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Abstract: Current deep-learning-based cervical cell classification methods suffer from parameter
redundancy and poor model generalization performance, which creates challenges for the intelligent
classification of cervical cytology smear images. In this paper, we establish a method for such
classification that combines transfer learning and knowledge distillation. This new method not only
transfers common features between different source domain data, but also realizes model-to-model
knowledge transfer using the unnormalized probability output between models as knowledge. A
multi-exit classification network is then introduced as the student network, where a global context
module is embedded in each exit branch. A self-distillation method is then proposed to fuse contextual
information; deep classifiers in the student network guide shallow classifiers to learn, and multiple
classifier outputs are fused using an average integration strategy to form a classifier with strong
generalization performance. The experimental results show that the developed method achieves
good results using the SIPaKMeD dataset. The accuracy, sensitivity, specificity, and F-measure of the
five classifications are 98.52%, 98.53%, 98.68%, 98.59%, respectively. The effectiveness of the method
is further verified on a natural image dataset.

Keywords: deep learning; cervical cells; image classification; transfer learning; knowledge distillation;
self-distillation; context information; ensemble

1. Introduction

Cervical cancer is a common malignant tumor in women and a serious threat to
their life and health [1]. However, with the popularization of national screening for
“two cancers”, the increasing number of cervical cytology smears screened has placed
tremendous pressure on hospitals. Not only is manual film reading labor-intensive, but
interpretations are also subjective and this can easily lead to misdiagnosis. Therefore, the
study of cervical cytology image classification algorithms has important academic value
and social significance.

With the development of artificial intelligence, many researchers have turned to
machine learning to improve computer-aided diagnosis ability [2–5]. In the cervical cell
classification task, this usually requires manually designed features, such as morphology,
color, and texture, which are then input into the classifier after feature extraction. In [6],
morphological features, such as circumference and the area of cervical cancer cells, were
selected and support vector machine (SVM) was used to classify the cells according to
specific features. However, because the algorithm is very dependent on manually designed
features, too many or too few features were selected for it to perform effectively.

In general, the more obvious features of abnormal cervical cells are enlarged nuclei
and significant changes to the nucleoplasmic ratio. Therefore, a two-stage segmentation
approach followed by classification was used in [7] to classify cells. The images were first
enhanced using Gaussian filtering and histogram equalization. The cell nuclei were then
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segmented using adaptive threshold segmentation based on the weighted Otsu method.
Finally, the extracted nuclei area and gray value features were classified using the K-means
clustering algorithm. This segmentation-then-classification approach is more dependent
on segmentation accuracy, and the above algorithms are not suitable for solving multi-class
classification problems because they all use a single classifier for classification of cervical
cancer cells. Some studies have implemented multi-classification tasks by combining
multiple classifiers, such as a combination of SVM and K-nearest neighbor algorithms,
multiple SVM cascades and AdaBoost, to improve accuracy in the multi-classification
of cervical cells. The above studies have all made outstanding contributions to cervical
cell classification, but the shortcoming remains that the two-stage segmentation approach
followed by classification conducts predication according to the accurate segmentation of
cells, thereby not only ignoring the global semantic information, but also increasing the
training cost. Deep-learning-based classification methods can effectively overcome these
problems, but existing studies using such methods have commonly used large-scale deep
neural network models, resulting in model parameter redundancy. Cervical cell datasets
are mostly privatized and, because few are publicly available, there is also a problem of
their limited number and the difficulty for a single network to learn all feature views,
resulting in low generalization of the model.

Therefore, to overcome the above problems, the contributions of this paper are sum-
marized as follows:

• We develop a transfer method that combines knowledge distillation and transfer
learning. Based on the generic features of migration data, the category information
learned by the teacher network is distilled into the student network to further improve
the performance of the student network.

• The developed method is proposed for application in cervical cell classification. A
multi-export classification network with different depths was constructed to capture
different levels of features, a self-distillation loss function was used to enhance the
classification performance of the shallow network and an ensemble strategy was used
to fuse the prediction results of multiple exits.

• A global context module is introduced in each exit branch to enable the classifier to
capture different fine-grained features. This supplements the contextual information
while differentiating the sub-models and ensures the effectiveness of the integration.

• Compared with high-latency large-scale networks, self-distillation is integrated on
traditional knowledge distillation in this paper. Not only model compression is
achieved, but performance improvement is also considered.

2. Related Work
2.1. Cervical Cell Classification

In recent years, convolutional neural networks (CNNs) have been successfully applied
to the multi-classification of cervical cells and have demonstrated powerful performance.
Such networks have the advantage of being end-to-end classifiers with no manual feature
design required and the network can automatically learn easily distinguishable cell features
from the input cervical cancer cell images. For example, [8] overcame the shortcomings
of traditional cervical cell classification algorithms by introducing a CNN based on depth
features. In [9], a new cervical cell dataset containing five classes of single-cell data was
proposed that used SVM, multilayer perceptron (MLP) and a CNN to classify single cells
without pre-segmentation.

Deep neural networks are gradually becoming the mainstream approach for cervical
cell classification tasks. In [10], 94.89% accuracy in classification was achieved using the
ResNet152 network without the need for segmentation and manual feature extraction.
In [11], parallel convolutional layers were added to a CNN to enhance its feature extrac-
tion capability, which, in turn, improved cervical cell classification. Many studies have
started to focus on improving neural network performance. For example, to improve the
classification performance of cervical cell images, in [12], a squeeze-and-excitation block
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and a spatial attention block were introduced to fuse the channel and spatial features.
In [13], ResNet50 was selected as the backbone network to which a feature pyramid pooling
layer and a long short-term memory module (LSTM) were added and its effectiveness was
experimentally demonstrated.

However, large-scale deep neural network models are commonly used in existing
approaches, resulting in redundancy of model parameters. Moreover, the generalization
performance of the models needs to be improved. In this paper, multiple sub-models with
different depths are used to classify the samples and a multi-exit self-distillation method is
constructed to enhance the classification performance of the network.

2.2. Transfer Learning and Knowledge Distillation

In supervised learning tasks, the number of samples with annotations often directly
affects the final results of a deep model. To overcome the problem of insufficient data,
many studies have introduced transfer learning into the medical imaging domain [14–16].
The model weights that are learned from natural image data, or other data in the medical
field, are usually migrated to the target model and the model weight parameters are then
fine-tuned using task-specific datasets to achieve feature sharing, thus improving the classi-
fication performance of the network model. In the initial stages of the COVID-19 pandemic,
there was a paucity of lung CT images of positive samples, so [17] used a CNN that had
been pre-trained on a natural image dataset (ImageNet), which was then used in COVID-19
detection, achieving 98% accuracy. A multi-source data transfer method to improve model
performance was proposed in [14]. The model was first pre-trained on source data for
heart and breast images. The knowledge from the pre-trained model was then migrated for
use in the task of diagnosing Alzheimer’s disease. The experimental results demonstrated
that the method effectively improved diagnostic accuracy and significantly reduced model
training time. In [16], transfer learning was combined with an attention mechanism as the
basis for the proposal of a transfer learning method. By migrating the knowledge from
three sources of data and using the attention mechanism to improve the feature extraction
ability, the final model achieved an accuracy of 96.63%. All the above studies demonstrate
the effectiveness of transfer learning.

The intention of knowledge distillation (KD), an important method for knowledge
transfer and model compression, is to allow simple models to learn effective informa-
tion from complex models and to obtain an approximate performance for complex mod-
els [18–22]. This structure is often visualized as a teacher–student network, an idea first
proposed in [18]. A poorer student network improves the performance of its network by
learning from the teacher network, provided that an experienced teacher network is avail-
able. Subsequently, [19] proposed a method for the student network to learn the output
of the teacher network using soft labels, which they called “knowledge distillation”. The
conventional knowledge distillation method learned only from the output of the teacher
network, which led to the loss of intermediate layer knowledge. Therefore, subsequently,
many researchers tried to use the knowledge of intermediate, relational, and structural
features to exploit the maximum potential of the teacher network [20–25]. Self-distillation is
a new approach that was developed from knowledge distillation. Unlike traditional knowl-
edge distillation architectures, the teacher-student architecture of self-distillation uses the
same model [26] or a network framework without teachers [27]. In [28], neural networks
were used to study knowledge distillation from a new perspective; instead of compressing
the model, the student network was optimized based on a teacher network with equivalent
parameter settings. By constructing a multi-exit student network, Xu et al. [29] proposed
a distillation structure combining knowledge distillation and self-distillation to improve
the performance of the student network. Applying knowledge distillation to cervical cell
classification to improve model generalization is a worthwhile approach.

In addition to the above, an alternative approach has involved fusing the knowledge of
data and model features through distillation combined with transfer learning. Knowledge
distillation and transfer learning share similar ideas regarding transfer, but they play
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complementary roles. Traditional transfer learning migrates the knowledge of data features
while ignoring the knowledge of model features; moreover, according to the work of
Z et al. [30], individual networks cannot usually learn all view features due to their limited
“capacity”. Therefore, based on transfer learning, we introduced a knowledge distillation
algorithm, i.e., we constructed a teacher–student network to transfer category information
learned in the teacher to the student network and improved its performance. In this paper,
we combine the two methods to classify cervical cells, which involves deep integration of
data and model feature knowledge aimed at reducing the training cost and enhancing the
model performance.

3. Proposed Method
3.1. Transfer Learning and Knowledge Distillation Fusion

Figure 1 shows the overall framework of the cervical cell classification method based
on the fusion of knowledge distillation and transfer learning. It is divided into three
aspects: domain data, teacher–student model, and knowledge transfer. Among these, the
data are sourced from two different datasets: the natural image and cervical cell datasets.
The models were two independent and heterogeneous teacher–student networks. The
knowledge transfer part includes data transfer and model transfer. The training process
can be seen from the figure that natural image data and cervical cell image data enter the
network in two stages. The first stage is to train the initialized model using natural images.
The second stage is to use the cervical cell image data to fine-tune the pre-trained network
to achieve the purpose of model weight reuse. Then comes the distillation stage, which
freezes the teacher network and does not participate in training, and only uses the soft tags
output by the teacher network and the soft tags of the student network to calculate the loss
function, so as to achieve the purpose of supervising the student network by the teacher
network, thereby improving the student network. performance.

Figure 1. Schematic diagram of the transfer method framework and training process.

In detail, the student network is used as the target model for cervical cell classifica-
tion and is involved in training and optimization throughout. The teacher network only
provides soft label information and the performance of the final method depends on the
classification accuracy of the student network. The loss function contains the following
two components: classification loss with cross-entropy loss, which uses real labels for
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supervised learning, and distillation loss with Kullback–Leibler divergence, which is used
to measure the distance between the unnormalized probability distributions of the teacher
network and the student network output using the category probabilities of the teacher
network output for guided learning. During training, the two are jointly optimized for the
student network.

LossCE =
1
n

n

∑
i

Li = −
1
n

n

∑
i

m

∑
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yic log(pic), (1)

where n denotes the number of samples; i is the category index, with m categories; yic and
pic represent the true probability that observation sample i belongs to category c and the
predicted probability of the model, respectively. When the class of the observation sample
i is c, yic equals 1, and is 0 otherwise. The class probability of the network prediction is
obtained from the fully connected layer output zc according to the SoftMax function:
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In the above equation, T is the hyperparameter of knowledge distillation, which
represents the distillation temperature and controls the softness of the logits output: the
higher the temperature, the smaller the relative value between the category probabilities.

3.2. Multi-Export Student Network with Contextualized Information

Lightweight student networks have difficulty learning all the features used for correct
classification due to their limited capacity. This results in poor generalization, which
affects the classification performance in the test set. Previous studies have ignored the
fact that knowledge distillation can enhance the model through self-learning. In this
paper, we propose a multi-export network incorporating contextual information and self-
distillation as a student network to enhance the model’s ability to classify cervical cell
images. By introducing classifier branches at different stages of the student network,
different fine-grained classification features are learned. The final results of multiple
sub-model predictions are then obtained through an integration strategy to improve the
model generalization. Meanwhile, to enhance the feature extraction performance of each
branch and ensure that the sub-classifiers focus more attention on the different local area
features, the global context module and the self-distillation algorithm are integrated in each
branch network to improve the performance of shallow classifiers and achieve improved
performance overall.

The multi-export network structure is a design method that inserts multiple classifiers
at different depths. Classifier exports at different depths have different feature-learning
capabilities for the correct classification of simple samples at shallow layers, thus enabling
samples to end predictions earlier and saving computational costs.

Each classifier exit is a sub-model with different convolutional and fully connected
layers as classifiers, wherein deep classifiers demonstrate better performance than shallow
classifiers. Therefore, a multi-export-based self-distillation model was proposed with its
deep classifier exports as the teacher network to provide supervised information for guided
learning to improve shallow classifier performance. The so-called self-distillation refers to
doing it alone in a network, using the exits of different levels as sub-models, and optimizing
from deep to shallow through the distillation loss function.

The improved multi-export network structure in this paper is based on the dynamic
network (SCAN) proposed in [31] and teacher-student collaborative knowledge distillation
(TSKD) in [26]. As shown in Figure 2, it is divided into three parts: a backbone network,
global context module, and a shallow classifier. ResNet18 was chosen for the backbone
network and classifier exits were inserted after different stages. Without significantly
increasing the computational effort, each sub-export is introduced into the GC block, which



Biomimetics 2022, 7, 195 6 of 14

consists of three functions: modeling the global attention mechanism for the input features,
performing feature transformation, and fusing the input features by the dot product. The
features output from each sub-export pass through the bottleneck layer to unify the feature
map scales and then pass through the fully connected layer to output the probability for
each category. In the training phase, the final output of the backbone network guides
shallow classifier learning via self-distillation such that the high-level semantic knowledge
learned by the deep classifier can be transferred to the shallow classifier to improve the
generalization performance of each exit model. Furthermore, the deep classifier achieves
integration of low-level and high-level semantics via the global context building block. The
final classification results were obtained by integrating multiple exit prediction probabilities
during testing.

Figure 2. Overview of the proposed knowledge distillation-based method for cervical cell classifi-
cation. The whole framework is divided into two parts: training and inference. The training part
consists of: (i) pre-training the teacher and student networks first; (ii) fine-tuning using cervical
cell images; (iii) the student network adding a bottleneck layer and a fully connected layer after
each block to build a multi-exit network from shallow to deep, and (iv) in the inference stage, each
classifier being combined in an ensemble to form a strong classifier.

3.3. Loss Function

Given N data samples of class C, for input samples x ∈ {xi}N
i=1, zk represents the

output of the fully connected layer for the category index k, and the output of the teacher
model for the category k probability is expressed as

tk =
exp

(
zk/τ

)
∑C

k exp
(
zk/τ

) . (3)

The loss function has two components: the loss of regular knowledge distillation,
which contains the KL dispersion between the teacher and the student, and the loss of
cross-entropy between the student output and the true label. The second part refers to the
self-distillation loss, which treats the deepest classifier (Exi-n) in the multilevel classifier
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as a second teacher, using rich unnormalized probabilities and features as supervised
information for the shallow level.

Lossm
KD = τ2 · LKL(Sm, t) + LCE(Sm, y) + LCE(Sn, y) (4)

LosSm
SD = τ2 · LKL(Sm, Sn) + λ · ‖µm(Fm)− Fn‖2 (5)

In the above equation, Sm and Sn represent the soft labels of the m-th shallowest
exit classifier and the backbone network classifier outputs in the student network after
temperature, respectively. Similarly, Fm and Fn represent the feature outputs before the
fully connected layer in the m-th and the deepest exit branches of the student network,
respectively. um (·), representing the bottleneck layer structure, was added to each exit
network to ensure that the scales of the two remain consistent. The mean squared loss
function was used here to minimize the difference between the feature distribution of the
shallower network and the deepest convolution. λ is defined as the weight of the L2 loss.
Thus, the overall loss of the student network can be expressed as

Loss =
n

∑
m=1

(Lossm
KD +Lossm

SD). (6)

For testing, an average integration algorithm was used for the student network to
incorporate the different classification performances of multiple outlets. This is different
from multi-teacher network integration and multi-student collaborative distillation, which
integrate the multi-level outputs of the student network itself without introducing addi-
tional models, which effectively reduces model complexity. In the following equation, Sm
represents the m-th classification exit output and weight and f represents the final output
of the model.

f =
1
n

n

∑
m=1

Sm (7)

3.4. Ensemble Strategy

In this paper, because the classifiers were constructed in different stages of the student
network with different perceptual fields, they learned different fine-grained features; these
tiny local features and global features are the keys to discriminating cervical cells. There-
fore, the introduction of multi-export integration averaged the prediction probabilities of
multiple exits to obtain the model prediction results, which reduced the variance in the
prediction probabilities of multi-export classifiers, decreased the model error rate, and
formed a student network that integrated local and global features. The multiple exit
classifiers from the student network constitute different learners. A strong classifier was
formed by averaging and summing to output the final prediction probabilities.

3.5. Global Context Module

The effectiveness of integration is reliant on the differences between multiple classi-
fiers to achieve differentiation across the models and to capture the context-dependent
information of each exit. A global context module was introduced into the trunk branch to
extract features of interest to each sub-model based on local and global information [32].
The shallow branch is more concerned with local low-level semantic information, while
the deep branch is concerned with global high-level semantic information. Therefore, each
sub-model differs in its ability to fit different data and the differentiated models effectively
exploit the integration potential. The structure of the global context block was divided
into three modules: context building to obtain global context-related features, feature
transformation to capture the dependencies between channels, and fusion to fuse global
context features into features at all locations.
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4. Experimentation

To verify the effectiveness and advancement of the proposed method, the experimental
approach comprised the following three elements: comparison experiments with existing
representative algorithms, ablation experiments to separately verify the effectiveness of the
numerous proposed strategies, and further validation on a public natural image dataset.

4.1. Dataset and Implementation Details

The experiments were performed using the SIPaKMeD [9] cervical cell dataset, which
contains 4049 single cell images from 966 pap smears containing clusters of manually
cropped cells. These were classified into five categories based on morphology and appear-
ance, as shown in Table 1 and Figure 3.

Table 1. SIPaKMeD dataset.

Dataset Category Cell Type Quantity

SIPaKMeD

1 Superficial- Intermediate 831
2 Parabasal 787
3 Metaplastic 793
4 Koilocytotic 825
5 Dyskeratotic 813

(a) Superficial (b) Parabasal (c) Metaplastic (d) Koilocytotic (e) Dyskeratotic

Figure 3. Examples of SIPaKMeD dataset image.

The publicly available cervical cell dataset contains information about free single
cells that could be directly used for the classification task. Data preprocessing begins
with dividing into training and validation sets and then randomly dividing these for the
training, validation, and test sets in a ratio of 3:1:1. Due to the limited training samples,
data augmentation was the most direct way to increase sample diversity and improve
data complexity, while overcoming the problem of overfitting. Particularly for the cervical
cell dataset, there was a serious lack of available data, so it was difficult to verify the
robustness of the algorithm. Therefore, a series of data-enhancement methods, such as
random crop scaling, horizontal flip, mirror flip, and rotation, were selected to expand the
dataset samples before training the model.

The model optimization method used stochastic gradient descent (SGD). The total
number of training epochs was 180, the experimental hyperparameters including the
number of the batchsize were 128, and the initial value of the dynamic learning rate was
set to 0.1, which was multiplied by 0.1 in the 100th and 150th epochs. The weight decay
and momentum factors were 1 × 10−4 and 0.9, respectively, the temperature τ was 3, and
the loss weight λ was 0.03, which was empirically determined.

4.2. Comparison Experiments

To verify advancement through use of the method proposed in this paper, it was
compared with mainstream methods in the field. The experiments used ResNeSt50 as the
teacher network and ResNet18 as the student backbone network [33]. Students were trained
until convergence and independent predictions were then performed. Table 2 shows the
classification results using the SIPaKMeD dataset. It can be seen from the prediction results
that the proposed method showed improvement compared to conventional CNNs, graph
neural networks [34] and traditional classification algorithms, such as multilayer perceptron
and support vector machines [9]. It also achieved 98.52% five classification accuracy based
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solely on an improved 18-layer residual network, which represented a 0.72% improvement
over the optimal outcomes described in [35]. Furthermore, the number of parameters
of the improved multi-export student network was 12.33 M, which is smaller than the
teacher network and the large-scale networks used in the literature. The original idea of
knowledge distillation was for model compression, rather than focusing on improving
performance. While self-distillation is a special case, in this paper, we combine knowledge
distillation and self-distillation combined methods. The specific approach is to change
the student network to a multi-exit network on the traditional distillation architecture.
While the teacher network provides supervision information, it optimizes itself through
self-distillation. It not only improves the performance of the model, but also achieves a
certain compression rate.

Table 2. The accuracy of the proposed method compared with other methods using SIPaKMeD.

Model Accuracy Sensitivity Specificity F-Measure

DeepPap 93.58 ± 0.16 97.40 ± 0.80 96.90 ± 1.40 97.60 ± 0.50
MLP 88.54 ± 5.60 - - -
Deep convolutional+SVM 93.35 ± 0.62 - - -
Deep fully-connected+SVM 94.44 ± 1.21 - - -
CNN(VGG19) 95.35 ± 0.42 - - -
Mor-27 88.47 ± 0.92 95.90 ± 1.20 90.90 ± 1.10 95.00 ± 0.60
ResNet-101 94.86 ± 0.74 99.10 ± 0.70 97.70 ± 0.80 98.70 ± 0.20
DenseNet-121 96.79 ± 0.42 99.00 ± 0.50 98.90 ± 0.50 99.20 ± 0.10
GNC 97.37 ± 0.57 99.60 ± 0.10 99.50 ± 0.40 99.60 ± 0.20
ResNet50 97.63 ± 0.39 97.62 ± 1.25 99.50 ± 0.38 98.43 ± 0.40
Inception V3 97.72 ± 0.65 97.62 ± 1.15 98.83 ± 0.99 98.24 ± 0.64
Compact VGG 97.80 ± 0.50 97.80 ± 0.50 99.17 ± 0.57 98.28 ± 0.83
Ours Improved-ResNet18 98.52 ± 0.31 98.53 ± 0.35 98.68 ± 0.46 98.59 ± 0.23

4.3. Ablation Experiments

The knowledge distillation method used for cervical cell classification in this paper
incorporates t-learning (TL), knowledge distillation (KD), and multiple exit self-distillation
(SD) methods. Ablation experiments were performed to verify the effectiveness of each
component. As shown in Table 3, the first stage of the classification method incorporating
transfer learning and knowledge distillation showed a 2.35% improvement over the baseline
method. In addition, both transfer learning and knowledge distillation methods improved
classification performance, but to different degrees. This indicates that using both generic
feature knowledge among data and category information knowledge among models has
a positive effect on cervical cell classification. In the second stage, the student network
was expanded into a multi-export network that incorporates contextual information. Its
performance improved by a further 0.86% because of self-distillation and integration
algorithms, which demonstrates that the improved multi-export student network has better
classification performance than the original network.

Table 3. Experimental results of ablation with different strategies on SIPaKMeD.

Method Accuracy

ResNeSt50 + TL 98.15%
ResNet18 95.31%

ResNet18 + TL 96.54%
ResNet18 + TL+KD 97.66%

ResNet18 + TL+KD+SD 98.52%

To further illustrate the effectiveness of the improved student network without adding
the migratory learning method, but still using ResNet18 as the main backbone network,
experiments were carried out to compare the benchmark method with the original multi-
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export network regarding performance. The classification accuracy for each sub-classifier
and integration is shown in Table 4. The output results for each exit and after integration are
shown using a confusion matrix in Figure 4. Where the benchmark method did not use any
policy, the constructed multiple classifiers were all supervised using only true labels and the
prediction results of the final integrated multiple classifiers. The dynamic network SCAN
is a scalable neural network framework that uses different levels of classifiers for different
classification tasks [31]. Multiscale dense neural networks (MSDs), on the other hand, insert
classifiers at different depths of the convolutional network and use dense connections for
their optimization [36]. In this paper, alternatively, a multi-export network incorporating
contextual information is proposed based on the interpretation method combining overall
and local features of cervical cells. From the experimental results, the classification accuracy
was slightly higher for each outlet and the final integration than for the original method.
It was demonstrated that the fusion of contextual building blocks and self-distillation
methods can significantly improve the classification accuracy of shallow classifiers. From
the integration strategy, the accuracy of the original method did not significantly improve
compared with that of the sub-classifiers, while the method in this paper further improved
the optimal sub-model accuracy by 0.47% through the integration strategy. It was found
that the fused global context module ensured that the sub-classifiers focused more attention
on the fine-grained features of different regions and this differentiation guaranteed the
effectiveness of the integration.

Table 4. Classification accuracy by different exit and ensemble.

Method Exit-1 Exit-2 Exit-3 Exit-4 Ensemble

Baseline 92.61% 95.44% 94.82% 95.31% 95.93%
SCAN [31] 95.13% 95.43% 97.07% 96.32% 97.21%
MSD [36] 96.76% 96.28% 95.66% 96.23% 96.47%

Ours 95.65% 96.91% 97.16% 97.68% 98.15%

4.4. Subjective Effect Analysis

To independently verify the effectiveness of the multi-export self-distillation method
fusing contextual information proposed in this paper, experiments were conducted on
the cervical cell and public datasets using different teacher–student networks and the
results were compared with the use of mainstream knowledge distillation algorithms.
These results are shown in Tables 5 and 6. Compared with the traditional teacher–student
network structure, the distillation method did not need the teacher network and only
constructed classifiers at different stages of the student network to achieve self-distillation.
The number of student network parameters increased from 11.22 M to 12.33 M and, despite
this increase, the training cost of the teacher network was reduced, improving classification
performance at the same time. From the results on the SIPaKMeD dataset, it can be seen
that the model classification accuracy improved by 2.56 and 0.37% for the benchmark and
knowledge distillation methods, respectively, compared with the proposed method. Thus,
the performance of the ResNet18-based multi-export student network surpasses that of the
teacher network.

On the CIFAR100 dataset, the proposed method improved 4.29 and 3.47% compared to
the benchmark method, which also outperformed mainstream knowledge distillation. Im-
proved performance was also achieved by fusing contextual information with multi-export
self distillation without teacher network guidance. The experimental results demonstrate
that the method significantly improved classification of both cervical cell and natural im-
ages.
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(a) Classifier 1/4 (b) Classifier 2/4

(c) Classifier 3/4 (d) Classifier 4/4

(e) Ensemble

Figure 4. Confusion matrix for classification at different stages.

Table 5. Comparison of accuracy between the proposed and existing knowledge-distillation methods
on SIPaKMeD.

Method Accuracy

ResNeXt101 97.04%
ResNet18 95.56%
KD [23] 96.54%
FIT [24] 97.78%
AT [37] 97.16%
SD [38] 96.79%

VID [39] 96.42%
Ours 98.15%
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Table 6. Comparison of accuracy between the proposed and existing knowledge-distillation methods
on CIFAR100.

Teacher ResNet152 ResNet152
Student ResNet50 ResNet18

Baseline 80.91% 80.91%
77.98% 77.09%

KD [23] 79.69% 79.86%
FIT [24] 80.51% 79.24%
AT [37] 80.41% 80.19%

VID [39] 79.24% 79.67%
RKD [40] 80.22% 79.60%
PKT [41] 80.57% 79.44%
AB [42] 81.21% 79.50%

CRD [43] 80.53% 79.81%
SSKD [44] 80.29% 80.36%

Ours 82.27% 80.56%

5. Conclusions

In this paper, a transfer method, combining transfer learning and distillation, was
proposed for cervical cell classification that transfers feature knowledge between the model
and data so that the neural network can achieve improved model generalization using a
limited number of samples. Furthermore, a new method for cervical cell classification with
improved multi-export integration was proposed. A multi-export classification network
was introduced to construct branching export network pairs using different depths to learn
different fine-grained features. The global context module and the self-distillation algorithm
were fused in each branch network to improve the performance of shallow classifiers. The
final prediction was achieved using an integration strategy. From the experimental results,
ResNet18, incorporating the methods of this paper, achieved 98.52% classification accuracy
on the cervical cell dataset. These findings are of significant academic value and social
significance for the intelligent classification of cervical cytology smear images.

In future work, we aim to extend the distillation method that combines knowledge
distillation and self-distillation to more tasks. Combining self-distillation with other self-
supervised distillation methods is a further possible research direction. In addition, the
balance between performance improvement and memory usage needs to be considered.
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