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Familial exudative vitreoretinopathy (FEVR; OMIM: 
133780) is an inherited disease affecting the growth and 
development of retinal vessels, with characteristic abnormali-
ties in the retinal vasculature [1]. Its clinical manifestations 
are avascularity in the peripheral retina [2], retinal folds, 
vitreous hemorrhage, and retinal detachment [3]. The three 
inheritance patterns of FEVR are X-linked (XL) recessive, 
autosomal dominant (AD), and autosomal recessive (AR). 
The nine following genes have been reported to cause FEVR: 
LRP5 (OMIM: 603506) [4], TSPAN12 (OMIM: 613138) [5], 
NDP (OMIM: 300658) [6], FZD4 (OMIM: 604579) [7], 
ZNF408 (OMIM: 616454) [8], KIF11 (OMIM: 148760) [9], 
CTNNB1 (OMIM: 116806) [10], JAG1 (OMIM: 601920) [11], 
and CTNNA1 (OMIM: 116805) [12]. NDP is inherited as an 
XL trait, whereas LRP5 can be inherited as either AD or AR, 
and the rest of the genes have been reported to inherit in the 
AD model.

Norrie disease (ND; OMIM: 310600) is an inherited eye 
disorder that causes blindness in male infants at birth or soon 
thereafter [13], combined with neurosensory deafness and 
central nervous system abnormalities. It is inherited as an 
XL trait [14] caused by mutations in NDP [15].

NDP, located on chromosome Xp11.4, comprises three 
exons and encodes a secreted 133-amino-acid protein called 
Norrie or Norrie disease protein (NDP) [15]. It is a cysteine 
knot protein that activates the Norrie/β-catenin signaling 
pathway through a precise connection with FZD4 and LRP5 
[16]. Mutations in NDP can progress to X-linked FEVR, ND, 
and retinopathy of prematurity [17]. Thus far, 185 mutations 
in NDP have been listed in the Human Gene Mutation Data-
base (HGMD). They are classified as missense or nonsense, 
splicing, small deletions, small insertions, small indels, gross 
deletions, and gross insertions.

Copy number variations (CNVs), which occupy many 
genetic variants, include deletion, insertion, and duplication 
events longer than 1 kb has been maintained [18]. CNVs in 
NDP, first reported by Chen et al. [19], are mainly gross dele-
tions. To date, 25 gross deletions have been recorded in the 
HGMD. However, CNVs in NDP remain poorly understood. 
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The aim of this study was to describe the CNVs in the NDP 
gene in Chinese families and the associated phenotypes.

METHODS

Patients: This study adhered to the tenets of the Declaration 
of Helsinki and was approved by the Institutional Review 
Board of Zhongshan Ophthalmic Center, Sun Yat-sen Univer-
sity (2014MEKY048). Informed consent forms were obtained 
from the participants or their guardians.

In total, 651 probands with a diagnosis of FEVR were 
recruited at Zhongshan Ophthalmic Centre, Sun Yat-sen 
University, from January 2014 to April 2021. The criteria 
for clinical diagnosis of FEVR were the same as in previous 
studies [20,21], and the FEVR stage was determined using the 
classification system developed by Trese et al. [22]. Patients 
with a birthweight of less than 1,500 g or a gestational age 
of less than 32 weeks were excluded, as were patients with 
obvious systemic conditions. The diagnosis of FEVR was 
made at the initial visit to the ophthalmic center. Patients with 
fibrous and vascular changes of the retina at birth or soon 
after birth, as well as hearing loss and mental retardation or 
other systemic conditions, were diagnosed as ND.

Clinical examinations: All probands and their family 
members underwent comprehensive ophthalmic exami-
nations, including best-corrected visual acuity (BCVA), 
slit-lamp biomicroscopy, ophthalmoscopy, and intraocular 
pressure. Children underwent either RetCam examination 
(Clarity Medical Systems, Pleasanton, CA) or scanning laser 
ophthalmoscopy (Nidek F-10; Nidek, Gamagori, Japan). 
B-scan ultrasonography (Compact Touch 4.0; Quantel 
Medical, Cournon-d’Auvergne, France) was performed in 
patients with cloudy cornea or lens opacity. Fundus fluores-
cein angiography was performed using a Spectralis HRA 
(Heidelberg Engineering, Heidelberg, Germany) or RetCam 
(Clarity Medical Systems).

Targeted gene panel sequencing, whole-exome sequencing, 
and verification: Peripheral venous blood was collected from 
the FEVR probands and family members. The DNA extrac-
tion method was detailed in our previous study [23]. DNA 
samples from the probands were analyzed with targeted gene 
panel (TGP) sequencing (from January 1, 2015, to December 
31, 2017) and whole exome sequencing (WES; from January 
1, 2018), and variant verification and segregation analysis 
was performed with Sanger sequencing. The WES data 
were analyzed using a multistep bioinformatic analysis as 
described in our previous study [24]. For patients with no 
detected pathogenic variants, SeqCNV was used for CNV 
analysis [25].

Semiquantitative multiplex PCR (qPCR) was used to 
validate the CNVs. Primers of NDP exons 1, 2, and 3 were 
designed, and exon 6 of SPATA7 and exon 14 of TTLL5 
were used as positive controls (Supplementary Table 1). The 
qPCR process was repeated three times. The detailed qPCR 
reaction was the same as in a previous study [26]. CNVs of 
NDP were identified when the relative amount of the female 
sample was half or the male sample was 0 compared with the 
control group. Multiplex ligation-dependent probe amplifica-
tion (MLPA) was also used to determine the CNVs using 
a single multiplex–based reaction. An MLPA kit (SALSA 
MLPA Probemix P285-C3 LRP5; FALCO Biosystems–MRC 
Holland, Amsterdam, Netherlands) was used according to 
the manufacturer’s instructions. The relevant information on 
the probes is shown in Supplementary Table 2. The reaction 
products were run on a genetic analyzer (ABI PRISM 3130 
Genetic Analyzer; Applied Biosystems, Foster City, CA) and 
then analyzed by Coffalyser.Net software (MRC Holland, 
Amsterdam, Netherlands).

RESULTS

Clinical features of probands with NDP CNVs: Using TGP 
and WES, NDP mutations were detected in 20 of the 651 
FEVR families (3.07%); of these, NDP CNVs were identified 
in three families (probands XDW1, DX1740, and DX1906), 
accounting for 15% of the patients with NDP mutations and 
0.46% of the entire FEVR cohort. All three probands with 
NDP CNVs had total retinal detachment (Figure 1).

XDW1 was referred to our outpatient clinic 12 days after 
birth. He was full term and delivered uneventfully. Fetal 
ultrasound detected vitreous stalk-like changes at 36 weeks of 
gestation. On the first day after birth, B-scan ultrasonography 
showed bilateral retinal detachment and choroidal detach-
ment. XDW1 was diagnosed with autism during follow-up, 
at 4 years old. His uncle had a similar phenotype, with no 
light perception bilaterally.

In DX1740, bilateral leukocoria was noticed a few days 
after birth. Ophthalmological examination revealed corneal 
opacities and shallow anterior chambers. B-scan ultrasonog-
raphy showed total retinal detachment of bilateral eyes. No 
systemic abnormalities were noticed at 3 years old.

In DX1906, leukocoria was noticed 3 months after birth. 
The patient visited our hospital at 6 months of age. B-scan 
ultrasonography showed bilateral retinal detachment and 
ophthalmatrophia. Brainstem auditory evoked potential and 
electroencephalogram were unremarkable. At his last visit at 
the age of 3 years old, DX1906 still could not walk or speak. 
All four affected male patients had a similar phenotype: They 
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all had total retinal detachment at an early age of onset, even 
during the prenatal period.

NDP CNVs: The SeqCNV analysis of the WES data 
detected NDP CNVs in three families (Figure 2). XDW1 
and XDW1uncle had NDP exon 2 deletion, and XDW1M and 
XDW1aunt were female carriers. DX1740 also had exon 2 
deletion, which he inherited from his mother. DX1906 had 
whole gene deletions of NDP (including exons 1, 2, and 3) 

and the MAOB, EFHC2, and FUNDC1 genes. These CNVs 
were confirmed by qPCR (Figure 3) and MLPA (Figure 4).

DISCUSSION

In this study, we identified three families with NDP CNVs 
and detailed their ocular manifestations. All probands with 
NDP CNVs had a severe ocular phenotype with total retinal 
detachment. CNVs accounted for 15% of the families with 
NDP mutations in our cohort.

Figure 1. Ultrasound of the three probands. Retinal detachment was detected in A,B: the right and left eyes of XDW1, C,D: the right and 
left eyes of DX1740, and E,F: the right and left eyes of DX1906.

http://www.molvis.org/molvis/v28/29


32

Molecular Vision 2022; 28:29-38 <http://www.molvis.org/molvis/v28/29> © 2022 Molecular Vision 

A total of 185 NDP mutations have been reported in 
the HGMD. These include 98 (53%) missense mutations, 
16 (8.6%) nonsense mutations, 7 (3.8%) splicing, 2 (1.1%) 
regulatory, 23 (12.4%) small deletions, 25 (13.5%) gross 
deletions, and 1 (0.5%) gross insertion. CNVs are a common 
NDP mutation type. These are deletions of exons 1, 2, or 3 

or whole-gene deletions along with deletions of the MAOA, 
MAOB, and EFHC2 genes [19,27-38].

The phenotypes of patients with NDP CNVs in this study 
were severe, including blindness at birth or soon thereafter. 
Eisuke Arai et al. described the phenotypes of patients with 
exon 2 deletions. Leukocoria with total retinal detachment 

Figure 2. NDP copy number variations (CNVs) detected by SeqCNV. A: NDP exon 2 deletion in XDW1. B: The amplified region of NDP 
with exon 2 deletion in XDW1. C: NDP exon 2 deletion in DX1740. D: The amplified region of NDP with exon 2 deletion in DX1740. E: A 
1.73-Mb deletion in DX1906. D: Normal control with no deletion.

http://www.molvis.org/molvis/v28/29
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was observed in the patients soon after birth; they were diag-
nosed with mental retardation between the ages of 8 and 12 
years old [39]. To further assess the clinical phenotypes of 
patients with NDP CNVs, especially their ocular features, we 
reviewed studies on phenotypes related to NDP CNVs (Table 
1) [28,30-33,35,37,39-41]. The review demonstrated that all 
patients had bilateral blindness—many of them at birth—and 

ocular abnormalities detected antenatally. All patients had 
retinal detachment. Other common manifestations were 
cataract, corneal opacity, and shallow anterior chambers. 
Despite differences in NDP deletions, the ocular phenotypes 
were similar.

Treatments have rarely been administered to mitigate the 
deleterious natural history of ND. Trese et al. [42] reported 

Figure 3. Confirmation of NDP copy number variations (CNVs) using semiquantitative multiplex PCR. Histograms of NDP exons 1, 2, 
and 3 from A: XDW1, B: DX1740, and C: DX1906 compared with other family members. TTLL5 exon 14 and SPATA7 exon 6 were used 
as controls. The relative NDP exon 1, 2, and 3 amplicon copy number ratios in the affected males were close to 0 (the normal copy number 
ratio should be 1 in males and 2 in females), confirming the deletion in a hemizygous state. The copy number ratios of TTLL5 exon 14 and 
SPATA7 exon 6 were around 2. A: XDW1 and XDW1uncle had NDP exon 2 deletion. B: DX1740 had NDP exon 2 deletion. C: DX1906 had 
whole NDP gene deletion.

http://www.molvis.org/molvis/v28/29
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that early vitrectomy was effective because it could at least 
preserve light perception and visual acuity in one eye. 
Clement et al. reported an ND case diagnosed using amnio-
centesis; in this case, blindness was prevented after laser 
photocoagulation at birth [43]. Liu et al. reported that ante-
natal genetic analyses combined with fetal ultrasound could 
be used for prenatal diagnosis of FEVR and ND [33]. Indeed, 

our review of the phenotypes of patients with NDP CNVs, 
all of whom had severe retinal detachment at birth or soon 
thereafter, suggests that antenatal genetic analyses and fetal 
ultrasound can facilitate early diagnosis and interventions.

Twenty-five NDP gross deletions or CNVs, detected 
using different methods, have been reported in the HGMD 
[19]. Deborah et al. reported six intragenic deletions using 

Figure 4. Confirmation of NDP copy number variations (CNVs) using multiplex ligation-dependent probe amplification (MLPA). A: MLPA 
analysis of XDW1 (left) and XDW1M (right). The arrow indicates no peak in XDW1 and a half-reduced relative peak height in XDW1M, 
corresponding to the NDP exon 2 probe. B: MLPA analysis of DX1740 (left) and DX1740M (right). The arrow indicates no peak in DX1740 
and a half-reduced relative peak height in DX1740M, corresponding to the NDP exon 2 probe. C: MLPA analysis of DX1906 (left) and 
DX1906M (right). The arrow indicates no peak in DX1906 and a half-reduced relative peak height in DX1906M, corresponding to the NDP 
exon 1, 2, and 3 probes.
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Southern blot hybridization experiments with exon-specific 
PCR fragment probes [37]. Suárez-Merino et al. identified a 
1.5-Mb DNA deletion together with the NDP and MAO genes 
using a method that combines PAC library screening with 
STS mapping [44]. Rivera-Vega et al. detected a partial dele-
tion in the untranslated 3′ region of exon 3 of the NDP gene 
using PCR and DNA sequencing [35]. Rodriguez-Revenga et 
al. detected contiguous deletions of the NDP, MAOA, MAOB, 
and EFHC2 genes using microarray comparative genomic 
hybridization and fluorescent in situ hybridization analysis 
[36]. Staropoli et al. analyzed the microdeletion of NDP in the 
Xp11.3–p11.4 region using MLPA and comparative genomic 
hybridization (CGH) [40]. Waroop et al. analyzed the intra-
genic copy number analysis with exon-level array CGH [27]. 
CNVs are called from WES data using a relative coverage 
method, followed by exon CGH, chromosome microarray, 
MLPA, qPCR, or Sanger sequencing for confirmation [34]. 
The deletion can also be identified using the integrative 
genomic viewer directly from the WES data [45]. In this 
study, we used SeqCNV to analyze the WES data and then 
MLPA and qPCR to verify the NDP CNVs.

In summary, we identified NDP CNVs in three fami-
lies, accounting for 15% of patients with NDP mutations 
and 0.46% of our entire FEVR cohort. The CNV-associated 
phenotype of NDP was congenital blindness with total retinal 
detachment. Antenatal genetic analyses and fetal ultrasound 
may facilitate early diagnosis and early interventions in 
patients with NDP mutations.

APPENDIX 1. PRIMERS USED FOR QPCR.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. MLPA PROBES OF NDP.

To access the data, click or select the words “Appendix 2.”
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