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Strategies to induce natural
killer cell tolerance in
xenotransplantation

Kevin J. Lopez †, Arthur A. Cross-Najafi †, Kristine Farag ,
Benjamin Obando , Deepthi Thadasina ,
Abdulkadir Isidan , Yujin Park , Wenjun Zhang ,
Burcin Ekser *‡ and Ping Li *‡

Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine,
Indianapolis, IN, United States
Eliminating major xenoantigens in pig cells has drastically reduced human

antibody-mediated hyperacute xenograft rejection (HXR). Despite these

advancements, acute xenograft rejection (AXR) remains one of the major

obstacles to clinical xenotransplantation, mediated by innate immune cells,

including macrophages, neutrophils, and natural killer (NK) cells. NK cells play

an ‘effector’ role by releasing cytotoxicity granules against xenogeneic cells and

an ‘affecter’ role on other immune cells through cytokine secretion. We

highlight the key receptor-ligand interactions that determine the NK cell

response to target cells, focusing on the regulation of NK cell activating

receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and

LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts

from cytotoxicity. Recent successful approaches to reducing NK cell-mediated

HXR and AXR are reviewed, including genetic modifications of porcine

xenografts aimed at improving pig-to-human compatibility. Future directions

to promote xenograft acceptance are discussed, including NK cell tolerance in

pregnancy and NK cell evasion in viral infection.

KEYWORDS

NK cells, NK cell tolerance, xenotransplant, xenotranplantation, tolerance
Abbreviations: aGal, galactose-a(1,3)galactose; AXR, Acute xenograft rejection; b4galNT2, Beta-1,4-N-

Acetyl-Galactosaminyltransferase 2; CMAH, Cytidine monophospho-N-acetylneuraminic acid

hydroxylase; GGTA1, Alpha-1,3-galactosyltransferase; HLA, Human leukocyte antigen; HXR,

Hyperacute xenograft rejection; MHC, Major histocompatibility complex; Neu5Gc, N-

glycolylneuraminic acid; NK Cells, Natural Killer Cells; PBMC, Peripheral blood mononuclear cells;

pEC, Porcine endothelial cells; SLA, Swine leukocyte antigen; 5GKO, GGTA1/CMAH/b4galNT2/SLA-Ia/

b2-microglobulin KO.
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Introduction

The persistent lack of transplantable organs has resulted in the

death of thousands of patients every year. There have been several

proposed solutions to address this issue, including manufacturing

bioartificial organs (1), 3D printing human organs (2), and

transplanting organs from different species into humans, a

practice known as xenotransplantation. Xenotransplantation

represents one of the most promising approaches. Elimination

of major xenoantigens on xenografts by gene-editing tools has

proven to be an effective approach to preventing hyperacute

xenograft rejection (HXR) (3–6). Earlier this year, the first pig-

to-human heart transplantation was performed and supported the

patient’s life for two months. In this xenotransplant, HXR was

successfully prevented with 10-gene modification, particularly

with three major xenoantigens (aGal, Neu5Gc, and Sda)

removal in the xenograft (7). Despite this exciting success,

xenotransplantation must overcome other barriers before

becoming a widespread clinically viable solution. As a result of

current advances, the field has shifted towards addressing the next

major immunologic barrier: acute and chronic xenograft rejection.

Natural killer (NK) cells are a subset of lymphocytes that not

only constitute the innate immune system’s first line of defense

but also play a significant role in regulating adaptive immunity

(8, 9). NK cells can destroy target cells either directly or via

antibody-dependent cellular cytotoxicity (ADCC) in the absence

of antigen priming (10). NK cell-mediated cytotoxicity may

initiate robust adaptive immune responses via CD8+ T cell
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priming, antigen-specific CD4+ T cell response, and humoral

responses (11). NK cells also secrete cytokines and chemokines,

which regulate dendritic cells, macrophages, and neutrophils, as

well as antigen-specific T cell and B cell function (9, 12, 13).

NK cells express various activating and inhibitory receptors

that interact with the ligands on target cells (9). The balance

between activating and inhibitory signals of NK cells determines

NK cell activation or tolerance (14). In classical education (also

known as NK licensing), naive hyporesponsive NK cells learn to

recognize MHC class I molecules as “self” (15). This knowledge

of “self” allows NK cells to activate when target cells are missing

MHC ligands. Killer cell immunoglobulin-like receptors (KIR)

are a major group of human NK inhibitory receptors for HLA

class I molecules. Interaction of NK inhibitory cell receptors

KIR2DL4 and CD94 (NKG2A) with non-classical class I

molecules HLA-G and HLA-E at the fetomaternal interface

results in maternal immune tolerance during pregnancy (16)

(Figure 1). Activating human NK cell receptors include members

of KIR family, NKG2D, natural cytotoxicity receptors such as

NKp30, NKP44, NKp46, and the nectin/nectin-like binding

receptors DNAM-1 and CRTAM, which are responsible for

initiating activating signals (17, 18) (Figure 1).

NK cells play a crucial role in influencing immune responses

to solid organ allografts. Activated NK cells can kill allogeneic

target cells and secrete immunomodulatory chemokines and

cytokines, contributing to either rejection or tolerance (19).

In this review, we focus on (i) the dual function of NK cells

in rejection and tolerance in allotransplantation, (ii) the state of
FIGURE 1

Genetic Modifications that Reduce NK Cell-directed Cytotoxicity. Top left: Recruitment occurs due to adhesive interactions between endothelial
ligands and NK cell receptors. Transmigration is mediated by interactions between CD99 and unknown ligands on porcine endothelial cells. Top
middle: Antibody-dependent cellular cytotoxicity (ADCC) present upon NK cell recognition of preformed IgG antibodies directed against the
xenoantigens aGal, Neu5Gc, and Sda. Bottom left: Failed self-recognition due to non-homology between SLA I and HLA I molecules. Bottom
middle: NK cell receptor activation results from interactions with unknown porcine ligands. Right: Summary of current genetic modification
proposed to reduce NK cell-mediated cytotoxicity.
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current research regarding genetic modifications to promote NK

cell tolerance in xenotransplantation, and (iii) promising future

directions to advance xenotransplantation to the clinical reality.
NK cells in allotransplantation

Within days of solid organ transplantation, NK cell

infiltration has been observed in allografts (20). Historically,

acute rejection episodes have been characterized by an increased

number of circulating cytotoxic NK cells (21). NK cells are

primarily responsible for augmenting the immune response by

secreting key pro-inflammatory cytokines, such as TNF-a and

INF-g (22) and recruiting activated lymphocytes (23). Although

T cells are the dominant cell type in allograft rejection, fully

activated NK cells have been implicated in allograft rejection in

the absence of T cells and B cells in mice (24). The early

recruitment of immune cells to the graft via NK cell cytokine

secretion can propagate the acute rejection process, linking the

innate and adaptive immune responses (25). NK cell facilitation

of rejection is evidenced by simultaneous and significantly

elevated expression of NKG2D and its ligands during acute

cardiac allograft rejection in mice (26).

Beyond acute rejection, the role of NK cells in chronic

rejection has been uncovered in multiple studies. For example,

depletion of mouse NK cells by anti-NK1.1 monoclonal

antibodies prevented early phase cardiac allograft vasculopathy

(CAV) (27). In a RAG1 -/- murine model (deficient in T and B

cells), NK-induced CAV lesions were restored when wild-type

helper T (Th) cells were transferred to the recipient, suggesting

that NK cells may play a role in chronic rejection in a Th cell-

dependent manner (19, 28). A similar role in chronic rejection

was noted in a murine lung transplant model as the use of an

anti-NK1.1 monoclonal antibody attenuated bronchiolitis

obliterans, a form of chronic lung transplant rejection (29). In

a retrospective immunogenetic study of human cadaveric kidney

allografts, lacking inhibitory combinations of functional

recipient KIR and donor HLA ligand led to a higher risk of

chronic rejection (30). Collectively these findings support the

conclusion that the presence of NK cells promotes chronic

allograft rejection. Thus, inhibiting NK cell activation could be

beneficial in improving allograft survival.

Additionally, NK cells promote kidney graft rejection

independently of immunosuppressant cyclosporine A therapy,

which blocks T cell activation through IL-2 inhibition (31). Due

to the varying mechanisms of action of immunosuppressants,

uniform influence on NK cell cytotoxicity is not seen.

Immunosuppressants limit NK cell functions, such as IFN‐g
production, expression of activation/inhibitory and adhesion

markers, antibody-dependent cell-mediated cytotoxicity

(ADCC), and NK cell proliferation in different manners to

different degrees (32). However, identifying potent inhibitors
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of NK cell functions (methylprednisone and intravenous

immunoglobulin) has important implications for their use in

promoting xenotransplant acceptance (32).

The role of NK cells in allograft tolerance is more complex,

especially given that both recipient and donor NK cells

contribute to allograft rejection and tolerance (33–35).

Depletion of recipient NK cells has been reported to prolong

allograft survival in a murine liver transplantation model (23).

Conversely, in a mouse skin allograft model, recipient NK cells

were shown to target and destroy donor antigen-presenting cells,

ultimately leading to improved skin allograft tolerance (36). A

human lung allotransplantation study also showed these

opposing actions of rejection and tolerance (37). Given the

array of NK cell functions in acute and chronic allograft

rejection, a thorough understanding of their precise roles will

be essential to designing an immunologically optimized

porcine xenograft.
NK cells in xenotransplantation

Direct contact of human blood with porcine vascular

endothelial cells leads to pig endothelial cell injury and

secretion of cytokines and chemokines (6, 38, 39). Adhesion

molecules, including platelet endothelial cell adhesion

molecule, E-selectin (CD62E), P-selectin (CD62P), and

vascular cell adhesion molecule-1 (VCAM-1), are upregulated

on activated porcine endothelial cells (pEC), and function in

recruiting human NK cells (6, 40). Studies showed that

interactions of porcine VCAM-1 with human very late

antigen-4 (VLA-4) facilitated human NK cell adhesion to

pEC (41, 42), and later transendothelial migration was

mediated CD99 (43). Manipulating the VCAM-1/integrin

adhesion pathway is impractical as the deletion of VCAM-1

was lethal in mice (44).

Preformed human anti-pig antibodies binding to

xenoantigens on porcine vascular endothelium initiates the

hyperacute xenograft rejection cascade (45, 46). ADCC is a

major mechanism for NK cell-mediated cytotoxicity through

Fc-receptors (CD16a) binding to IgG1 and IgG3 on pEC and

releasing lytic granules (47–49). The aGal-knockout (KO) in pEC

line has been shown to significantly suppress ADCC (50, 51).

Additional elimination of N-glycolylneuraminic acid (Neu5Gc)

(52) and Sda (product of b-1,4 N-acetylgalactosaminyl

transferase) (53, 54) carbohydrates and SLA-I xenoantigen in

pECs may further inhibit NK cell-mediated ADCC (51). The

pivotal work in reducing NK cell hyperacute xenograft rejection is

well summarized by Puga Yung et al. (6).

Several studies have been conducted to evaluate the role of NK

cells in acute xenograft rejection. In a pig-to-nonhuman primate

(NHP) preclinical cardiac xenotransplantation with antibody

depletion, Itescu et al. observed greater levels of NK cell and
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macrophage infiltration in xenografts than in allografts when

antibodies were depleted (55), suggesting xenografts experience

a more robust cellular immune response even in the absence of

antibody-mediated rejection. In a guinea pig-to-rat cardiac

xenotransplantation study, continuous depletion of NK cells can

prolong xenograft survival (56), further indicating that the

absence of NK cells may promote long-term xenograft

acceptance. An early and transiently elevated IFN-g was

recognized in pig-to-NHP heart and kidney xenotransplantation

when retrospective analyses of NHP sera were performed. Further

study indicated that NHP NK cells are the source of early IFN-g
upon the stimulation by both wild-type and aGal-KO pEC in

vitro, which could amplify inflammation (57). Taken together,

these findings suggest that xenografts experience profound cellular

rejection, and NK cells play a pivotal role in both executing and

amplifying this response.

Given the importance of NK cells in acute xenograft

rejection, the interspecies receptor-ligand interaction has been

investigated with the goal of manipulating porcine ligands to

prevent human NK cell cytotoxicity. Three HLA class I

molecules were expressed in an immortalized porcine bone

marrow-derived endothelial cell line. HLA-Cw3 provided

substantial protection against cytotoxicity of several NK

clones, but HLA-A2 and HLA-B27 provided no protection

(58). The co-expression of HLA-Cw3 and HLA-Cw4 did not

offer additional benefit than when each was expressed alone (59).

The inhibitory role of swine leukocyte antigen-I (SLA-I)

towards human NK cells has been investigated in the past with

mixed findings. Sullivan et al. reported that SLA-I is unable to

efficiently transmit inhibitory signals to human NK cells because

amino acid residues critical for the binding to human NK cell

inhibitory receptors are altered in SLA-I when compared to HLA

class I (60). In contrast, Kwiatkowski et al. found that induction

of SLA-I expression on porcine endothelium by TNF-a reduced

human NK cell-mediated cytotoxicity (41). Hein et al. reported

that decreased SLA-I expression (SLA-I low) did not decrease

NK cell activation (61). A recent study demonstrated that SLA-I

is not an inhibitory ligand for human NK cells using an

immortalized pEC with SLA-I gene disruption (5). The

absence of inhibitory ligands on pEC triggers human NK

cell destruction.
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Future directions

Xenotransplantation differs from allotransplantation in that

preventing rejection can be achieved through genetic modification

of the donor pig, improving donor-recipient compatibility. A

thorough understanding of the NK cell tolerance mechanisms is

necessary for developing novel strategies to mitigate NK cell

activation in xenotransplantation. To overcome NK cell-

mediated acute xenograft rejection, future directions may

require emulating the tolerance strategies used at the maternal-

fetal interface and the evasion mechanisms employed by

viruses (Table 1).
Introducing inhibitory ligands
in pig organs

An example of natural human tolerance is maternal

acceptance of the fetus during pregnancy. NK cells constitute

the largest proportion of immune cells present in the post-

conception endometrium and play a vital role in establishing

maternal-fetal immune tolerance. Unique co-expression of fetal

HLA-C, HLA-E, and HLA-G in extravillous trophoblasts (EVT)

provides inhibitory signals to NK cells (Figure 2) (22). Previous

studies demonstrated that reduced expression of inhibitory

receptors (i.e., KIR2DL1, KIR2DL2, and KIR2DL3) was

associated with recurrent spontaneous abortion (62) and that

disruption of the NKG2A/HLA-E axis can lead to adverse fetal

outcomes in a murine model (63). This specific in-utero

environment provides a model for xenotransplantation as the

presence of MHC Class I molecules induce an immunotolerant

phenotype of maternal NK cells.

Genetically-modified pECs expressing HLA-E demonstrated

partial protection from human NK cytotoxicity, and this effect

was most pronounced in NK cells with high NKG2A expression

(64). This protection was later reproduced in pECs isolated from

a double HLA-E b2M transgenic pig (65), confirming the utility

of this genetic modification. In an ex vivo porcine limb perfusion

study with human blood using transgenic pigs co-expressing

HLA-E and human CD46 (HLA-E/hCD46), decreased NK cell

tissue infiltration was observed (66). Moreover, in vitro NK cell-
TABLE 1 Proposed Directions to Reduce NK Cell-Mediated Rejection.

Model Target Expected Outcome

Pregnancy Co-expression of HLA-E and HLA-G Addition of inhibitory signal

Viral evasion UL40 co-expression with HLA-E
gpUL18 decoy expression

Promotion of inhibitory signals

Deletion of porcine activating ligands pULBP1, pCD58, and pCD112 deletion Deletion of activating ligand

Identification of unknown porcine activating ligands NKG2D, CD2, NKp44, and DNAM-1 ligands Identify additional targets for deletion
Future strategies to reduce NK cell-mediated acute xenograft rejection include replicating natural mechanisms of NK cell tolerance in pregnancy and evasion by viruses. Further work is
required to identify unknown porcine activating ligands for genetic modifications.
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mediated lysis of pECs from HLA-E/hCD46 transgenic pig was

significantly reduced compared to pECs from both wild-type

and hCD46 alone (66). As a result of transgenic HLA-E

expression, ex vivo perfusion models have also demonstrated

increased survival of porcine lungs (67) and improved function

of porcine hearts (68). The ability of HLA-E expression to

improve graft compatibility across different organs suggests a

generalizable mechanism of immune protection, making it a

particularly useful genetic modification for optimizing organ

donor pigs.

Expressing HLA-G in porcine aortic endothelial cells

inhibits xenogeneic human NK cell-mediated cytotoxicity (69).

Dose-dependent soluble HLA-G1 has also been shown to reduce

human NK cell-mediated cytotoxicity towards pEC (70). In

another study, co-transfection with human b2M enhanced the

level of HLA-G1, which led to a significant reduction of NK cell-

mediated pEC lysis compared to the HLA-G3 isoform (71)

Given the substantial evidence that both HLA-E and HLA-G

expression reduce human NK cell-mediated cytotoxicity, co-

expression of HLA-E and HLA-G in xenografts may provide

immunoprotection and should be further studied (72).

Matsunami et al. discussed the effects of co-transfection of

HLA-E and HLA-G into pECs while evaluating NK cell

response. Though differences were noted across leader

peptides and expression rate, substantial NK cell inhibition

was noted in HLA-E and HLA-G co-expression compared to

either alone. This synergistic relationship between HLA-E and

HLA-G demonstrates the potential use in xenografts (73).

An additional model to reduce NK cell cytotoxicity is noted

in viral proteins that increase inhibitory signaling in efforts to

circumvent immune destruction. Herpesviridae, a family which
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inc ludes herpes s implex virus (HSV) and human

cytomegalovirus (HCMV), have adapted several unique

mechanisms centered around decreasing activating and

increasing inhibitory receptor-ligand interactions to evade

immune detection by NK cells (74). HCMV evades NK cell

destruction by amplifying inhibitory signaling via the expression

of UL40 and gpUL18 in the endoplasmic reticulum of infected

cells (75). UL40-bound HLA-E binds to the NK cell inhibitory

receptor NKG2A with greater affinity (6-fold more tightly) than

HLA-E alone (Figure 3) (76). Similarly, gpUL18, an MHC I

decoy ligand, binds to the inhibitory NK cell receptor LIR-1

1000-fold more tightly than native MHC I molecules, resulting

in a significant reduction in NK cell cytotoxicity (Figure 3) (77–

79). The combination of enhanced cell-surface expression of

HLA-E and tighter binding to NKG2A results in a marked

decrease in NK cell cytotoxicity (80, 81). Repurposing the

success of HCMV by expressing these unique viral peptides in

xenograft cell lines may induce NK cell tolerance via

amplification of inhibitory signals (Table 1).
Eliminating activating ligands
in pig organs

Another strategy to reduce human NK cell cytotoxicity is

eliminating ligands that bind to human NK cell activating

receptors. Blocking of activating ligands is a strategy used by

HSV-infected cells to downregulate the expression of several

ligands of the activating NK cell receptor NKG2D, including

MICB (major histocompatibility complex class I polypeptide-

related sequence B) and UL-16 binding proteins (ULBP1,2,3)
FIGURE 2

Co-expression of fetal HLA-C, HLA-E, and HLA-G in extravillous trophoblasts provides inhibitory signals to maternal NK cells. Maternal NK cell
tolerance is established via expression of fetal classical and non-classical HLA class I molecules on the placental extravillous trophoblast.
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(82, 83). HSV-infected cells transcribe miR-H8, a microRNA

that prevents anchoring of NKG2D-activating ligands such as

ULBP-2 and ULBP-3 to the cell surface (74, 84–86). HCMV

achieves a similar result by expressing the virally encoded UL-16

protein that binds to and sequesters MICB, ULBP1, and ULBP2

(87). Efforts to mimic these mechanisms may provide an

approach to promote xenograft acceptance. Nevertheless,

findings surrounding these ligand-receptor interactions are still

unclear, and further experimentation is necessary.

Lilienfeld et al. confirmed porcine ULBP1 as a ligand for

human NKG2D through anti-porcine ULBP1 polyclonal

antibody studies (88). Tran et al. subsequently demonstrated

additional unknown porcine ligands to NKG2D (89). After

generating a ULBP1-KO on a 5GKO pEC line (ULBP1KO/

5GKO), our laboratory concluded that porcine ULBP1 is not the

dominant ligand for NKG2D as its deletion did not offer a

statistically significant decrease in NK cell activation (90).

Additional studies are needed to identify functional porcine

ligands to human NKG2D in pig cells.

Glycoprotein D of HSV and pseudorabies virus downregulates

CD112 expression, a ligand for the activating NK cell receptor

DNAM-1, which results in decreased NK cell activation and

reduced cytotoxicity (18, 91). Two porcine isoforms of CD112

have been reported (92), but further study is needed to evaluate

the role of porcine CD112 in human NK cell activation. Discovery

and deletion of porcine activating ligands could promote human

NK cell tolerance (Table 1). Expressing viral proteins in pigs to

reduce activating ligands may represent a complementary

approach to inhibiting NK cell-mediated cytotoxicity.
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When evaluating an array of activating NK cell receptors

(NKp46, 2B4, CD49d, CD48, CD2, and NKG2D), Kim et al.

discovered that only CD2 and NKG2D were involved in both

cytotoxicity and cytokine-secreting functions against porcine

cells (93). It is important to note that complete protection

against NK cell-mediated cytotoxicity was only obtained when

combinations of activating receptors (NKp44 and NKG2D or

CD2 and NKG2D) were blocked (93). Structural protein

modeling of human CD2 and porcine CD58 demonstrated a

highly conserved interface (94). In fact, blocking with an anti-

porcine-CD58 antibody inhibited lysis of porcine cells (95),

indicating porcine CD58 is a potential activating ligand for

modification. Genetic modifications aimed at elimination of

activating ligands will require extensive research to identify the

most potent receptor-ligand interactions. Simultaneously

maximizing inhibitory signaling will be important to induce

NK cell tolerance in xenotransplantation.
Conclusions

NK cells play a pivotal role in acute xenograft rejection, yet

relatively few attempts have been made to overcome this barrier.

Inducing human NK cell tolerance by expressing inhibitory

ligands and eliminating activating ligands in porcine

xenografts via genetic engineering approach may provide a

novel way to protect xenografts from NK cell-mediated

destruction. Understanding the mechanism of cross-species

immune recognition and response, developing a novel
FIGURE 3

Human CMV evades NK cell destruction by amplifying inhibitory signaling. In human CMV (HCMV) infected target cells, UL40-bound HLA-E bind
six-fold greater affinity to the NK cell inhibitory receptor NKG2A than HLA-E alone. HCMV gpUL18 is an MHC I decoy ligand that binds to the
inhibitory NK cell receptor LIR-1 with a 1000-fold greater affinity than native MHC I molecules. These interactions result in a significant
reduction in NK cell cytotoxicity.
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approach to induce local immune tolerance/acceptance, and

guiding the engineering of pigs to meet clinical needs will be

our future focus in xenotransplantation.
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