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Major depressive disorder (MDD) is the most common mental disorder and deficits in

neuroplasticity are discussed as one pathophysiological mechanism. Physical activity

(PA) enhances neuroplasticity in healthy subjects and improves clinical symptoms of

MDD. However, it is unclear whether this clinical effect of PA is due to restoring

deficient neuroplasticity in MDD. We investigated the effect of a 3-week PA program

applied on clinical symptoms, motor excitability and plasticity, and on cognition in

patients with MDD (N = 23), in comparison to a control intervention (CI; N = 18).

Before and after the interventions, the clinical symptom severity was tested using

self- (BDI-II) and investigator- (HAMD-17) rated scales, transcranial magnetic stimulation

(TMS) protocols were used to test motor excitability and paired-associative stimulation

(PAS) to test long-term-potentiation (LTP)-like plasticity. Additionally, cognitive functions

such as attention, working memory and executive functions were tested. After the

interventions, the BDI-II and HAMD-17 decreased significantly in both groups, but

the decrease in HAMD-17 was significantly stronger in the PA group. Cognition did

not change notably in either group. Motor excitability did not differ between the

groups and remained unchanged by either intervention. Baseline levels of LTP-like

plasticity in the motor cortex were low in both groups (PA: 113.40 ± 2.55%; CI:

116.83 ± 3.70%) and increased significantly after PA (155.06 ± 10.48%) but not

after CI (122.01 ± 4.1%). Higher baseline BDI-II scores were correlated with lower

levels of neuroplasticity. Importantly, the more the BDI-II score decreased during the

interventions, the stronger did neuroplasticity increase. The latter effect was particularly

strong after PA (r = −0.835; p < 0.001). The level of neuroplasticity related specifically

to the psychological/affective items, which are tested predominantly in the BDI-II.

However, the significant clinical difference in the intervention effects was shown

in the HAMD-17 which focuses more on somatic/neurovegetative items known to

improve earlier in the course of MDD. In summary, PA improved symptoms of MDD

and restored the deficient neuroplasticity. Importantly, both changes were strongly
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related on the individual patients’ level, highlighting the key role of neuroplasticity in the

pathophysiology and the clinical relevance of neuroplasticity-enhancing interventions for

the treatment of MDD.

Keywords: neuroplasticity and exercise, major depression, paired associative stimulation, transcranial magnetic

stimulation, physical activity

INTRODUCTION

Major depressive disorder (MDD) is a common illness
worldwide, with more than 264 million people affected (1).
The pathophysiology of MDD is complex and likely due to
different, possibly interacting mechanisms. Several preclinical
and clinical studies described altered neuroplasticity in MDD
(2–4), such as lower synaptic density in the brain which is
associated with the severity of depressive symptoms (5).

Reduced LTP-like plasticity in the motor cortex has been
described in MDD in studies using paired associative stimulation
(PAS) as a specific transcranial magnetic stimulation (TMS)
protocol (2, 6), which tests synaptic plasticity in the human brain
(7). As this reduction showed some association with the symptom
severity measured in clinical scales, developing interventions that
aim at enhancing synaptic plasticity might be of crucial relevance
in the treatment of MDD.

Physical activity (PA) is associated with higher levels of
neuroplasticity in healthy subjects (8, 9), and has been identified
as a protective factor against the onset of depression (10–13).
The effect of PA or sports programs have been widely studied
in MDD and the clinical benefit and therapeutic relevance has
been shown (14–17) even of short-term interventions (18–22).
Furthermore, PA seems to influence cognitive symptoms in
MDD, such as deficits in attention, concentration, memory and
executive functions (23, 24).

Most of these studies focused on measuring the effect of PA
interventions using clinical outcome parameters, such as self-
or investigator-rated depression scores, and did not investigate
which neurobiological parameters, e.g., neuronal excitability
or plasticity in the brain, might be associated with these
clinical changes.

Our study investigated the effect of a PA program applied over
a period of 3 weeks on clinical symptoms, neural excitability and
PAS-induced plasticity in themotor cortex, as well as on cognitive
performance in in-patients with an acute episode of MDD during
their stay on the psychiatric ward. As most patients followed
a more sedentary lifestyle before admission to hospital, we
designed the PA program to be of moderate intensity, including
elements of endurance, strength and coordination exercises that
required interaction and teamwork of the participants, in order to
avoid competition and the risk of perceived performance failure
(25, 26). The effect of the PA program was compared to a control
intervention (CI) administered over the same period of time that
controlled for investigator-related effects, experience of group
cohesion and social interaction, while the patients abstained from
additional physical activity.

We expected—similar to previous studies—the level of PAS-
induced plasticity to be low in MDD, and PA to lead to an

improvement of clinical symptoms—at least of those known to
be first indicators of symptom reduction, such as psychomotor
retardation or loss of energy. Leading on from that, we asked
(i) whether measures of PAS-induced plasticity and clinical
symptoms are related on an individual subject’s level, (ii) whether
PA reverses neuroplasticity deficits in MDD, and (iii) whether
PAS-induced plasticity could act as a marker to predict the
clinical outcome of neuroplasticity enhancing interventions, such
as PA.

MATERIALS AND METHODS

The study was approved by the Ethics committee of the
Ruhr University Bochum, medical faculty in Bad Oeynhausen
(Germany) and conducted in accordance with the Declaration
of Helsinki.

Subjects
After giving written informed consent, 50 in-patients meeting
the clinical criteria of MDD as defined by the international
classification of disease (ICD-10: F32, F33) were recruited (see
Table 1 for details). The inclusion criteria were: (i) Age between
18 and 65 years, (ii) current depressive episode (BDI-II score
≥ 10 points; Hamilton depression score (HAMD-17) ≥ nine
points), (iii) no concurrent brain stimulation treatment, (iv) no
severe cardiovascular disease and body mass index <30 kg/m2,
(v) no structural brain alteration as shown in brain imaging,
and (vi) in case of concurrent medication: no major changes
to antidepressant medication during the study; no medication
with anticonvulsive medication or lithium; medication with
benzodiazepine<1 mg/day lorazepam equivalent; no medication
with antipsychotics in dosages known to alter brain excitability
(27). Medication (e.g., with antidepressants) was continued as
long as it complied with the inclusion criteria (see above) and left
unchanged during the interventions.

Study Design
The study was performed within the setting of a primary care
psychiatric university hospital on in-patients and ran for 18
months in total. Patients were screened according to the above
mentioned criteria. In case of consent, they were recruited for
participation in the study around 7–14 days after their admission
to hospital, in order to allow for completion of diagnostics and for
amelioration of severe symptoms of depression, such as suicidal
ideation or agitation. They were informed that the purpose of the
study was to compare the effect of two different interventions
on their mood, their cognition and on neurophysiological
parameters without implying a superior effect of one intervention
to the other. As the recruitment rate of patients who fulfilled
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TABLE 1 | Patients’ characteristics.

PA CI t-test

N 23 18

Age (years ± SEM) 33.3 ± 3.06 40.11 ± 3.63 p=0.157

Age range (years) 18 – 63 18 – 65

Sex 12 male: 11 female 11 male: 7 female

Handedness 2 left: 21 right 1 left: 17 right

Body mass index (kg/m²) 24.33 ± 0.93 25.69 ± 0.90 p=0.306

HAMD-17 (mean ± SEM) at M1 19.17 ± 0.78 17.83 ± 0.75 p=0.230

Severity (N)

mild (9–16 points) 7 8

moderate (17–24 points) 13 10

severe (≥ 25 points) 2 0

BDI-II (mean ± SEM) at M1 27.74 ± 1.44 26.11 ± 1.77 p=0.475

Severity (N)

mild (10–19 points) 3 2

moderate (20–29 points) 12 11

severe (≥ 30 points) 8 5

the inclusion criteria was expected to be low, the patients were
successively recruited (rather than randomly assigned) in one
of the two intervention groups and the investigators were not
blinded. The first 25 patients were recruited into the PA group,
and the succeeding 25 patients into the CI group. This approach
ensured that 6–8 patients were participating at a time, which
enabled interaction amongst participants during the sessions.
Each patient participated for 3 weeks in one of the interventions.
As neither the PA nor the CI sessions build up on each other,
participants could join at any date.

Before the start (measurement 1; M1) and within 2–3 days
after the end of the intervention period (measurement 2; M2)
neurophysiological and cognitive parameters were tested (see
Figure 1: experimental design), and clinical assessments by use
of self- and investigator-related scales were performed.

Interventions and Assessment of
Physiological Parameters
Each intervention ran for 3 weeks. For each intervention the total
duration was 180 min/week; thus the total intervention time was
540min in 3 weeks.

The PA was performed on 3 days a week (Monday,
Wednesday, Friday) and was guided by an instructor. Each
session lasted 60min (without breaks) and focused on one
out of three exercise types once a week, either coordination,
endurance or strength training. These three exercise sessions
were repeated every week. The PA program aimed to increase
motivation for and to induce a positive affective response
towards physical and sportive activity. It mainly consisted of
interactive games, which the patients had to perform within the
group or with one patient as partner. This approach reduced
competitiveness among participants which could trigger a sense
of underachievement or failure, or could invoke negative prior
experiences (e.g., with PA at school). In addition, each PA session

started with a 10-min warm-up which combined physical and
cognitive tasks, by coding certain movements (e.g., circling of
arms, lifting knees up) with colors (colored cards held up by
the instructor). During the warm-up participants walked briskly
through the room and had to perform the required movement
(once) when the instructor showed the respective colored card.
The color-movement associations were changed randomly in
every PA session.

The CI consisted of two sessions of 90min each per week and
was guided by an instructor. While the participants remained
seated on chairs, they performed different games (logical puzzles,
“black stories,” card games), which required them to interact and
to cooperate with each other. In the logical puzzles pieces of
information were given and required the participants to put them
into a matrix and find out the missing pieces of information by
deduction (e.g.,Who owned the zebra?). The “black stories” were
mysterious stories that required the participants to reconstruct
what has happened by asking and guessing. The card games
prompted the participants to cooperate and to exchange cards in
order to play and win together against the rule of the game (e.g.,
The Game—Spiel. . . solange Du kannst!).

The CI controlled for the presence of and attention given by
an instructor and the feeling of group cohesion. The participants
were cognitively engaged (solving logical problems, memorizing
facts, and forming strategies). Importantly, the participants of
the CI group were not included in other PA programs of the
psychiatric clinic, and were instructed not to engage in any
physical or sportive activity beyond their routine activity (such
as walking in the hospital and hospital garden). The clinical and
nursing staff was informed about the study participation and
monitored the participants activity accordingly.

During the PA and CI sessions the heart rate was measured
using a pulse tracker fixed to the upper arm with an elastic band
(OH1, Polar Electro Oy, Kempele, Finland). The mean heart rate
at rest (before the start of the session) and during the session were
calculated for each participant.

Clinical Assessment
The Becks Depression Inventory II (BDI-II) was used for patients’
self-assessment (28) and the Hamilton depression scale with 17
items (HAMD-17) was used for investigator-based assessment
of clinical symptoms (29–31) once before and after the 3 weeks
intervention period.

Neurophysiology
Transcranial Magnetic Stimulation (TMS)
TMS was performed using a Magstim 200 stimulator connected
to a figure-of-eight-shaped coil with an internal wing diameter of
70mm (Magstim Company Ltd, Whitland, UK). At the start of
the experimental sessions M1 andM2 the motor “hot spot” of the
abductor pollicis brevis (ABP) muscle was determined. The coil
was held with the handle pointing backwards and laterally 45◦ to
the interhemispheric line to evoke anteriorly directed current in
the brain and was optimally positioned to obtain motor evoked
potentials (MEP) in the APB of the dominant hand (“hot spot”).
The subjects were wearing a tight fitting cotton wool cap on
which the coil position was marked using a soft tip pen in order
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FIGURE 1 | Experimental design.

to ensure that the coil was held in a constant position during the
experimental session.

Stimulation intensities are quoted as percentage of maximal
stimulator output (mean± SEM).

EMG Recording
Surface electromyographic (EMG) recordings in a belly-to-
tendon montage were made from the APB and the first dorsal
interosseus (FDI) muscles of the dominant hand. The raw signal
was amplified and filtered with a bandpass filter of 30Hz to
1 kHz (Digitimer D360; Welwyn Garden City, UK). Signals
were digitized at 2 kHz (CED Power1401, Cambridge Electronic
Design, UK) and stored on a laboratory computer for offline
analysis. Online EMG was used to control for muscle relaxation
during data recording and trials showing voluntary muscle
activation were discarded from the analysis (<1% of trials). The
recordings of the FDI were only displayed on screen during the
experiments in order to support the experimenter in holding the
coil in a constant position and were not analyzed further.

Motor Excitability
At the start of each measurement (M1 and M2), the active
motor threshold (aMT) and the stimulus intensity (SI) needed
to evoke a MEP of ∼1mV peak-to-peak amplitude (SI1mV) were
defined in the APB. To determine the aMT, the EMG pattern
(rectified amplitude) under maximum voluntary contraction
(MVC) was displayed on the screen and a marker line was set to
determine 30% of this amplitude. The subjects were instructed
to activate their APB (pressing the thumb down while their
hand lies in a pronated position on a cushion placed on their
lap) so that the EMG amplitude was as close to that marker
line as possible. The TMS measurements were always performed
by two experimenters. In the measurement of the aMT, one
experimenter controlled the participants APB activation level to

be constant and of defined strength. The aMT was defined as the
minimum intensity needed to evoke a MEP of ≥200 µV in five
out of 10 trials.

The SI1mV was determined while the subjects were at rest with
their hand muscles relaxed (as controlled by online EMG). Single
TMS pulses were given (interstimulus interval 7 s) to determine
the SI that gives a MEP of 1mV peak-to-peak amplitude in five
consecutive trials.

The input-output relationship of MEP amplitude to SI
(IOcurve) was measured. For each SI of the IOcurve [50, 70, 80,
90, 100 (equal to SI1mV), 110, 120 130, and 150% of SI1mV] five
consecutive TMS single pulses were applied with an interstimulus
interval of 7 s and the MEPs recorded. The mean MEP amplitude
per SI was calculated for each subject. Furthermore, the steepness
of the IOcurve slopes defined as the steepness of the linear
regression line through the given data points between 80 and
120% of SI1mV (IOslope) were calculated.

Short Interval Intracortical Inhibition (SICI)
The short-interval intracortical inhibition [SICI curve; (32,
33)] was measured using subthreshold conditioning stimulus
intensities of 70, 80, and 90% of active motor threshold (aMT)
and two magnetic stimulators (MagStim 200) connected via a
BiStim module (Magstim Company Ltd, Whitland, UK). The
conditioning stimulus preceded the suprathreshold test stimulus
(intensity set at SI1mV) by 3 ms (34).

Three blocks consisting of 30 trials each were performed. Each
block examined one conditioning pulse intensity and consisted
of 15 MEPs elicited by the test stimulus alone (test MEPs) and 15
conditioned MEPs presented in pseudorandom order (intertrial
interval 7 s). The peak-to-peak amplitude of the conditioned and
testMEPs wasmeasured for each single trial to calculate themean
amplitude and percentage SICI (conditioned MEP/ test MEP; in
%) for the three different conditioning stimulus intensities. This
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approach allowed us to measure the level of SICI at a single
conditioning intensity as well as the recruitment of SICI (SICI
curve) defined as the increase of SICI with increasing intensities
of the conditioning stimulus.

Plasticity in the Motor Cortex as Assessed by

Paired-Associative Stimulation (PAS)
PAS consisted of 200 electrical stimuli of the median nerve
at the wrist of the relaxed dominant hand paired with a
single TMS pulse (at SI1mV) over the contralateral hand motor
cortex with a rate of 0.25Hz. TMS single pulses were delivered
through a figure-of-eight shaped coil (diameter of each wing
70mm) connected to a Magstim 200 stimulator and was held
in the same position as described above. Electrical stimulation
(Digitimer DS7A) was applied through a bipolar electrode
(cathode proximal), using square-wave pulses (duration 0.2ms)
at an intensity of three times the perceptual threshold.

The electrical stimuli preceded the TMS pulses by 25ms
(PAS25). PAS25 has been shown previously to induce a long-
lasting MEP increase (7, 35, 36). Subjects were instructed to
look at their stimulated hand and count the peripheral electrical
stimuli they perceived; they were asked the actual count by the
experimenter about three to four times during the application
of PAS (37). During PAS, the MEPs evoked in the APB and FDI
were displayed on-line on the computer screen to control for the
correct coil position and stored for off-line analysis.

Before and 10min after the end of the PAS-intervention 20
TMS pulses were delivered (intertrial interval 7 s) using SI1mV

and the MEPs recorded. Their mean amplitude was calculated.
The effect of PAS was defined in each subject as change of
the MEP amplitude in the APB (PASeffect = MEP after PAS /
MEP before PAS; in %). In addition, PASchange refers to the
change of PASeffects (PASchange = PASeffect after / before the
intervention; in %).

Cognition
A PC-based test battery (Vienna test system, Schuhfried R©,
Austria) was used to measure different aspects of cognitive
performance and executive function. Attention was tested using
the work performance series which required subjects to perform
additions and subtractions of single-digit numbers as fast and
accurate as possible for 7min. The Trail making test (part A
and B) was used to assess the visuomotor processing speed and
cognitive flexibility (38). The Response Inhibition (RI) task was
used to assess voluntary control over responses within a changing
context and required subjects to press a button as quickly as
possible in reaction to a “Go” - signal (triangles) and to inhibit
this reaction to an intermittently presented “NoGo” - signal
(circle) (39, 40).

The Tower of London (TOL) assessed the planning abilities
on the basis of clear rules and required the subjects to rearrange
colored balls in a minimum number of moves (41, 42).

The STROOP interference test (color/word interference) was
used to investigate the subjects’ ability to control cognitive
interference (43, 44).

Working memory performance was tested with the N-back
verbal test [NBV; (45, 46)], a continuous performance measure

(47, 48). A series of consonants was presented successively and
subjects were required to press a button when the consonant
displayed was identical to the one shown two places back (2-back
paradigm) (49). To minimize the effect of familiarity, parallel
versions of the tests were used in M2.

Data Analysis and Statistics
All data was tested for normal distribution by use of the
Kolmogorov-Smirnov test. In case of not normally distributed
data, non-parametric tests were used. All ANOVAs were tested
for sphericity using Mauchly’s test. In case of non-sphericity,
Greenhouse-Geisser corrections were performed. Effect sizes (η2;
r) were calculated for significant interactions. All data are given
as mean ± SEM. Significance levels for the statistical tests are set
to p ≤ 0.05; in case of multiple comparisons (results of cognitive
tests) the significance level was adjusted to p ≤ 0.01.

The TMS parameters (aMT and SI1mV) of M1 and M2 were
compared within groups by paired t-tests and between groups by
unpaired t-tests. The IOcurve and SICI data were analyzed using
ANOVA with the factor group (PA/CI) and the within-group
factors intervention (before/after), stimulus intensity (IOcurve) or
conditioning pulse intensity (SICI). The MEPs measured in M1
and M2 before PAS were compared by means of paired t-tests
(within group) and unpaired t-tests (between groups) in order
to control for correct adjustment of MEP size to 1mV peak-to-
peak amplitude. ANOVAs were performed on the raw data of
MEPs with the factors group, intervention and MEP amplitude
before/after PAS. For further analysis, the MEP raw data were
normalized and expressed as percentage of MEPs (MEPs after
PAS/ MEPs before PAS; PASeffect).

Correlations between neurophysiological data and clinical
outcome (BDI-II and HAMD-17 scores) were calculated and
significant results are reported giving Pearson’s r for normally
distributed and Kendall’s tau for non-normally distributed data.

The raw data of cognitive tests was transformed into T-scores
(mean = 50; SD = 10); with T-scores >50 indicating higher,
and T-scores <50 indicating lower performance in comparison
to a representative population (matched for age, sex and level
of education) as given by the Vienna Test System (Schufried R©,
Austria). Similar to the analysis of the neurophysiological data,
ANOVAs were performed with the between group factor group
and the factors intervention as within-group factor. Post-hoc tests
were performed when necessary and the significance level was
adjusted to correct for multiple comparisons (see above).

RESULTS

Subjects’ and Clinical Data
Out of 50 recruited patients, 23 (of 25) in the PA group and 18
(of 25) in the CI group finished the study. Two patients of the PA
group and three patients of the CI group were discharged from
hospital before theM2measurements could be taken. In addition,
in the CI group two patients required emergency treatment and
two patients discontinued their participation. Only results of
patients who participated in both measurements (M1 and M2)
and in all intervention sessions during the 3 weeks intervention
period are reported. The patients in the PA and CI groups were
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FIGURE 2 | HAMD-17 (A) and BDI-II (B) scores with subscales. The mean scores of all items (total) as well as subscores for psychological/affective and

somatic/neurovegetative items are given (mean ± SEM; t-test: **p < 0.001; *p < 0.01). Below the score change (after – before intervention) is given for each single

item of the questionnaire (t-test; #p < 0.05).

comparable with regard to age, body mass index, BDI-II and
HAMD-17 scores at M1 (see Table 1 for details).

Clinical Assessment
The subjects in the PA and CI groups did not differ in
their BDI-II and HAMD-17 scores before the start of the
intervention (unpaired t-tests, n.s.; see Table 1 and Figure 2).
After the intervention, the BDI-II and HAMD-17 scores
decreased significantly in both groups (paired t-tests; p < 0.009;
see Figure 2) while the decrease in HAMD-17 score (HAMD-
17 after—before intervention) was significantly stronger in the
PA group (unpaired t-test; p < 0.001), there was no between-
group difference in the decrease of the BDI-II score. A two-
way ANOVA with the factors group (PA/CI) and intervention
(before/after) showed for the HAMD-17 scores a significant
interaction [ANOVA; F(1,39) = 16.52; p < 0.001], and significant
main effects of the factor group [ANOVA; F(1,39) = 4.41; p =

0.042] and the factor intervention [ANOVA; F(1,39) = 112.94;
p < 0.001]. For the BDI-II score data, there was no significant

interaction, but a main effect of intervention [ANOVA; F(1,39) =
27.19; p < 0.001].

A detailed analysis of the single items of the HAMD-17
scores (see Figure 2A) showed that the decrease in the items
“insight,” “insomnia: early in the night,” “work and activities,”
“retardation,” “agitation,” and “anxiety somatic” was significantly
stronger in the PA group than in the CI group. For the BDI-II
scores (see Figure 2B), the score for the items “pessimism” and
“indecisiveness” decreased significantly stronger in the PA group
than in the CI group.

The BDI-II and HAMD-17 scores measured before and after
the interventions did not show a significant correlation in either
the PA or the CI group.

Physiological Parameters
Before and during the interventions, the subjects’ heart rate was
continuously monitored. At rest, the mean heart rates were not
different in the PA [69.00 ± 2.03 beats per minute (bpm)] and
the CI group (71.39 ± 3.19 bpm; t-test: n.s.). During PA, the
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TABLE 2 | TMS and PAS parameters and MEP amplitudes.

PA CI

TMS parameters (% stimulator output) Mean SEM Mean SEM

aMT M1 34.96 ± 1.22 33.17 ± 1.09

aMT M2 34.78 ± 0.84 35.50 ± 1.12

SI1mV M1 51.87 ± 1.75 51.89 ± 2.12

SI1mV M2 51.74 ± 1.59 53.89 ± 1.79

PAS parameters

Sensory threshold M1 (mA) 0.28 ± 0.02 0.36 ± 0.02

Sensory threshold M2 (mA) 0.27 ± 0.06 0.36 ± 0.02

Sensory stimuli counted M1 (N) 201.05 ± 0.40 199.06 ± 0.76

Sensory stimuli counted M2 (N) 200.52 ± 0.63 199.22 ± 0.68

MEP amplitudes (mV)

IOcurve MEP (SI1mV ) M1 0.93 ± 0.15 0.92 ± 0.09

IOcurve MEP (SI1mV ) M2 1.03 ± 0.17 1.04 ± 0.12

SICI test MEP M1 1.01 ± 0.14 1.02 ± 0.15

SICI test MEP M2 0.99 ± 0.15 0.99 ± 0.13

MEP before PAS M1 1.15 ± 0.15 0.93 ± 0.09

MEP after PAS M1 1.29 ± 0.16 1.09 ± 0.11

MEP before PAS M2 0.99 ± 0.10 1.08 ± 0.12

MEP after PAS M2 1.45 ± 0.16 1.34 ± 0.17

mean heart rate increased to 126.84± 2.83 bpm, showing that the
patients were exercising withmoderate intensity. In the CI group,
the heart rate increased slightly to 83.02 ± 3.08, but this increase
was not significantly different from their baseline mean heart rate
(paired t-test; n.s.). The mean heart rates were not correlated to
any neurophysiological or clinical parameters in either group.

Motor Cortical Excitability and
Short-Interval Intracortical Inhibition
The aMT and SI1mV were not different between the two groups
(see Table 2). The IOcurves (see Figures 3A,B) showed an
increase of MEP amplitudes with increasing TMS intensity. The
IOcurves measured before and after the interventions were not
different in either the PA or the CI group (ANOVA, main
effect of stimulus intensity p < 0.001; no effect of intervention).
Furthermore, there were no group differences between the
IOcurves (ANOVA; main effect group: p = 0.96; no significant
interaction). The SICI (see Figures 3C,D) was stronger with
increasing conditioning stimulus intensities. Again, there was no
difference in SICI before and after the intervention within each
group (ANOVAs; main effect of conditioning stimulus intensity: p
< 0.001; effect of intervention: n.s.), nor was there any difference
between the groups (ANOVA, main effect of factor group: p =

0.775; no significant interactions).

Motor Cortical Plasticity - PAS
The mean MEP amplitudes measured before PAS were not
different within each group when tested either before or
after the intervention (paired t-tests, n.s.), and not different
between the groups (unpaired t-tests: n.s.); thus ensuring
comparability between the groups. In the PA group, PAS induced
a significant increase (paired t-tests; p < 0.001) of the mean MEP

amplitude before and after the intervention. The PASeffect (MEP
after/before PAS, in%) was significantly stronger after PA (before:
113.40± 2.55%; after: 155.06± 10.48; paired t-test; p< 0.001; see
Figure 4A).

In the CI group, PAS also significantly increased the mean
MEP amplitude before and after the intervention (paired t-tests;
p < 0.001). However, there was no difference in the PASeffects
measured before and after the CI (before: 116.83 ± 3.70%; after:
122.01± 4.91%; paired t-test; n.s.; see Figure 4A).

The interaction of the factor intervention (before/after) and
group (PA/CI) was significant [ANOVA; F(1, 39) = 9.09; p =

0.005; η2 = 0.40; r= 0.63], as were themain effects of intervention
[F(1, 39) = 14.98; p< 0.001] and group [ANOVA; F(1, 39) = 4.15;
p = 0.048]. The PASchange was significantly higher in the PA
than in the CI group (unpaired t-test; p= 0.004).

The PASeffects measured before and after the intervention
were only weakly correlated in each group (PA: Pearson’s r
= 0.337, p = 0.116; CI: Pearson’s r = 0.328, p = 0.183;
see Figures 4B,C). While the PASeffect at baseline and the
PASchange showed no correlation in the PA group (Pearons’s
r = 0.087, p =0.693, see Figure 4D), there was a weak but
non-significant correlation in the control group (Pearson’s r
= −0.443, p = 0.065; see Figure 4E). Thus, the baseline
PASeffect did neither predict the PASeffect after the intervention,
nor PASchange.

Correlations Between Clinical Scales and
PAS
In both groups, there was a significant negative correlation
between the BDI-II scores and the PASeffect measured before
the interventions (see Figures 5A,B; PA: Pearson’s r = −0.71,
p < 0.001; CI: Pearson’s r = −0.68, p = 0.002; for both groups
together: Pearson’s r = −0.695, p < 0.001): with increasing BDI-
II scores the PASeffect was less strong. Furthermore, the change
of the BDI-II scores and the change of the PASeffect by the
intervention were significantly correlated in each groups (see
Figures 5E,F; PA: Pearson’s r = −0.835; p < 0.001; CI: −0.663,
p = 0.003): the stronger the BDI-II score decreased, the stronger
did the PASeffect increase. The latter effect was more prominent
in the PA group (see Figure 5E).

The BDI-II scores at baseline were not correlated to the
PASchange in either of the groups (Figures 5C,D; PA: r =−0.19;
p = 0.384; CI: r = 0.252; p = 0.312); thus, the baseline BDI-II
did not predict the PASchange. Furthermore, the change of BDI-
II scores were not correlated to the PASeffect at M1 in either
group (Figures 5G,H; PA: r = −0.268; p = 0.216; CI: r = 0.136;
p = 0.59), showing that the PASeffect at baseline did not predict
the clinical effect of the interventions as shown in reduction of
BDI-II scores.

There were no correlations between the HAMD-17 scores and
the PAS data in either group; and no correlations between clinical
scales and other neurophysiological parameters.

Cognition
Table 3 shows the results of the cognitive test performed before
and after the intervention in each group (mean T-scores ±

SEM). After the intervention, there was a significant increase
of T-scores of some parameters within groups that indicated an
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FIGURE 3 | IOcurves and SICI. (A,B) displays the IOcurves measured in PA (A) and CI (B) groups before and after the intervention, with the IOslope given in the

inserted diagram (mean ± SEM). IOcurves and IOslopes were not changed by the interventions within the groups, and there were no between-group differences.

(C,D) displays the SICI results for PA (C) and CI (D) groups, again there were no differences within the groups (before/after intervention) nor between the groups.

improved performance (see results of paired t-tests in Table 3).
There were no between-group differences in cognitive test
before or after intervention, apart from a significant difference
in the STROOP test (1 after-before: baseline reading), which
is of minor relevance in the absence of differences in the
interference conditions.

Although there were no significant differences on how the
performance was influenced by the intervention between the two
groups, T-scores tended to increase stronger in the PA group:
here the stronger increase of T-scores in Trail making and N-
back tasks might indicate a stronger improvement of attention/
working speed and of working memory, respectively.

DISCUSSION

Our study investigated the effect of PA—in comparison to a
CI—on neuronal excitability and plasticity, as well as on clinical

and cognitive symptoms in MDD. Confirming previous studies,
we showed that (i) PA had a beneficial clinical effect as such
as it reduced the severity of symptoms, such as psychomotor
retardation and loss of energy as assessed by HAMD-17 and
known to improve early in the course of MDD; and that (ii) the
baseline level of motor cortical LTP-like plasticity is low inMDD.

Our study now crucially expands these findings by showing,
that (iii) the severity of psychological/affective symptoms of
MDD, as monitored with the BDI-II is highly correlated to the
amount of LTP-like plasticity, and (iv) that PA as intervention can
normalize deficient neuroplasticity which—in turn—is correlated
to the reduction of clinical symptoms. In addition, (v) working
memory performance (N-back verbal test), executive functions
(Response Inhibition) and cognitive working speed (Trail making
test) tended to improve stronger after PA than after the CI.

The reduction of PAS-induced LTP-like plasticity in the motor
cortex in MDD before the interventions confirms findings of
previous studies (2, 6), and different mechanisms may account
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FIGURE 4 | PASeffect and correlations. (A) Displays the PASeffects measured before (clear bars) and after (hatched bars) the interventions in PA (red bars) and CI

(gray bars) groups. The PASeffect increased significantly after the intervention in the PA group, but not in the CI group (t-test results are given). (B,C) display the

correlation between the PASeffects measured before and after the intervention in PA (B) and CI (C) groups; (D,E) display the correlation between the PASeffect

measured before the intervention and PASchange for each group [PA: (D) and CI: (E)]. The results of Pearson’s correlation are given.

for this. First, changes in structural and functional synaptic
plasticity, such as reduced synaptic density in dorsolateral
prefrontal cortex (DLPFC), the anterior corpus callosum (ACC),
and the hippocampus (5, 50, 51) are described in MDD, likely
leading to reduced functional connectivity within and between
networks underlying mood and cognition. The motor cortex
is an important node in the brain and processes information
from various inputs (52, 53) as it is strongly interconnected with
numerous brain areas. Several key structures of the cognitive
network, such as the DLPFC (54), the posterior parietal cortex
(55), as well as frontal areas (56) have been shown to be connected
to the motor cortex, as several double-pulse TMS studies (57–60)
as well as cortico-cortical paired associative stimulation studies
have shown (61–64). Therefore, the PASeffect measured in the

motor cortex represents a valid surrogate marker for plasticity in
the networks that play a key role in the pathophysiology of MDD.

Second, the induction of LTP-like plasticity depends on
postsynaptic activation of NMDA-receptors (35), and the
alterations in the glutamatergic system described in MDD (65)
are likely to contribute to a reduction of PASeffects.

Lastly, the presence of hallmark symptoms of MDD, such as
anhedonia, loss of interest and of motivation, and psychomotor
retardation, might further contribute to a reduction of synaptic
plasticity. A lack of physical (66) and cognitive activity, and
of social interaction, deprives the brain of important stimuli,
which consequently might contribute to the downscaling or loss
of synapses, which are necessary to keep the brain susceptible
to plastic changes (67). Enhancing neuroplasticity is therefore a
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FIGURE 5 | Correlations between BDI-II and PAS. The correlations of BDI-II and PAS are given for PA (A,C,E,G) and CI (B,D,F,H) groups. Pearson’s r and p-values

are given in each figure. BDI-II and PASeffect measured before the intervention (M1) were negatively correlated in each group (A,B): the higher the BDI-II score, the

smaller was the PASeffect. Similarly, the change of BDI-II and PASeffects by the intervention were negatively correlated in each group (E,F). The BDI-II at baseline did

not predict the amount of PASchange that could be induced by the interventions (C,D), neither did the PASeffect at baseline (M1) predict the amount of BDI-II change

(G,H).
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TABLE 3 | Results of cognitive tests (T-scores).

PA CI

Attention and working speed Mean SEM Paired t-test Mean SEM Paired t-test

Work performance series

Numbers worked Before 48.96 ± 1.73 Before 52.89 ± 3.03

After 53.35 ± 1.72 p < 0.001 After 54.78 ± 2.43 n.s.

1after-before 4.39 ± 0.59 1after-before 1.89 ± 1.63

Errors Before 51.83 ± 2.22 Before 42.89 ± 3.03

After 52.26 ± 2.21 n.s. After 50.00 ± 1.57 p < 0.05

1after-before 0.43 ± 1.99 1after-before 7.11 ± 3.00

Trail making test

Part A Before 49.61 ± 0.95 Before 51.28 ± 1.54

After 54.39 ± 1.41 p < 0.001 After 54.78 ± 2.50 n.s.

1after-before 4.78 ± 1.08 1after-before 3.47 ± 1.79

Part B Before 52.83 ± 1.27 Before 50.39 ± 2.13

After 58.87 ± 1.65 p < 0.001 After 54.83 ± 2.31 p < 0.001

1after-before 6.04 ± 1.27 1after-before 4.44 ± 1.03

Executive function Mean SEM Paired t-test Mean SEM Paired t-test

STROOP

Baseline reading Before 52.13 ± 1.54 Before 51.50 ± 2.02

After 57.57 ± 1.74 p < 0.001 After 52.50 ± 2.11 n.s.

1after-before 5.43 ± 0.93 1after-before 1.00 ± 1.13

Baseline naming Before 52.00 ± 1.79 Before 50.28 ± 2.34

After 55.57 ± 1.91 p < 0.001 After 51.83 ± 1.95 n.s.

1after-before 3.57 ± 0.88 1after-before 1.56 ± 1.91

Interference reading Before 49.96 ± 1.51 Before 45.50 ± 2.96

After 50.48 ± 1.80 n.s. After 46.44 ± 2.02 n.s.

1after-before 0.52 ± 1.94 1after-before 0.94 ± 2.64

Interference naming Before 51.48 ± 2.06 Before 52.89 ± 2.67

After 50.22 ± 1.80 n.s. After 48.33 ± 1.65 n.s.

1after-before −1.26 ± 1.77 1after-before −4.56 ± 2.73

Response Inhibition

Commission errors Before 48.61 ± 1.96 Before 49.06 ± 2.60

After 52.26 ± 2.17 p < 0.05 After 51.33 ± 2.76 n.s.

1after-before 3.65 ± 1.40 1after-before 2.28 ± 2.16

Omission errors Before 44.78 ± 1.97 Before 45.89 ± 2.19

After 49.39 ± 1.82 p < 0.05 After 48.72 ± 2.25 n.s.

1after-before 4.61 ± 1.80 1after-before 2.83 ± 1.96

Sensitivity index Before 46.74 ± 2.25 Before 47.78 ± 3.01

After 52.13 ± 2.20 p < 0.01 After 50.28 ± 2.60 n.s.

1after-before 5.39 ± 1.57 1after-before 2.50 ± 2.09

Tower of London

Before 55.83 ± 2.00 before 54.22 ± 1.61

After 57.87 ± 1.35 n.s. after 55.56 ± 2.51 n.s.

1after-before 2.04 ± 1.85 1after-before 1.33 ± 2.59

Working memory Mean SEM Paired t-test Mean SEM Paired t-test

N-back-verbal

Correct answers Before 55.65 ± 3.94 Before 54.61 ± 3.95

After 73.22 ± 2.76 p < 0.001 After 67.00 ± 4.03 p < 0.01

1after-before 17.57 ± 4.49 1after-before 12.39 ± 3.76
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promising treatment approach, and using PA as an intervention
has been proven to be clinically beneficial in MDD.

There is good evidence that PA modifies structural and
functional brain plasticity (68–70). PAS-induced plasticity is
higher in physically active healthy subjects compared to those
with a sedentary lifestyle (8, 71). PA has been shown to increase
metabolism and oxygenation, tomodulate neurotransmitters and
the release of neurochemical and neurotropic factors in the
brain (72–77), and by these mechanisms likely contributes to the
enhancement of plasticity.

After the 3 weeks of intervention, the PASeffect increased
stronger in patients of the PA than of the CI group. Since
parameters of neural excitability, the IOcurve and SICI, did not
change, this is likely to be due to enhanced LTP-like plasticity
after PA, rather than stronger motorneuronal recruitment or a
reduction of GABAergic inhibition. Importantly, the PASeffect
measured before the interventions was not related to PASchange,
which precludes a saturation effect (“ceiling effect”).

We monitored the intensity of the PA program by measuring
the heart rate, and its rise to moderate levels during the PA
session indicated a moderate level of physical strain for the
patients; while there was no notable change of heart rate in
patients of the CI group. Given the moderate intensity and
short duration of the PA program, the strength of its effect on
PAS-induced plasticity in MDD was surprising. In the context
of synaptic density and activity being reduced in MDD (5), it
might point toward enhanced susceptibility to undergo LTP-
like plasticity induction, in terms of a homeostatic mechanism.
Similar to increased plasticity after sensory deprivation (78), the
PA program might have re-activated synaptic connections and
consequently “boosted” the efficiency of the PAS protocol to
induce LTP-like plasticity (79).

Previous studies using PAS (6) and measures of synaptic
density (5) have described an association between the severity
of depressive symptoms and neuroplasticity in MDD. We
extended these findings in our study by showing that the
amount of LTP-like plasticity strongly correlates with the
BDI-II scores in both groups at baseline; and further, that
the amount of BDI-II score reduction and the increase of
PAS plasticity seen after the interventions were correlated in
both groups, though stronger in the PA. However, as the
baseline PASeffect was not correlated to the BDI-II score
change, and the baseline BDI-II was not correlated to the
PASchange, the value of the PASeffect or the BDI-II score
measured before the interventions is limited with regard
to predicting either the clinical outcome or the amount of
neuroplastic change.

There were no such correlations of the HAMD-17 and
PASeffects, nor of the HAMD-17 and BDI-II scores. However,
the difference in clinical outcome was shown in the HAMD-
17, which decreased significantly stronger in the PA than in the
CI group.

Several studies in MDD have already shown that self- and
observer-rated scales are only moderately correlated, if at all
(80, 81). Compared to the BDI-II (82), the HAMD-17 (83)
has a higher sensitivity to depict changes (81, 84). The scores
are quite different with regard to their item structure. The

BDI-II focuses more on psychological/affective and the HAMD-
17 more on somatic/neurovegetative items. As a self-rated score,
the BDI is dependent on the patients’ self-perception which—
in turn—is often compromised by the symptoms of depression
themselves. As it is focussing more on cognitive symptoms, the
BDI-II is likely to be less sensitive to change because cognitive
symptoms are more persistent than somatic symptoms in the
course of treatment (85–87). Thus, the BDI-II has probably
not been sensitive enough to depict early symptom changes
that might have evolved during the 3 weeks observational
period. The HAMD-17 is investigator-rated, focuses stronger on
somatic/neurovegetative symptoms that are more likely to remit
at an earlier phase in the course of treatment, and therefore
is more perceptive to change over shorter observation periods
(81). Furthermore, an observer could be more likely to see
improvement in depressive symptoms than a patient affected by
a cognitive bias (86, 87).

Thus, if there are first signs of symptom remittance, they are
more likely to present as a reduction inHAMD-17 than in BDI-II;
as was the case for the patients of the PA group. The correlation
of the BDI-II and PAS-induced neuroplasticity might indicate,
that factors like loss of interest, indecisiveness and pessimism,
which were most strongly reduced in the PA group, might be
more closely associated to deficient neuroplasticity and therefore
sensitive to plasticity enhancing interventions.

The patients’ attention, working memory and executive
functions as tested by the cognitive test battery were not notably
different from the age- and education-matched healthy control
group (implemented in the test battery). Similar to other studies
our findings might indicate that patients with MDD achieve
this level of performance by a compensatory higher level of
brain network activation, and thus their cognitive capacity is
compromised by recruiting more brain resources as healthy
controls (88).

Though there were no statistically significant differences, the
cognitive performance tended to increase more in the PA than
CI groups after the interventions, hinting toward an increased
cognitive capacity by PA, as similarly described in physically
active healthy subjects (89–91).

The study was performed on patients during their stay on
the psychiatric ward and thus the duration of the interventions
was limited to 3 weeks which might have been too short a
period to induce differentiated effects on cognitive symptoms.
Furthermore, we tested neuroplasticity, clinical and cognitive
symptoms directly after the end of the interventions. Future
studies need to address how long the PA-induced changes might
last for and how they might be used to facilitate standard
treatment of MDD.

In summary, we showed that a PA intervention supports the
remission of clinical symptoms and normalizes deficient LTP-
induced neuroplasticity inMDD, and that these two observations
are highly correlated. Our study therefore further highlights the
role of neuroplasticity in the pathophysiology of MDD and of PA
in its treatment by showing that this intervention directly targets
the deficient neuroplasticity as an underlying pathophysiological
mechanism. Further research is needed to explore whether the
effect of therapeutic interventions, might be predicted by clinical
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or neurophysiological parameters, as this would support the
development of individualized treatments strategies.
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