and direct strategy for the identification of
target proteins, which are isolated for enrichment based on their
interactions with the NPs. As the most used CCCP method, the
target hooking technique is based on the structure of the NPs by
selecting certain NPs molecules to immobilize on an insoluble
support, which is used to adsorb target proteins with specific
affinity (Figure 2). Elution is performed after contact with the cell
lysate, and the target proteins interacting with the affinity
molecules are retained and identified by polyacrylamide gel
electrophoresis (PAGE) and high-resolution mass spectrometry
(HRMS) (Isgut et al., 2018). Harding et al. first used this method
to isolate FKBP12, a binding protein of FK506 (Tacrolimus), and
then Mabuchi et al. demonstrated that dynamin and neurocalc
were also potential targets (Mabuchi et al., 2015). A variety of NPs
targets have been identified using CCCP, including withaferin A
(Bargagna-Mohan et al., 2007), handelin (Wang L.-C. et al.,
2017), Inula japonica Thunb.(Liu et al., 2014), pateamine A
(Low et al., 2007), triptolide (Zhao et al., 2015), celastrol
(Klaic et al., 2012), sappanone (Liao et al., 2017) and
kongensin A (Li et al., 2016). The non-covalent interaction
between target proteins and NPs is key to the implementation
of the CCCP strategy, and the reaction sites of both affect how the
compounds are immobilized on the substrate. For instance,
Margarucci et al. used HeLa and U937 cells as the model
systems for solid and hematological tumor cell lines,
respectively, and immobilized oleocanthal (OLC) by inserting
spacer arms onto carbonyl bis-imidazole agarose beads.
Experiment proved that HSP90 is a potential target for OLC
(Margarucci et al., 2013).

Similarly, Guo et al. used CCCP to link a reporter group to
betulinic acid (BA) and identified a potential target for its
antitumor activity (Guo et al., 2017). Furthermore, Liu et al.
demonstrated through CCCP that adenine targeted
peroxiredoxin (Prx) I and Prx II to treat acute promyelocytic
leukemia (Liu et al., 2012). Notably, Dong’s team used CCCP to
identify the target of ainsliadimer A, which was discovered to
exert anti-cancer and anti-inflammatory effects by acting on the
cysteine of IKKα/β, and blocking the NF-κB signaling pathway
(Dong et al., 2015).

CCCP, which combines the cross-cutting integration of synthetic
chemistry, cell biology, and MS, provides the easy synthesis and
indiscriminate analysis of all adsorbed proteins. However, this
method has two shortcomings: one is that molecules with specific
affinity are difficult to obtain and the other is the difficulty in
immobilizing NPs with large and diverse molecular structures on
solid-phase carriers while simultaneously retaining their activity.
One possible approach to this is the method developed by Zeng’s
group, which is to bond photosensitive groups to the solid-phase
carrier, thus achieving the immobilization of the active molecules
and obtaining the corresponding target groups (Zeng and Tu, 2017).
Conventional target identification methods can only be performed
in vitro, in which magnetic nanoparticles with smaller particle size
are developed that can be selectively distributed into organs for in
vivo target capture (Wang et al., 2019b). For example, Wang’s team
used affinity-based ultrafiltration-high-performance liquid
chromatography to directly identify the specific ligands for
cytochrome P450 1A2, 3A4, and 2C9 in Danshen extract s
(Wang Z. et al., 2018). In addition, the introduction of probes to
the target hooking technique may have an impact on the
identification of target proteins. Some NPs may have a change in
phenotype or conformation due to excessive spatial resistance of the
probe itself or may be introduced in an inappropriate location, thus

FIGURE5 | Flow diagram of the competitive activity-based protein profiling (ABPP) strategy. It allows the precursor compound of the probe to be co-incubatedwith
the proteome before adding the probe to bind with the protein. Then, it is possible to obtain the true target protein by comparing the protein and active site labelled by the
probe before and after the addition of the precursor compound.
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FIGURE 6 | Structures of ABPP and CCCP probes for bioactive natural products.
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FIGURE 9 | Schematic diagram of the stability of proteins from rates of oxidation (SPROX) strategy. First, two protein samples (with and without ligand) are
dispensed into a buffer containing a chemical denaturant , and hydrogen peroxide is added to the protein sample. Then, the oxidation reaction is quenched with an
excess of methionine, and the protein sample is precipitated with tricarboxylic acid for subsequent quantitative proteomics to obtain the oxidation ratio of oxidized
methionine.

FIGURE 7 | Flow diagram of the combined activity-based protein profiling (ABPP) and stable isotope labeling by amino acids in cell culture (SILAC) strategies.
Firstly, it utilizes a set of amino acid isotopemarkers for two cell populations to be cultured. The probe is added to the heavy group and the light group is used as a control
group. The labelled proteins are analyzed and identified by MS against normal proteins after a period of time.

FIGURE 8 | Schematic diagram of the drug affinity responsive target stability (DARTS) strategy. The experiment is mainly divided into a small molecule group and a
control group. Target proteins bound to small molecules are not readily hydrolysed by proteases.
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affecting their biological activity and hindering their interaction with
the corresponding target protein (Bachovchin et al., 2009).

Activity-Based Protein Profiling
Although a relatively new strategy compared to CCCP, ABPP has
become a well-established and stable method for target
identification of bioactive NPs. The general workflow of ABPP
is shown in Figure 3. Böttcher et al. reported the antibacterial
effect of showdomycin against Staphylococcus aureus using this
method (Böttcher and Sieber, 2010). Ciepla et al. synthesized an
alkynyl sterol probe, an excellent cholesterol mimic, that
effectively labelled the Sonic hedgehog (Shh) protein and
allowed its visualization and analysis (Ciepla et al., 2014).
Furthermore, using ABPP, Ken et al. discovered that radicicol
can bind and inhibit the mammalian adenosine triphosphate
(ATP) citrate lyase (Ki et al., 2000). Generally, ABPP employs
reactive probes with reactive groups to bind and covalently
modify the active site of a specific protein and determine its
function. In 2007, Cravatt’s group first utilized ABPP to monitor
the functional state of enzyme activity in complex biological
systems (Barglow and Cravatt, 2007). The target proteins for
vibralactone (Zeiler et al., 2011), vancomycin (Eirich et al., 2011),
staurosporine (Shi et al., 2011), pyrethroid (Ismail et al., 2016),
cerulenin (Zheng et al., 2015), folic acid (Srinivasarao et al., 2015),
matrine (Wang D. et al., 2017), pseudolaric acid B (Zhou et al.,
2017), spongiolactone (Wright et al., 2017b), NPs are identified
using ABPP. Nodwell et al. used the Overman rearrangement and
catalytic asymmetric esterification reaction for the synthesis of
brassinolide, followed by the introduction of an alkyne handle
into the structure (Nodwell et al., 2012). To keep the ABPP probe
as structurally similar to rugulactone, the alkyne was directly
attached to the C-16 position of the additional aromatic ring away
from the Michael receptor in the molecule. The resulting ABPP
probe was synthesized to validate the inhibitory effect of
rugulactone, in which the 4-amino-5-hydroxymethyl-2-
methylpyrimidine phosphate (HMPP) kinase was the main
target (Nodwell et al., 2012). Additionally, Lehmann et al.

discovered the effect of ramariolide on amino acid anabolism
in Mycobacterium avium (Lehmann et al., 2016). Furthermore,
Kong et al. demonstrated that NF-κB signaling in Tricholoma
tigrinum-induced SMMC-7721 hepatocellular carcinoma cells
can be inhibited by targeting the p50 protein (Kong et al.,
2014). Scalarradial, a NP of marine origin with anti-
inflammatory activity, was discovered to have peroxidase as its
primary target by Cassiano et al. (2014). Currently, target proteins
in complex systems can be investigated using ABPP in
combination with other techniques, such as click chemistry-
ABPP (CC-ABPP), photoaffinity labeling-ABPP (PAL-ABPP),
competitive ABPP, and isotope tandem orthogonal proteolysis-
ABPP (isoTOP-ABPP).

Click Chemistry-Activity-Based Protein Profiling
In recent years, CC has become the mainmethod for combination
with ABPP due to its wide range of applications, lack of toxic by-
products, and ability to produce reactions in aqueous solutions
(Li et al., 2019a). CC-ABPP starts with the synthesis of a NP with
a terminal alkyne, which is incubated with live cells. After
sufficient binding to the target protein, the probe is formed by
a click reaction with an azide bearing a fluorescent or radioactive
moiety. The target protein is subsequently identified by sodium
dodecyl sulfate (SDS)-PAGE. (Figure 4) In addition to the
expected fatty acid synthase (FAS), eight new targets were
identified. This experiment is the first to demonstrate the
applicability of ABPP for identifying other unknown cellular
targets. In addition, Zhou et al. identified β-microtubulin as
the anticancer target of chalcone by introducing azide and
alkyne groups to modify the probe C95 (Zhou B. et al., 2016),
while Prothiwa et al. specifically labeled the active site of
Pseudomonas aeruginosa quinolone biosynthetic enzyme PqsD
using an α-chloroacetamide probe with a terminal alkyne, laying
the foundation for the discovery of other enzyme inhibitors
(Prothiwa and Böttcher, 2020). On the other hand, the
antineoplastic drug acivicin has limited clinical application
because of its inherent toxicity. However, Kreuzer et al.

FIGURE 10 | Schematic diagram of the thermal proteome profiling (TPP) and cellular thermal shift assay (CETSA) methods. First, two protein samples (with and
without ligand) are dispensed into a buffer containing a chemical denaturant. Then,high-resolution MS is performed using neutron-encoded isobaric mass TMT10 as a
labelling reagent, and the complete melting curves of heavily expressed soluble proteins are obtained.
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identified acetaldehyde dehydrogenase as the target of acivicin,
offering the possibility of further exploring its cytotoxic effects
(Kreuzer et al., 2014). Several NPs have also been identified as
specific targets for pharmacological action using CC-ABPP,
including gambogic acid (GA) (Zhou et al., 2016c),
pseudolaric acid B(PAB) (Zhou et al., 2017), and quercetin
and quercetin-4-O-β-glucoside (Shibata et al., 2014). The
advantages of the CC-ABPP strategy include the detection of
smaller sized probes, greater cell membrane penetration, and
ability to complete the covalent reaction before cell disruption,
allowing multiple modifications to the NPs without the need to
develop new synthetic methods (Chen et al.) However, copper(I)-
catalyzed azide–alkyne cycloadditions (CuAAC) can be cytotoxic
because of the copper catalyst and cause considerable cell death,
which is a major limitation in in vivo experiments. To reduce the
cytotoxicity caused by copper, the Diels-Alder reaction (Devaraj
et al., 2009) the reaction of tetrazine with cyclopropane (Patterson
et al., 2012) is frequently used.

Photoaffinity Labeling-Activity-Based Protein Profiling
The CC-ABPP method is primarily applicable for the covalent
binding of NPs to targets. However, the majority of NPs is
actually bound to target proteins in a non-covalent and
irreversible manner, and thus, are unstable. The combination
of PAL and ABPP has reduced these restrictions and facilitated
the identification of target proteins (Smith and Collins, 2015).
The PAL-ABPP strategy mainly employs the addition of a
photosensitive group to the original NP structure, which is
activated under specific UV irradiation, prompting the NP to
form a covalent linkage with the target protein and subsequently
facilitating the enrichment and identification of the target
protein. Benzophenone, aryl azide, and diazirine are the most
commonly used photoaffinity groups for PAL-ABPP. Matthew’s
group used diazirine as the photoaffinity group and terminal
alkyne as the functional handle to synthesize a bioactive
photoaffinity probe for actinomycin A by conveniently binding
to the reporter group via a CuAAC reaction (Anketell et al., 2020).
Luo et al. also used this label to study fruit extracts of Ligustrum
lucidum Ait and discovered that 3-O-cis- or 3-O-trans-p-
coumaroyl maslinic acid (OCMA) specifically acted on the S1
subsite of γ-secretase (Luo et al., 2020), while Lamos et al.
identified multiple targets of action of cyclosporine using
photosensitive moieties (Lamos et al., 2006). In addition, the
PAL-ABPP strategy identified the human opioid daunorphan
associated with antibacterial action (Wright et al., 2017a), LptA
and LptD subunits in Escherichia coli periplasm (Vetterli et al.,
2018). PAL-ABPP has also been applied for the interaction of the
transcriptional regulatory protein AlgP in Gram-positive and
-negative bacteria (Zhao et al., 2019).

Competitive Activity-Based Protein Profiling
The greatest limitation of the CCCP and ABPP methods is the
non-specific binding of the probe to the protein, which often gives
false positive results and makes it difficult to remove interference
from highly abundant and viscous proteins. In contrast,
competitive ABPP allows the precursor compound of the
probe to be co-incubated with the proteome before adding the

probe to bind with the protein. Hence, it is possible to obtain the
true target protein by comparing the protein and active site
labelled by the probe before and after the addition of the
precursor compound, greatly reducing the interference of non-
specific proteins in the experiment (Figure 5). Many research
groups have already screened the target proteins and potent
enzyme inhibitors of several NPs using this method, including
inhibitors of human α/β-hydrolase domain containing 11
(ABHD11) (Navia-Paldanius et al., 2016), celastrol (Zhou
et al., 2016b) and withaferin A (Grossman et al., 2017). Wang
et al. used a competitive ABPP approach to test the selective
binding proteins of different fluorophore probes and found that
probes targeting the prostate-specific membrane antigen (PSMA)
can be potentially developed as contrast agents for clinical
fluorescence-guided intraoperative procedures (Wang X. et al.,
2014). The competitive ABPP strategy can synthesize probes for
low-abundance and structurally complex NPs, but has certain
drawbacks. For example, the probe species are mostly composed
of several specific active amino acid residues or protein
families,.and the competitive ABPP technique is difficult to
perform in a high-temperature superconducting environment.
Hence, the scope of its application needs to be further explored.
To overcome this limitation, Cravatt’s group developed the
fluorescence polarization (fluopol)-ABPP method to create a
high-throughput competitive screening platform that can also
study enzymes with unknown substrates (Deng et al., 2020), while
Wirth et al. identified acetaldehyde dehydrogenase as the specific
target of duocarmycin in A549 cancer cells by (fluopol)-ABPP
(Wirth et al., 2012).

Isotope Tandem Orthogonal
Proteolysis-Activity-Based Protein Profiling
The isoTOP-ABPP method involves the labelling of cysteine
residues for enrichment using an iodoacetamide (IA) isotope-
labelled probe with an alkyne stalk. Cysteine is an important
nucleophilic amino acid that often influences the biological
activity and pharmacological effects of NPs. Thus, active
cysteine residues, which are commonly targeted by covalent
inhibitors, are vital binding spots for the potential inhibition of
protein activity and function in the development of new drugs.
Weerapana et al. developed a set of IA isotope-labelled probes,
namely the IA-light and IA-heavy probes, that was simple to
synthesize and allows the quantitative analysis of proteins (Abo
et al., 2018). This probe set was used to assess cysteine reactivity
in purified thioredoxin and in complex proteomes, providing an
alternative strategy for monitoring cysteine reactivity.
Importantly, these isotope-labelled probes may also be used
to quantify the percentage of cysteine modifications in
individual samples. There has been innovation in the types of
probes available, evolving from tags labelled with isotopes and
cleaved by proteases into chemically cleavable (Qian et al., 2013;
Qian and Weerapana, 2017) and photocleavable (Szychowski
et al., 2010) tags. As probes and linkers continue to be developed
and mass spectrometers and data analysis software are
upgraded, the number of identified cysteines will increase,
and their targets and functions will become clearer (Maurais
and Weerapana, 2019). Notably, Weerapana and Wang have
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collaborated for the development of the reductive dimethyl
tandem orthogonal proteolysis (rdTOP)-ABPP technique that
can simultaneously identify the target proteins and their specific
binding sites, while providing both quantitative detection and
analytical capabilities (Yang et al., 2018). In addition, the
quenched near-infrared fluorescent (qNIRF)-ABPP was
developed for monitoring chemotherapy response and early
diagnosis in vivo (Garland et al., 2016). For instance, Abd-
Elrahman et al. synthesized the burst probe GB137 and non-
burst probe GB123 for determining the distribution of histone

proteases in in vivo models of atherosclerosis (Abd-Elrahman
et al., 2016), while Wang et al. invented the quantitative acid-
cleavable (QA)-ABPP method to identify both the target
proteins and the peptides after protein hydrolysis for the
molecular targets of aspirin (Wang et al., 2015). Thus, these
approches will provide new directions and impetus for drug
development as the technology progresses (Maurais and
Weerapana, 2019). The structures of the ABPP probes used
in previous studies are shown in Figure 6 (Prothiwa et al., 2016;
Brøsen et al., 2017).

TABLE 2 | The advantages and disadvantages of currently available target identification methods.

Target identification
Methods

Advantages Disadvantages

CCCP 1) Incorporates cross-cutting methods from synthetic chemistry, cell
biology, and mass spectrometry.

1) Molecules with specific affinity are difficult to obtain.

2) Employs simple synthesis and indiscriminate analysis of all adsorbed
proteins.

2) Molecules with large and diverse structures are difficult to immobilize
in solid-phase carriers while retaining their activity.

ABPP 1) Probe synthesis is easy and does not require very laborious steps. 1) Only specific proteins present in the cell can interact with the
compound.

2) Reduces the impact of probe synthesis on the structure and activity
of the original natural product.

2) Most experiments are performed in vitro using cell lysates, which do
not fully simulate the physiological conditions in cells in vivo.

DARTS The use of natural small molecules does not require chemical
derivatization or knowledge of the chemical nature and purity of the
compound, allowing studies beyond pharmacology and herbal
pharmacology.

1) Some compounds do not produce significant conformational
changes when bound to their targets.
2) Some proteins have low overall sensitivity to protein hydrolases and
do not produce detectable changes.
3) Some target proteins have increased hydrolytic sensitivity upon
binding to the compound.
4) Non-specific binding of non-target proteins to substrates is often
high.

SPROX 1) Enables large-scale assessment of protein folding states. 1) Not suitable for the detection of insoluble proteins.
2) Allows precise measurement of the structural domains and peptides
bound to the target protein by the compound.

2) Only proteins and ligands with high concentrations can be detected.

— 3) May interfere with protein folding properties and ligand binding.
— 4) The procedure is complex, expensive, and requires a lot of

consumables.
CETSA Uses intact cells, requires no treatment or preparation, and is very

selective.
1) Some target proteins with unfolded binding sites may not be
detected.
2) Not applicable to highly heterogeneous proteins and proteins where
unfolding of the ligand-binding domain does not cause aggregation and
denaturation.

TPP 1) Has good stability and a high number of proteins can be identified. 1) Time consuming and costly.
2) Incubation with antibodies is not required. 2) Limited detection of membrane proteins and target proteins with low

abundance.
3) A broad-spectrum protein identification technique. 3) Low thermal stability.
— 4) High probability of false positive results.

Computational
prediction

1) Potential candidate targets suitable for that particular compound can
be identified, facilitating subsequent experiments.

Integrating large amounts of information into a meaningful and
manageable unit is difficult.

2) Prediction of ligands is more flexible, computationally inexpensive,
and has high-throughput performance.

Transcriptomics Identification is more reliable and sensitive, enabling more genes to be
screened in parallel, and facilitating comparative analysis of large
numbers of samples.

1) Very expensive and has low design flexibility.
2) Surface binding probes can affect diagnostic sensitivity and lead to
false negative results.

Proteomics Factors that affect only protein but not gene expression can be
detected, making analysis more comprehensive than Transcriptomic
methods.

1) Procedures are costly to perform.
2) Effectiveness is susceptible to variation depending on the type of
protein.

Cytology Capable of qualitative and quantitative analysis of endogenous small
molecules to reveal the relationship between different pathways in living
cells.

1) Cannot give direct information on target proteins.
2) Not widely applicable.

Bioinformatics Integrating gene expression profiles to compounds, genes, and
disease responses can also be used for drug development.

The amount of work required to set up a CAMP platform is greater and
more difficult.

CCCP, compound-centered chemical proteomics; ABPP, activity-based protein profiling; METPR, metabolite enrichment by tagging and proteolytic release; DARTS, drug affinity
responsive target stability; SPROX, stability of proteins from rates of oxidation; CETSA, cellular thermal shift assay; TPP, thermal proteome profiling.
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Assistive Technology for Target
Identification
In recent years, the rapid development of new biochemical
techniques and instruments has also opened up more
possibilities for target identification. The combination of
quantitative mass spectrometry and chemical probe approach
can significantly improve the efficiency and accuracy of NPs
target identification. Currently, the most commonly used
quantitative mass spectrometry techniques include stable
isotope labeling by amino acids in cell culture (SILAC) and
isobaric tags for relative and absolute quantification (iTRAQ).

Stable Isotope Labeling by Amino Acids in Cell Culture
The stable isotope labeling by amino acids in cell culture (SILAC)
technique is a popular choice for quantitative ABPP studies.
Numerous studies have used a combination of the ABPP and
SILAC methods for target identification and exploration of
bioactive functions (Figure 7). Generally, SILAC technique is
used for living cells with active metabolism, avoiding errors (e.g.,
mutations) during experiments. However, this method is largely
limited by the efficiency of metabolic activity and not suitable for
primary cells and tissues (Wang S. et al., 2018).

SILAC utilizes a set of amino acid isotope markers for two cell
populations to be cultured. The labelled proteins are analyzed byMS
against normal proteins after a period of time. Using this method, Li
et al. identified multiple protein targets of eupalmerin acetate in HL-
60 cells, reflecting its properties (Li et al., 2013), while Liao’s group
identified cysteine 140 as the site of sappanone for the selectively
inhibited inosine 5′-monophosphate dehydrogenase type II
(IMPDH2), which effectively suppressed the neuroinflammatory
response (Liao et al., 2017). Additionally, Brisdelli’s team validated
the change of eight proteins in quercetin-treated K562 cells (Brisdelli
et al., 2020), while Yang et al. expanded the known target proteins of
4-hydroxy-2-nonenal (HNE) by an order of magnitude (Yang et al.,
2015). Zhuang et al. combinedABPPwith SILAC-based quantitative
proteomics to identify and quantify probe-labelled protein targets by
liquid chromatography–tandem MS (LC–MS/MS) (Zhuang et al.,
2017). The experiments focused on the treatment of light and heavy
HeLa cells separately using a photoaffinity probe, with the light cells
irradiated under UV light while the heavy cells were not UV cross-
linked. The light and heavy cells were collected and lysed, and their
proteomes were mixed in a 1:1 ratio with CuAAC and ligated to the
azide biotin marker. After streptavidin enrichment and trypsin
digestion, the digested peptides were analyzed by LC–MS/MS.
The SILAC ratio of each protein was quantified, excluding all
targets due to non-specific binding to streptavidin, and the
remainder were specific “probe-bound” proteins. The team has
successfully identified over 600 bile acids (BAs)-interacting
protein targets, including known bile acids (BAs) endogenous
receptors and transporter proteins. In addition, the ABPP–SILAC
strategy identified the target proteins for callyspongynic acid (Nickel
et al., 2015) and zerumbone (Kalesh et al., 2015).

Isobaric Tags for Relative and Absolute Quantification
The iTRAQ method, a chemical approach innovated from
SILAC, is used to add a control probe to the original probe,

followed by co-culturing with live cells or cell lysates. Then, the
labelled proteins are enriched and hydrolyzed with a suitable
iTRAQ reagent selected for MS. Unlike SILAC, the iTRAQ
technique can analyze eight samples in one LC/MS run. Using
this method, pre-treated natural Aspergillus fumigatus G-13
fermented lignocellulose substrate was found to have a strong
effect on lignin-degrading enzyme activity and protein expression
(Li et al., 2021). Xia et al. identified 6,072 proteins and discovered
that astragaloside IV can inhibit the invasion of cervical cancer
cells with the induction of their autophagy (Xia et al., 2020).
Additionally, the combination of ABPP and iTRAQ revealed a
series of target proteins, such as andrographolide (Wang J. et al.,
2014) and curcumin (Wang et al., 2016), as well as their binding
mechanisms. Furthermore, Nishino et al. treated four samples of
lysis products containing different hypromellose concentrations
for 30 min and then added suitable probes for co-culture
(Nishino et al., 2013). Under these conditions, the covalently
modified proteins were coupled to biotin azide for further affinity
purification and elution. Each sample was later derivatized with
the unique iTRAQ reagent, and the mix was used for
fractionation and MS analysis. This experiment identified
peptides corresponding to 10 protein kinase and revealed
TbCLK1 as a therapeutic target for African trypanosomiasis.

NON-PROBE APPROACH

Biophysical Methods
The chemical probe approach of identifying NPs targets has been
described in detail in the previous section. The limitations of this
approach are determined by the single modification site of the NPs,
lack of synthetic methods, and necessary modification of the NPs
during the experiment, which may cause the alteration or loss
functional activity and thereby failing the identification of the true
target protein. Hence, these factors have greatly hindered the research
on NPs and their applications (Li et al., 2019b). However, the advent
of biophysical methods for target identification has compensated for
these deficiencies. Since most proteins fold into their natural
conformation through intramolecular non-covalent interactions,
then the interaction of NPs with the target proteins can alter their
structure and stability. Therefore, the true target protein can be
identified by detecting the difference in protein changes before and
after the addition of the ligand compound. Biophysical methods can
also detect direct-acting proteins and possibly indirect-acting
proteins without modifying the NPs, providing another direction
for unravelling the mechanisms of action of important NPs.

Drug Affinity Responsive Target Stability
DARTS was first proposed in 2009 by Lomenick et al. as a method
to recognize the small molecules of target proteins without
modifying the corresponding NPs (Lomenick et al., 2009).
Specifically, the ligand binds to the target protein to form a
stable protein conformation that is not easily hydrolyzed by
proteases (Figure 8) (Lomenick et al., 2009). Several targets
for NPs, such as resveratrol (Lomenick et al., 2009) and
rapamycin (Lomenick et al., 2009), have been discovered using
this approach.
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The DARTS technique can be used to find the target of a
compound based on the histological changes in the proteins
between treated and untreated samples (Zhao et al., 2020).
Proteins are separated by SDS-PAGE to visualize the
conserved bands and then analyzed by LC–MS. Gum staining
techniques and two-dimensional electrophoresis may also be
used for detection. In 2012, Tohda et al. found that object
recognition memory was significantly improved in diosgenin-
treated 5XFAD mouse. Furthermore, 1,25D3-membrane-
associated rapid response steroid-binding protein (1,25D3-
MARRS) was identified to be a target of diosgenin using
DARTS (Tohda et al., 2012). In 2017, Yang’s team discovered
that bone marrow tonic exhibited enhanced memory function
and improved AD pathological changes in 5XFAD mice (Yang
et al., 2017). Additionally, disintegrin response mediator protein
2 was identified as a target of naringin using a combination of
DARTS and LC–MS (Yang et al., 2017). In 2018, Ge et al. isolated
an ergosterane-type steroid compound from spiders (Araneae)
named aminosteroid D that was found to act on pyruvate kinase
muscle isoform 2 (PKM2)—the rate-limiting enzyme of glycolysis
in host cells—which suppresses HIV replication, and thus,
inhibits HIV proliferation (Ge et al., 2018). Furthermore,
Cassiano et al. identified several targets for the natural
bioactive compound magnolol (Cassiano et al., 2019). In brief,
unmodified magnolol was selected and co-incubated with
samples of HeLa cell lysates, followed by limited protein
hydrolysis with Bacillus subtilis protease. The DARTS and
SDS-PAGE experiments revealed a direct interaction between
magnolol and importin β1 (Cassiano et al., 2019).

One of the greatest advantages of the DARTS method is that
chemical derivatization is not needed when using natural small
molecules, and knowledge of the chemical nature and purity of
the compounds is not required. As a result, DARTS allows the
biologically active NPs to be used for targeted isolation, allowing
studies beyond herbal pharmacology. Nevertheless, the
limitations are obvious, such as the usually high level of non-
specific binding of non-target proteins to the matrix, making the
isolation of the true target protein more difficult. Although
extensive washing can help reduce the amount of impurities,
the target proteins will also be lost during the washing process
(Lomenick et al., 2011).

Stability of Proteins From Rates of Oxidation
SPROX (Hughes et al., 2009) is a new method proposed in 2010
that measures the level of methionine oxidation of the target
protein instead of detecting the pattern of protein hydrolysis
(Figure 9). First, the protein sample (with or without ligand) is
dispensed into a buffer containing a chemical denaturant to bring
the protein into folding–unfolding equilibrium, which is
analogous to the first step in a pulsed protein hydrolysis
method. Then, hydrogen peroxide is added to the protein
sample to react with the methionine side chain of the protein.
Finally, the oxidation reaction is quenched with an excess of
methionine, and the protein sample is precipitated with
tricarboxylic acid for subsequent quantitative proteomics to
obtain the oxidation ratio of oxidized methionine. The
addition of the drug leads to the increased structural stability

of the target protein, which in turn reduces methionine exposure
and oxidation.

Using SPROX, the targets of action of the immunosuppressant
cyclosporin A were identified in yeast lysates. These included two
known target proteins, procyclosporin A and UDP-glucose-4-
epimerase, and eight new target proteins, including
carbamoylphosphate synthetase, glycogen synthase, and
glutamate dehydrogenase (West et al., 2010). In addition, six
new targets of the resveratrol were identified by Dearmond’s
group using SPROX (Dearmond et al., 2011). Wallace et al.
applied iTRAQ–SPROX for the large-scale analysis of
protein–ligand binding interactions and successfully analyzed
>1,100 proteins. Notably, filamin A and elongation factor 1α
were identified as important targets of manassantin A in hypoxic
cells (Geer Wallace et al., 2016).

However, the main disadvantage of SPROX is that it is limited
to the identification and accurate quantification of the most
abundant proteins only in each sample. Furthermore, only
methionine-free peptides are useful for SPROX analysis and
not all methionine residues exhibit different rates of oxidation,
which cannot provide sufficient information for the conclusive
identification of the NPs ligands interacting with target proteins.

Cellular Thermal Shift Assay
In addition to focusing on the enzymatic and oxidative stability of
the target protein, its thermal stability can also be examined. The
degradation temperature and trend of the target protein can be
used as an important indicator to distinguish the target protein
from other proteins. Previous studies combined the thermal
stability of gel electrophoresis and immunoblotting to analyze
the drug-specific target binding for CETSA (Chen, 2020). In
2018, Wang and colleagues combined CETSA, molecular
docking, and cell-based assay validation and identified nucleolin
(NCL) as a target of curcumol that can inhibit the progression of
nasopharyngeal carcinoma (Wang J. et al., 2018). In the same year,
Vasaturo’s group used a combination of proteomics, CETSA and
classical biochemical techniques to demonstrate that the
interaction of oridonin with NCL can effectively modulate the
activity of heat shock protein 70 (HSP70) (Vasaturo et al., 2018). In
2019, Anette et al. established a multi-group microtubule protein-
specific CETSA technique to reveal the anticancer activity of
paclitaxel, which binds to the β-microtubulin on the luminal
side (Langeback et al., 2019). Guo’s group extracted a derivative
from Aspergillus flavus that was selectively toxic to
phosphoglycerate dehydrogenase (PHGDH)-dependent cancer
cells. The derivative was confirmed to bind directly to PHGDH
using microscale thermophoresis (MST) and CETSA (Guo et al.,
2019). In addition, Tu’s and Zeng’s teams combined CETSA and
SILAC to identify the targets of protocatechualdehyde (PCA)
affecting myocardial fibrosis as type I collagen (Wan et al., 2019).

The advantage of CETSA is that intact cells are used and no
treatment or preparation is required. It is also very selective due to
the Western blot analysis step. However, some target proteins
with unexpanded binding sites may not be detected. Additionally,
some of the antibodies used forWestern blotting are non-specific,
and off-target proteins may be identified as false positives (Chen,
2020). Therefore, CETSA is not suitable for highly heterogeneous
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proteins and proteins where unfolding of the ligand-binding
structural domain does not cause aggregation and
denaturation (e.g., DNA-binding and chaperone proteins)
(Dziekan et al., 2019).

Thermal Proteome Profiling
As a more advanced approach than CETSA, TPP is capable of
identifying proteins that exhibit ligand-induced thermal stability
at higher temperatures and combining multiplexed quantitative
MS to assess ligand–target engagement at the cellular level. To
promote thermal stability, high-resolution MS is performed using
neutron-encoded isobaric mass TMT10 as a labelling reagent, and
the complete melting curves of heavily expressed soluble proteins
are obtained (Figure 10).

Adhikari et al. assayed protein–ligand binding interactions
using proteins from yeast cell lysates. The tight binding
interactions between cyclosporin A and cyclophilin A were
successfully detected and quantified in replicate analyses
(Adhikari and Fitzgerald, 2014). Kirsch et al. discovered
nucleoprotein 14 was the target protein of vioprolide A
derivative from Jurkat cells by TPP (Kirsch et al., 2020). In
2020, Lyu et al. proposed a microparticle-assisted precipitation
screening (MAPS) method for the analysis of insoluble
precipitates (Lyu et al., 2020). With the aid of the particles,
sample loss was minimized and sample preparation was
simplified. MAPS was previously used to successfully identify
several drug targets, including 32 protein kinases of astrosporin
that were screened from 20 μg of initial protein sample (80%
specificity).

TPP is a broad-spectrum protein identification technique that
has good stability, can identify numerous proteins, and does not
require incubation with antibodies. However, it is time-
consuming, costly, has limited detection of membrane
proteins, and has a high probability of false positive results;
thus, the method needs further improvement.

Computational Prediction
Computer simulations using chemical biology data provide an
alternative to laboratory experiments for target identification
(Chen, 2016). Screening compounds in protein databases
allows the identification of candidate targets for a particular
compound and facilitates the manipulation of subsequent
experiments. In particular, it is used to make more flexible
and computationally inexpensive predictions of ligands with
remarkable predictive performance, which has come a long
way in the last decade and continues to evolve (Yang S. Q.
et al., 2020).

In the future, the use of quantum computing, computational
software, and public databases to model molecular interactions
and to predict the characteristics and parameters required for
developing new drugs, such as pharmacokinetics and
pharmacodynamics, will greatly reduce false positive leads
during drug development (Thomford et al., 2018). One of the
challenges that scientists need to address in using big data is how
to integrate the vast amount of information into a meaningful and
manageable unit. To understand histological data and
revolutionize clinical medicine, clinical phenotype data must

be combined with the corresponding genomic, transcriptomic,
proteomic, and epigenomic data.

Omics-Based Approaches
Transcriptomics
Transcriptomics methods (e.g., DNA microarrays, RNA
sequencing, gene editing) are technologies that rely on the
establishment of sequence diversity and provide tremendous
technical support for detecting the expression of RNAs of the
whole genome. DNA microarrays are used to immobilize huge
quantities of oligonucleotides, peptide nucleic acids, or DNA onto
a very small substrate, such as silicon, slides, or nylonmembranes,
allowing simultaneous analysis of the effects of multiple
components of an active biomolecule on multiple gene
subgroups (Gu, 2004). It has the advantage of using very little
material, high sensitivity, the ability to screen a larger number of
genes in parallel, and the ease of comparative analysis of large
numbers of samples. In addition, DNA microarrays can be used
to study drug–drug interactions, characterize on- and off-target
effects in the optimization of new therapeutic agents, and provide
a good insight into the molecular mechanisms and networks
underlying the complex pharmacological functions of bioactive
NPs (Luo and Tang, 2002). However, the tests used in routine
clinical practice require high-quality data, and DNA microarrays
are expensive, has low design flexibility, and high diagnostic
sensitivity due to the surface bound probes, which may lead to
false negative results (Chiodi et al., 2021). The results obtained
from microarrays should be validated by combination with other
methods, such as in-situ hybridization, reverse
transcription–polymerase chain reaction (RT-PCR).

Proteomics
Proteomic analysis is an approach to identify drug targets by
examining the differences between proteins in cells before and
after drug action. This method can detect factors that only affect
protein expression and is more comprehensive than
Transcriptomics. There are various methods to examine
proteins, including bi-directional gel electrophoresis (Yue
et al., 2008), two-dimensional LC, MS/MS, and two-
dimensional difference gel electrophoresis (2D-DIGE).

Bengamides are a class of marine NPs that can inhibit tumor
growth both in vitro and in vivo. Towbin et al. used two-
dimensional gel electrophoresis to demonstrate that
bengamides (Towbin et al., 2003) can directly or indirectly
inhibit methionine aminopeptidase (MAP) by binding to the
enzyme via a mimetic peptide substrate. On the other hand,
Kong’s team employed a combination of iTRAQ, two-
dimensional LC, and MS/MS to investigate the effect of
artesunate (ART) on S. japonicum proteome in susceptible
mice. This experiment identified multiple targets and provided
the first protein expression profile of S. japonicum in response to
ART treatment, which offered a better understanding of the
molecular mechanism underlying the therapeutic action of
ART (Kong et al., 2015). Garcinia cambogic acid (GA) is an
anticancer drug undergoing phase IIb clinical trials in China. Yue
et al. identified two new targets of GA, heat shock protein 27
(HSP27) and vientin, using comparative proteomics (Yue et al.,
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2016). Currently it is quite difficult to use proteomic to identify
the direct target proteins of NPs. Only very few examples of direct
targets can be inferred.

Cytology
Cellular metabolomics provides relevant information on specific
cell types under different conditions to explore the nature and
function of cells. This can also be used to discover the targets of
action of NPs, including cell morphology analysis, cellular activity
screening, and intra-cellular analysis. Not only can this technique
compare the biochemical differences between healthy and
diseased organisms and provide information on the primary
causes of diseases, but can also reveal the end products of
cellular regulatory pathways and identify potential targets for
pharmacological intervention (Zhang et al., 2019).

Furthermore, Moussa et al. found that resveratrol treatment
significantly enhanced the action of 116 kDa poly (ADP-ribose)
polymerase, causing the nuclear fragmentation of SJSA1
osteosarcoma cells and consequently inhibiting osteosarcoma
cell activity (Alkhalaf and Jaffal, 2006). Titov’s group
examined the effects of tretinoin on the protein, RNA, and
DNA synthesis in HeLa cells using an isotope labelling assay
and determined that the molecular target of tretinoin is the XPB
subunit of the general transcription factor TFIIH (Titov et al.,
2011). A study on Fusarium oxysporum, which can produce a
lignan-like tetraacid named TA-289 that can induce cell death by
directly inhibiting one ormore mitochondrial localization targets,
revealed the molecular basis of lignan-like compound activity
(Quek et al., 2013).

Metabolomics
Metabolites are the products of a network of intracellular
enzymatic reactions that play a crucial part in various signal
transduction pathways. Since the presence of metabolites can be
correlated with the inactivation of specific enzymes, a targeted
approach to the labelling, enrichment, and identification of
individual metabolite classes is required to identify the true
target of NPs and fully elucidate the properties and functions
of these important metabolites. The main method of
metabolomics is the discovery metabolite profiling (DMP), a
type of molecular profiling of small metabolites. For instance,
Sagathelian’s group identified a potential target for N-acyl taurine
(NAT) as fatty acid amide hydrolase (FAAH) through DMP
(Saghatelian et al., 2004). However, there are still major
challenges in the field of metabolomics that are needed to be
addressed, such as the lack of a rapid and reliable method that can
determine the structure of identified metabolites based on large
amounts of data.

Bioinformatics
Lamb et al. constructed the CMAP Phase I reference gene based
on the principle of graphical matching using a large database of
signature gene expression profiles via a systematic approach to
discover associations between functional diseases, genetic
perturbations, and drug effects, as well as via data mining
using pattern matching software (Lamb et al., 2006). The
CMAP gene expression profiles were subsequently linked to

compounds, genes, and disease responses, revealing
compounds with similar modes of action and physiological
processes and demonstrating connections between diseases
and drugs. In 2017, Lv et al. stablished the first NPs small
molecule gene expression profiling database platform in China
that can be used in combination with CMAP to predict the
pharmacological activity of small molecules, molecular targets,
and associated pathways for new drug development (Lv et al.,
2017). These features demonstrate both the feasibility of this
approach and the great value of the large-scale linkage mapping
CMAP project.

PROSPECTS AND CONCLUSIONS

Bioactive NPs have several origins, exist widely in nature, and has
excellent potential for various applications. However, only a small
proportion of the currently known NPs can successfully exert
their medicinal effects. Many biologically active molecules
achieve their functions by interacting with protein targets.
However, the targets of several NPs are still unidentified,
which is a major bottleneck that hinders further research into
their applications. Therefore, target identification of bioactive
NPs is essential for the research of modern drugs. Not only can
this elucidate the mechanisms and targets of action for developing
new drugs, but also meets the constant demand for new drugs and
drug precursors.

Currently, the commonly used techniques for identifying
targets can be classified into two types. Chemical probe
approaches are the more popularly used methods, such as
CCCP and ABPP,. On the other hand, non-probe approaches
identify target proteins from new perspectives to complement
chemical probe approaches. In this review, the advantages and
disadvantages of the currently available target identification
methods are summarized in Table 2.

In chemical probe approach, CCCP modifies the structure of
active NPs by incorporating various reporter moieties. As a result,
the ability of the NPs to identify its target in the complex cellular
proteome can be improved, and information about the target
protein can be more easily obtained. However, CCCP is usually
performed in vitro and is susceptible to altered activity, which
often makes it difficult to accurately reflect the intrinsic link
between protein and organismal function. In contrast, ABPP is a
well-established and stable method for identifying target proteins
mainly used in conjunction with various advanced techniques,
including CC-ABPP, PAL-ABPP, competitive ABPP, and
isoTOP-ABPP. Probe synthesis for ABPP is easy and does not
require very tedious steps, reducing the impact of probe synthesis
on the structure and activity of the NPs. The uses of ABPP has
now expanded from drug target identification to new drug
discovery, laying the groundwork for future research into the
interactions of NPs and higher organisms.

Notably, CCCP and ABPP focus more on the structure of the
NPs itself, while other methods modify the NPs according to the
binding mode of the NPs and its target protein. For complexes
obtained by covalent binding, reporter groups such as biotin and
fluorescently labelled probes are introduced, while less stable
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complexes bound non-covalently are converted into covalent
linkage using photoaffinity markers to facilitate enrichment and
purification. However, the biological activity of the NPs must be
preserved during these modifications. Therefore, the introduction
of small and non-toxic moieties that do not destroy key potent
groups without the effects of spatial blocking is required, which
greatly limits the practical application of such methods.

In recent years, the development of non-probe approach has
been continuous. Compared to chemical probe approach,
biophysics has a stricter means of identifying target proteins
by utilizing the stability of ligand–drug binding to find the targets
without affecting the functional activity of the NPs. However,
biophysical methods can only be applied to limited targets and
cover a narrow range of protein types, content, and homogeneity
with highly specific requirements. In addition, biophysical
methods have a higher probability of false positive results and
incur higher costs. On the other hand, computational prediction
using chemical biology data has a remarkable predictive
performance and is continuously evolving in this era of big
data. Computer simulations can compensate for the lack of
diverse laboratory data but may possess inaccuracies; there
have been instances where target compounds are highly
similar in reference libraries. Therefore, the generation of
abundant, high-quality, and more diverse proteomic databases
is required to address this problem. In addition, a more accurate
quantitative analysis of the cell as a whole was made possible by
the rapid advances in histological and imaging techniques. As a
result, new techniques like differential screening using
transcriptomics probes, differential proteomics screening, and
cell morphology comparison have emerged as powerful tools for
the systematic study of biochemical processes during drug trials.

During target identification experiments, validation is
necessary using a combination of in vitro binding assays, such
as western blotting, immunofluorescence staining, and Försters

resonance energy transfer (FRET) microscopy. The associated
pathways of the identified target proteins are also critical and
must be studied to obtain highly meaningful information.
Therefore, this comprehensive overview of available
experimental methods for target identification was
necessary. With the continuous progress of science and
technology, the intersection of multidisciplinary theories
and the joint use of several technologies will become the
main trend in the future. Notably, with the development of
artificial intelligence, this trend will become more obvious and
even play a decisive role in future scientific research. Thus, the
integration of chemical proteomics with biophysics,
transcriptomics, bioinformatics, and other disciplines will
allow the improvement of currently available methods for
target identification and new drug development. Finally,
new and improved methods that can adapt to the complex
properties of active NPs must be developed for the
advancement of chemical and biological research for
medicinal applications.
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