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Simple Summary: The ability to establish accurate correlations between the number of copies of
genes and the expression levels of their encoded transcripts remains a challenge despite the extensive
progress made in the understanding of the genome of cancer cells. Here, we describe a new algorithm
that does so by integrating both genomics and transcriptomics data from the Cancer Genome Atlas.
In addition to explaining the step-by-step basis of this new method, we provide examples of how this
new algorithm can help identify functionally meaningful gene copy alterations that are recurrently
detected in cancer patients.

Abstract: Somatic copy number variations (SCNVs) are genetic alterations frequently found in cancer
cells. These genetic alterations can lead to concomitant perturbations in the expression of the genes
included in them and, as a result, promote a selective advantage to cancer cells. However, this is
not always the case. Due to this, it is important to develop in silico tools to facilitate the accurate
identification and functional cataloging of gene expression changes associated with SCNVs from
pan-cancer data. Here, we present a new R-coded tool, designated as CiberAMP, which utilizes
genomic and transcriptomic data contained in the Cancer Genome Atlas (TCGA) to identify such
events. It also includes information on the genomic context in which such SCNVs take place. By doing
so, CiberAMP provides clues about the potential functional relevance of each of the SCNV-associated
gene expression changes found in the interrogated tumor samples. The main features and advantages
of this new algorithm are illustrated using glioblastoma data from the TCGA database.

Keywords: pan-cancer; RNA sequencing; gene expression; transcriptome; software; glioblastoma

1. Introduction

SCNVs are commonly found in most cancer types [1–3]. Since they are associated
with either the gain or loss of gene dosage, it is widely assumed that such genomic alter-
ations must drive significant changes in the expression of either proto-oncogenes or tumor
suppressor genes [2,4]. However, it should be noted that these SCNV-linked differentially
expressed genes (SCNV-DEGs) may not be functionally relevant, as their amplification
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or deletion could be the result of their physical proximity to amplified or deleted regions
harboring cancer driver genes [3,5]. In addition, changes in gene dosage may not always
correlate with the expected changes in gene expression [2]. While those issues can be easily
approachable using wet-lab techniques when dealing with very specific SCNV-DEGs and
tumor samples, they become difficult to tackle from a genome-wide and pan-cancer per-
spective. To solve this problem, in silico tools are needed to integrate the extensive amount
of genomic and transcriptomic data currently available from ongoing cancer genome
sequencing efforts.

The first bioinformatics approximations to deal with this problem were based on
correlation methods to link SCNVs and gene expression changes [6–16]. However, the
performance of such methods has left significant room for improvement mostly in terms
of specificity [17,18]. Furthermore, the detection of significant SCNV connected with
differential expression changes by most of these methods is highly dependent on the high
levels of SCNV recurrence in a tumor dataset analyzed [19]. This feature makes it difficult
to discover functionally relevant alterations that are found at low frequency in cancer
patients. Another problem is that these methods only consider changes in expression levels
of the interrogated genes between SCNV-positive and diploid tumor samples but not in
relation to those found in healthy tissue samples. Due to this, these algorithms cannot
give a comprehensive view of the variation in expression levels of a given gene in normal
tissues, in diploid tumors, and when included within genomic regions that underwent
SCNV events. Finally, these algorithms cannot provide direct information on the genomic
context in which SCNV-DEGs take place. As a result, it is difficult to elucidate the actual
functional relevance of the hits obtained. To solve these problems, a second-generation
bioinformatics tool (Oncodrive-CIS) was developed [20]. However, this method still has
some room for improvement. Thus, Oncodrive-CIS utilizes a system-integrated tool rather
than a more modular analytic pipeline to identify SCNV-DEGs. Consequently, it is difficult
for the users to autonomously modify the searching parameters to identify the SCNV-DEGs
present in a given genomic dataset. It does not integrate either the information on gene
co-amplification and co-deletion within the same copy number altered genomic region and,
as a result, it cannot give information on whether such alterations might have proactive
or bystander effects for cancer cells. Lastly, Oncodrive-CIS does not allow the user to find
out if a specific gene is upregulated or downregulated in tumor samples versus normal
controls. The integration of this parameter in SCNV-DEG analyses is interesting, given that
the somatic copy number alterations may lead to changes in the transcriptional status of
a gene that can be totally different from those found between healthy tissue and diploid
tumor samples.

Here, we describe a new R package tool, which has been called CiberAMP, which uses
differential expression analyses to establish accurate correlations between specific SCNVs
and changes in the expression of the genes affected by them. Unlike other previously
described methods, CiberAMP can yield information on: (i) The SCNV-DEGs present in a
given cancer genome. (ii) The type of expression changes elicited by them (e.g., if they are
SCNV-dependent, whether they amplify the changes already seen between healthy samples
and diploid tumors, or whether they change the expression pattern relative to those found
in normal tissues and diploid tumors). (iii) The genomic context in which such SCNV-DEGs
occur. (iv) The potential functional relevance of each identified SCNV-DEG. To validate this
new algorithm, we demonstrate here that it can be used to identify functionally relevant
SCNV-DEGs using genomic and transcriptomic data from glioblastoma samples deposited
in the TCGA.

2. Materials and Methods
2.1. TCGA RNA-Seq Data Download, Filtering, and Normalization

To perform these analyses, CiberAMP first downloads RNA-seq raw count data from
the Genomic Data Commons server for each queried TCGA cohort using the TCGAbi-
olinks R package (version 2.25.2) [21]. Then, the expression matrix is filtered in two steps.
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First, an array–array intensity correlation analysis identifies outliers between samples.
To that end, it calculates a square symmetric matrix of Spearman correlation coefficients
among all samples and removes those associated with a value lower than 0.6 (this is an
arbitrary threshold set in the TCGAbiolinks R package by default and can be modified
by the user). Secondly, poorly expressed genes are pulled out from the analysis by cal-
culating the average expression for each gene across all the samples and, according to
the data obtained, removing those within the lowest quartile group. Finally, the filtered
matrix is subjected to two normalization steps using the functions provided by the EDAseq
R package (version 2.30.0) and is also integrated into the analytical pipeline of TCGAbi-
olinks. The first one involves a “within-the-lane” normalization to eliminate the count
dependence on either the length or GC content of the interrogated genes. The second
one is a “between-the-lane” normalization process that reduces the count dependence
on sources of variation between samples (e.g., differences in sequencing depth). These
steps are computed as described in the original paper on the normalization function [22].
Detailed information about the R packages utilized in CiberAMP can be found in Table S1.
Instructions for the installation of the CiberAMP package can be found on the GitHub page
(https://github.com/vqf/ciberAMP/ (accessed on 25 September 2022)).

2.2. Differential Expression Analysis

Upon normalization of mRNA expression data, CiberAMP performs its first major step
to identify all differentially expressed genes between tumor and normal samples (when
such information is available in the datasets) using the edgeR algorithm [23,24]. The edgeR
pipeline is first used to calculate a common dispersion for every gene within the matrix
using the Conditional Maximum Likelihood method [23]. Subsequently, edgeR performs
a pairwise gene differential expression contrast and statistically evaluates differences in
mRNA levels between the two sample conditions. To this end, the algorithm applies
Fisher’s exact test to calculate a P for each comparison, which is then further adjusted
using the false discovery rate (FDR) method. Genes with an associated FDR value less
than 0.05 and a difference in mRNA levels between the two conditions of at least 50%
(log2(FC) > 0.58) are considered significantly deregulated by default. These parameters
can be modified by the user to make more relaxed or stringent the analysis of differentially
expressed genes.

2.3. Classification of Tumor Samples

The second major step carried out by CiberAMP is the classification of every interro-
gated gene as amplified, deleted, or diploid. To that end, the algorithm downloads from
the Broad Institute’s FireBrowser server the outcomes obtained from the latest run of the
GISTIC2.0 algorithm [25] on the raw copy number data of each queried cohort using the
TCGAbiolinks R package. Specifically, it downloads the designated “thresholded by gene”
file that contains a matrix of numbers that indicates the type of copy number variation per
sample and per gene using the following notation: −2, which means gene homozygous
deletion; −1, which refers to a gene hemizygous deletion; 0, which indicates a diploid
content; +1, which indicates the gain of an extra copy of a given allele; and +2, which refers
to a high-level gene copy gain. Importantly, CiberAMP allows the integration using either
shallow (−1 and +1) or deep (−2 or +2) copy number variations to be performed as well as
the possibility of analyzing them in a single group.

2.4. Copy Number and mRNA Expression Data Integration

Upon execution of the above steps, CiberAMP performs the differential expression
analysis between copy number altered and diploid tumor samples for every gene queried.
Subsequently, it interrogates the resulting list of differentially expressed genes to assess
if the queried gene is among them. As a result, CiberAMP can identify the loci whose
copy number variation is associated in a statistically significant manner with changes in
gene expression. This leads to the generation of a final table containing all the information

https://github.com/vqf/ciberAMP/
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associated with each of the analyzed cohorts. Such information includes: (i) Differential
expression of interrogated genes between tumor vs. normal as well as between SCNV
altered vs. diploid tumor samples. (ii) Prevalence level of SCNVs. (iii) TCGA IDs associated
with each analyzed SCNV-associated differentially expressed gene.

2.5. Analysis of Co-Amplified and Co-Deleted Genes

The file thresholded by genes from the Broad Institute’s FireBrowser data server is
further encoded in binary notation where a value of 1 denotes the presence of an SCNV in
a sample and a value of 0 indicates a diploid genotype. The algorithm then calculates for
each pair of genes a p value using Fisher’s exact test and differentiates mutually exclusive
and co-occurring events (co-amplifications or co-deletions) within a cohort. Finally, it
returns all significant associations between SCNV-DEGs (p value < 0.05) with any SCNV-
associated differentially expressed gene that has been cataloged as a cancer driver by the
COSMIC Cancer Gene Census (https://cancer.sanger.ac.uk/census#cl_search (accessed on
21 July 2022)).

2.6. Identification of SCNV-DEG Enriched Genomic Regions

To reveal enriched genomic clusters, the algorithm calculates the number of SCNV-
DEGs within all ten-megabase-long fragments in which the tumor genome can be split.
Then, the average number across all fragments containing more than two SCNV-DEGs is
calculated. Finally, fragments with a number of lodged SCNV-DEGs higher than average
are considered enriched SCNV-DEG genomic sites.

2.7. Classification Algorithm

First, the complete set of SCNV-DEGs is stratified into two subsets depending on
whether they are significantly co-amplified or co-deleted with any known cancer driver
included in the COSMIC Cancer Gene Census. Second, these two subsets are further
subdivided, taking into consideration whether the genomic coordinates of the gene are
within or outside any of the previously calculated enriched genomic clusters. Finally, in
each of the four resulting subgroups, genes are ranked from the highest to the lowest
position according to SCNV recurrence and the FDR-adjusted differential expression value
associated with SCNV.

2.8. Data Visualization

CiberAMP integrates a function to interactively explore the output of the analysis.
This representation is built on a ShinyAPP that uses the shiny and plotly R packages to
create the visualization. The rest of the plots found in this article were created using
the ggplot2 R package [26]. Sankey diagrams were generated using the networkD3 R
package (https://cran.r-project.org/web/packages/networkD3/index.html (accessed on
21 July 2022)) and the circular representations of the human genome were represented
using the circlize R package [27].

2.9. Analysis of the Genetic Dependence of Cancer Cell Lines on Gene Amplification

The genetic dependence scores (Chronos scores) and copy number variation data of
1045 tumor cell lines were downloaded from the Dependency Map database (DepMap
21Q3 Public + Score, Chronos score) [28]. Cell lines associated with gene copy number
scores higher or equal to 2.5 were classified as amplified, while those associated with
scores between 1.5 and 2.5 were classified as diploid. Then, we compared the distribution
of dependence scores between both cancer cell subgroups using the Wilcoxon test and
calculated the difference between the medians of both distributions. The knockout of a
given gene was considered to have a significant negative impact on the proliferation of
cancer cell lines when associated with a median difference > 0.10 and a p value < 0.05.

https://cancer.sanger.ac.uk/census#cl_search
https://cran.r-project.org/web/packages/networkD3/index.html
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3. Results and Discussion
3.1. Features of the CiberAMP Package

The R package described here, which will be referred to hereafter as CiberAMP, com-
bines a pipeline of genomics and differential gene expression analyses to identify SCNVs
associated with statistically significant changes in mRNA expression levels. CiberAMP can
access and process the information from the TCGA, currently, the largest available database
as it contains genomic and transcriptomic paired data from more than 10,000 patients and
33 different cancer types [29]. The main differences between CiberAMP and the previously
described Oncodrive-CIS method are summarized in Table 1.

Table 1. Comparison between the main features of CiberAMP and Oncodrive-CIS.

Parameter CiberAMP Oncodrive-CIS

Language R Python

Input data List of gene symbols and
TCGA cohort IDs

Normalized RNA-seq and copy
number data

Samples from healthy tissue Yes Yes

Score provided Log2(FC) and adjusted p value Combined score and adjusted p value

Use of validated pipelines for differential
expression analyses Yes No

Provides log2(FC) values associated with the differential
expression analyses Yes No

Provides information on differential gene expression
between copy number altered and diploid

tumor samples
Yes No

Can analyze different tumor types in the same run Yes No

Provides information on concurrency or mutual
exclusivity among SCNV-DEGs Yes No

Provides information on enriched SCNV-DEG
genomic regions Yes No

Includes an interactive visualization tool to explore the
outputs obtained from the analyses Yes No

CiberAMP requires three data inputs from the users to work: (i) The list of genes to
be queried (in official symbols). This list can range from a single gene to a whole set of
genes of the human genome. (ii) The set of tumors to be interrogated (using TCGA cohort
IDs as input) (Table S2). (iii) Parameters to carry out the search process, including p value,
minimum fold-change expression changes, and minimum SCNV frequency thresholds.
These parameters can be those offered by default by the system or those chosen at will by
the users). To process these data, CiberAMP downloads the following information from
online repositories: (i) Copy number data from the latest run of the GISTIC2.0 algorithm [25]
for each of the queried tumors, which are downloaded from the Firehose data server using
the TCGAbiolinks R package (Figure 1A). (ii) RNA-seq data in raw counts format that is
retrieved from the Genomic Data Commons data portal using, as above, the TCGAbiolinks
R package (Figure 1A). The algorithm will utilize all this information subsequently to:
firstly, classify each queried gene in the tumor dataset as “amplified” (low- and high-
level copy number), “deleted” (homozygous or heterozygous, also referred to as deep or
shallow, respectively), or “diploid” (normal 2n DNA content) (Figure 1A, step 1); secondly,
conduct a whole differential gene expression analysis between SCNV-positive and diploid
tumor samples (Figure 1A, step 2); and, thirdly, to perform differential expression analysis
between tumor and normal samples (in the case that such information is available at the
TCGA) (Figure 1A, step 3). These differential gene expression analyses utilize edgeR, a
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robust algorithm designed to identify and quantify changes in gene expression between
small, asymmetrical groups of samples [23,24].
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Figure 1. Scheme of the in silico pipeline used by the CiberAMP R package. (A) CiberAMP routine used
to identify and visualize SCNV-DEGs. Icons used are explained in the blue box on the left. (B) Summary
of the steps carried out by CiberAMP to classify SCNV-DEGs according to genomic context.

This pipeline generates three intertwined outputs: (i) The list of differentially expressed
genes between tumor and normal samples. (ii) The list of differentially expressed genes
between SCNV-positive and diploid tumor samples. (iii) The catalog of loci that are shared
by the foregoing lists. To facilitate the visualization and exploration of the data by users,
the algorithm includes a function to create an interactive x/y plot in which the coordinates
of each interrogated gene are based on the difference in expression levels between tumor
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and normal samples (x axis) as well as between SCNV-positive and diploid tumor samples
(y axis) (Figure 1A). The user can also obtain information about each identified SCNV-
DEG by clicking the appropriate dot on the plot (Figure S1A,B). This information includes
the gene symbol, the type of SCNV (amplification or deletion), the recurrence of the
variation, and the tumor type it was selected from (Figure S1B). Finally, the user can
obtain information on whether the identified SCNV-DEG is significantly co-amplified or
co-deleted with any oncogene from the COSMIC Cancer Gene Census (Figure S1C) upon
clicking on the appropriate dot found in the x/y representation (Figure S1B).

Since SCNVs usually encompass multiple loci, CiberAMP performs two additional
steps to analyze the genomic context in which each SCNV-DEG takes place (Figure 1B).
Firstly, it calculates all significant co-amplifications and co-deletions of known proto-
oncogenes and tumor suppressor genes using the information contained in the COSMIC
Cancer Gene Census [30]. Secondly, the algorithm identifies the genomic regions that
harbor a higher number of SCNV-DEGs than on average (Figure 1A,B). These genomic
regions will be referred to hereafter as “enriched SCNV-DEG genomic clusters”. As a
result of all these analyses, CiberAMP can eventually provide the following information
to the user: (i) List of SCNV-DEGs in a given set or group of tumors. (ii) The fraction of
SCNV-DEGs that are concurrently amplified and/or deleted with known cancer drivers
present in the neighborhood or in faraway genomic regions. (iii) The list of SCNV-DEG
located within enriched genomic clusters of the steps carried out by CiberAMP to classify
SCNV-DEGs according to genomic context.

3.2. Identification of SCNV-DEGs in Glioblastoma Using CiberAMP

To validate CiberAMP, we first analyzed its performance using a cohort of 156 TCGA-
archived glioblastoma samples that contain paired genomic and transcriptomic data. This
dataset also includes eight samples from healthy brain tissue to be used as controls. When
all human genome genes were interrogated using the CiberAMP default parameters
(log2(FC) > 0.58, FDR adjusted p value < 0.05), we were able to identify 5166 differen-
tially expressed genes between normal brain samples and glioblastoma (Table S3) as well
as 5812 genes associated with SCNV (considered as such the gain of more than three copies
or the loss of both alleles) in at least one tumor sample. From these analyses, we also
identified a total number of 316 SCNV-DEGs (Figure 2 and Table S4). These SCNV-DEGs
could be classified into three main subsets according to their expression pattern: (Sub-
set a) Genes whose deregulation is exclusively associated with SCNV events (e.g., PTEN
and MYCN in the case of SCNVs involving loss and gain of gene copies, respectively)
(Figure 2, see complete gene list in Table S5). This subclass includes 43% of the SCNV-DEGs
found in glioblastoma. (Subset b) Genes in which the SCNV leads to the exacerbation of
the differential expression already seen between diploid glioblastoma and healthy tissue
samples (e.g., EGFR, CDK6, MYC, and PDGDFRA) (Figure 2, see list of identified genes
in Table S6). This subclass represents 38% of the SCNV-DEGs identified by CiberAMP in
glioblastoma. (Subset c) SCNVs that reshape the expression pattern of the gene that is
found between diploid tumors and normal samples (Figure 2, see the complete gene list
in Table S7). For example, the AKT3, FGFR3, and KIT transcripts usually exhibit lower
levels in diploid glioblastoma samples when compared to healthy controls. However, they
become upregulated in the case SCNV-positive tumor cases (Figure 2). A mirror-image
scenario is seen in the case of the CDKN2A, CD274, and CDKN2C tumor suppressor genes,
which show elevated levels of expression in tumor diploid versus normal samples and
reduced levels in SCNV-positive versus diploid tumors (Figure 2). This third subclass
represents 19% of all SCNV-DEGs identified by CiberAMP in this tumor type.
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Figure 2. Identification of SCNV-DEGs in glioblastoma using CiberAMP. Example of the CiberAMP-
generated graphic representation of candidate SCNV-DEGs using glioblastoma data from the TCGA.
In addition to SCNV-DEG visualization according to amplified or deep deletion status (coordinates of
SCNV-DEG within the x/y axes), information is given about the relative frequency of each individual
SCNV-DEG in the tumor genomic data contained in the TCGA (size of circles). More information
about each SCNV-DEG can be obtained by clicking on each point (see Figure S1B). This representation
also allows users to classify SCNV-DEGs according to their expression patterns in SCNV+, diploid,
tumor, and control samples, as indicated in the main text. To facilitate the interpretation of the data by
the readers, the graph has been modified to include extra information on known proto-oncogenes (red
color) and tumor suppressor genes (blue color). Further information about the symbols used is shown
at the top of the figure. The subsets depicted in the figure are: subset a.1, genes whose expression
is only upregulated when included within an SCNV; subset a.2; genes whose expression is only
downregulated when included within an SCNV; subset b.1, genes whose expression is upregulated
in SCNV versus diploid samples as well as tumor versus healthy samples; subset b.2, genes whose
expression is downregulated in SCNV versus diploid samples as well as tumor versus healthy tissue
samples; subset c.1 and c.2, genes that show the opposite pattern of expression in SCNV versus
diploid tumor samples and in tumor versus healthy tissue samples.

3.3. CiberAMP Benchmarking

To validate CiberAMP, we compared its performance with a previously described
method that was designed using a similar rationale (Oncodrive-CIS). To that end, we
analyzed the same cohort of glioblastoma samples using the default parameters of each
of those methods. In terms of total SCNV-DEG numbers, we found a notable difference
in the total score reported by CiberAMP (316, see Figure 3A) and Oncodrive-CIS (>2000).
Importantly, 314 of the 316 CiberAMP hits were also detected in the Oncodrive-CIS results
obtained. The disparity in the total number of hits between the two programs is likely due
to the fact that CiberAMP has more stringent criteria than Oncodrive-CIS to generate the list
of SCNV-DEGs (in terms of overall gene expression changes). Consistent with this, we have
found that most of the additional SCNV-DEGs reported by Oncodrive-CIS are associated
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with lower gene expression levels than those identified by CiberAMP (Figure 3B). Of course,
this does not exclude the possibility that they are functionally meaningful. However, in
terms of subsequent wet-lab characterization studies, we believe that selecting SCNV-DEGs
associated with a higher impact on gene expression will be prima facie more important.
These analyses indicate that CiberAMP can provide a more accurate perspective of how a
given SCNV-DEG impacts mRNA levels in the cancer cohort analyzed. Importantly, these
analyses can be adjusted to the specific needs of the user to carry out more stringent or
relaxed searches (Figure S1A).
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Figure 3. CiberAMP benchmarking. (A) SCNV-DEGs identified using the default searching parameters
of CiberAMP and Oncodrive-CIS. a.u., arbitrary units. (B) Distribution of the SCNV-DEGs identified
by CiberAMP (red) and Oncodrive-CIS (blue) according to the differential expression levels of the
encoded transcripts. (C) Sankey diagram that summarizes the proportion of cancer drivers found
among the 316 SCNV-DEGs identified by CiberAMP in glioblastoma. DEG, differential expression
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gene; CD, cancer driver according to the COSMIC Cancer Gene Census; NCD, non-cancer driver
according to the COSMIC Cancer Gene Census. (D) Chromosomal localization (circle) and co-
segregation pattern with other genomic regions (brown arches) of SCNV-DEGs that are associated
with well-known proto-oncogenes (red circles) and tumor suppressor genes (blue circles). Chromo-
somes are indicated by the corresponding number outside the circle. (E) Proto-oncogene (top) and
tumor suppressor (bottom) genes that undergo SCNV-DEG in glioblastoma according to CiberAMP
analyses. The frequency of each SCNV-DEG in glioblastoma samples is included in brackets.

Another critical point in this type of algorithm is the ability to identify cancer-relevant
genes in the generated list of SCNV-DEGs. We found that 9.8% of the SCNV-DEGs identi-
fied by CiberAMP in glioblastoma target proto-oncogenes (22 genes) or tumor suppressor
genes (9 genes) according to the information contained in the COSMIC Cancer Gene Census
database (Figure 3C,D). These genes correspond to all the gene expression subsets a (4),
b (15), and c (12) that have been described above (Figure 2). The most prevalent of these
SCNV-DEGs are homozygous deletions targeting the tumor suppressor genes CDKN2A
(chromosome 9, 55% of the patients) and PTEN (chromosome 10, 10.1%) as well as amplifi-
cations targeting the proto-oncogenes EGFR (chromosome 7, 47.9%), CDK4 (chromosome
12, 18.2%), PDGFRA (chromosome 4, 14.2%), DDIT3 (chromosome 12, 10.8%), and KIT
(chromosome 4, 10.8%) (Figure 3D,E). However, the majority of SCNV-DEGs associated
with copy number-altered cancer driver genes (77%) identified by CiberAMP are found at
frequencies below 10% of glioblastoma cases (Figure 3D,E). These analyses demonstrate
that CiberAMP can efficiently identify functionally relevant genes independently of the
frequency with which they are found in patients. Importantly, CiberAMP provides a list of
hits more enriched in proto-oncogenes and tumor suppressor genes across most frequency
intervals than Oncodrive-CIS (Table 2). Similar results are obtained when the performance
of these two algorithms is tested using a cohort of 515 head-and-neck squamous cell carci-
noma tumors downloaded from the TGCA database; although, in this case, the percentage
of total cancer drivers identified is similar when using both algorithms (Table 2). However,
as indicated above, it is worth noting that CiberAMP always yields SCNV-DEGs that are
associated with more robust fold change levels (Figure 3B). Collectively, these data indicate
that CiberAMP facilitates the selective and effective identification of SCNV-DEGs when
compared to the previous benchmarking method. In addition to this, it is worth noting
that CiberAMP offers analytical capabilities much more flexible for the users than previous
methods (see Table 1).

Table 2. CiberAMP benchmarking using indicated TCGA datasets. Please, note that the number of
cancer drivers is progressively accumulated as we move from the 0–10% to the 90–100% bin. This latter
bin contains all identified cancer drivers by each algorithm. In addition, note that the two algorithms
use different criteria (e.g., overall impact on gene expression) to generate the list of SCNV-DEGs.

Bin
CiberAMP Oncodrive-CIS

# Cancer Drivers % Cancer Drivers # Cancer Drivers % Cancer Drivers

Glioblastoma

0–10% 4 12.9 16 7.2
10–20% 10 15.9 33 7.4
20–30% 12 12.8 43 6.4
30–40% 15 11.9 50 5.6
40–50% 19 12.0 61 5.5
50–60% 22 11.6 71 5.3
60–70% 26 11.8 80 5.1
70–80% 27 10.7 92 5.1
80–90% 29 10.2 108 0.5

90–100% 31 (total) 9.8 119 (total) 5.3
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Table 2. Cont.

Bin
CiberAMP Oncodrive-CIS

# Cancer Drivers % Cancer Drivers # Cancer Drivers % Cancer Drivers

Head and neck cancer

0–10% 16 8.0 68 5.1
10–20% 29 7.3 120 4.5
20–30% 38 6.4 163 4.1
30–40% 44 5.5 219 4.1
40–50% 49 4.9 259 3.9
50–60% 53 4.4 315 3.9
60–70% 61 4.4 369 3,9
70–80% 65 4.1 424 3.9
80–90% 69 3.8 467 3.9

90–100% 76 (total) 3.8 514 (total) 3.9

3.4. CiberAMP Provides Information for Subsequent Hypothesis-Driven Studies on SCNV-DEGs

The functional relevance of other SCNV-DEGs that are not well-established cancer
driver genes is difficult to assess unless information is available from previous publications.
In this regard, an important advantage of CiberAMP is that it can provide complemen-
tary information on the genomic context in which the identified SCNV-DEGs take place
(Figure 4A). This feature enables the building of hypotheses on the potential functional
relevance of the genes included in those SCNV-DEGs to carry out subsequent wet-lab
validation experiments. For example, we can classify the SCNV-DEGs identified in glioblas-
toma into three hypothetical subclasses according to the information provided by Ciber-
AMP: (i) Predicted drivers, a subclass that contains all the SCNV-DEGs linked to known
proto-oncogenes and tumor suppressor genes (see above, Figure 3E). (ii) Putative drivers,
a subclass that in turn includes two types of SCNV-DEGs. On the one hand, there are
SCNV-DEGs (32, 10% of total) that are not associated with concurrent copy number vari-
ations and are known as cancer driver genes (Figure 4A). This subgroup encompasses
six closely located loci (CCKBR, CYBR5A, ZNF214, HBB, EPS8L2, and H19) that are usu-
ally found co-deleted on chromosome 11 (Figure 4B and Table S8) and 26 genes that are
dispersed across different chromosomes (Figure 4C and Table S9). PDGFA and FAM20C
(both located at chromosome 7) are the most frequently amplified genes of this category
(4% in each case), followed by amplifications of TKTL1 (chromosome X, 2.7%) and dele-
tions in RYR3 (chromosome 15, 2.7%) (Table S9). In the case of the co-deleted cluster of
chromosome 11 (Figure 4B), it is likely that at least one out of the six genes present in
that region would play a tumor suppressor role. The candidates are CYB5R2 and CCKBR,
since they have been previously associated with suppressor-like activities [31–35]. On the
other hand, there are SCNV-DEGs (42, 13.2%) that are concurrently amplified or deleted
with cancer driver-encoding SCNV-DEGs located in different chromosomes (Figure 4A,D)
(Table S10). It is likely that the inter-chromosomal linkage of those SCNV-DEGs might
indicate functional cooperativity or antagonism of proteins encoded by them in cancer cell
fitness. A good example of SCVN-DEGs belonging to this subclass is the amplification of
the EGFR gene (chromosome 7), which is usually associated with the loss of the CDKN2A
gene (chromosome 9) (Figure 4D), and has been previously related to poor prognosis in
the case of glioblastoma patients [36–38]. (iii) SCNV-DEGs with uncertain functional rele-
vance, which represents the most frequent subclass (211 SCNV-DEGs, 66.8% out of the total;
Figure 4A and Table S11). These SCNV-DEGs are in genomic clusters that contain known
proto-oncogenes and tumor suppressor genes such as AKT3, CDKN2C, MDM4, NTRK1,
and PRDM2 (chromosome 1); KIT and PDGFRA (chromosome 4); EGFR (chromosome 7);
CDKN2A (chromosome 9); and DDIT3 and CDK4 (chromosome 12). Due to this, the genes
of this subclass can represent mere bystanders or, alternatively, loci that cooperate in cis
with the proto-oncogenes or tumor suppressor genes that are located within the same
chromosomal region.
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Figure 4. Functional cataloging of SCNV-DEGs in glioblastoma. (A) Sankey diagram showing the ge-
nomic context associated with CiberAMP-identified SCNV-DEGs in glioblastoma. Chr, chromosome.
Subclass i, includes predicted drivers (SCNV-DEGs containing known proto-oncogenes or tumor
suppressor genes); Subclass ii, includes two types of putative drivers: (a) SCNV-DEGs not associated
with concurrent copy number variations in known cancer driver genes. (b) SCNV-DEGs concurrently
amplified or deleted with SCNV-DEGs encoding cancer drivers located in different chromosomes;
Subclass iii, includes SCNV-DEGs with uncertain functional relevance. See further information in the
main text. (B–D) Genomic localization of indicated SCNV-DEGs that were cataloged as functionally
interesting (subtype ii) according to our genomic context-based classification criteria (see main text
for more details). Co-amplifications and co-deletions with these oncogenes are represented by arched
brown lines.
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Notably, the number of potentially relevant genes generated by CiberAMP can be
significantly reduced by the users by simply modifying the default parameters of the
system. For example, by setting the minimal expression fold-change requirement from the
default (0.5) to a higher one (2.5), the total number of hits is reduced from the initial 316 to
178 using the same glioblastoma TCGA dataset. In any case, the number of hits provided
by CiberAMP is perfectly suited for functional validation using low to medium throughput
approaches using shRNA interference or CRISPR–Cas9-mediated gene editing.

3.5. Validation of CiberAMP-Identified SCNV-DEGs

Using the a priori functional characterization criteria described above, we ended
up with a list of 74 SCNV-DEGs that could be potentially relevant for glioblastoma. We
followed two independent strategies to obtain further insights into their potential relevance.
Firstly, we analyzed the existing literature to identify previously established correlations
between candidate genes and the fitness of cancer cell lines (general or glioblastoma-
specific). Using this approach, we found that 38 of those SCNV-DEGs (52% of total) had
indeed been linked to pro-tumorigenic (25 genes), tumor suppression (4 genes), or pro/anti-
tumorigenic (9 genes) functions in a number of tumor types (Table S12). In particular, the
role of 12 of these genes (32%) was demonstrated using glioblastoma cell lines (Table S12).
This group includes the top three SCNV-DEGs identified by CiberAMP (PDGFA, FAM20C,
and TKTL1). As a control, 90% of SCNV-DEGs linked to cancer drivers have previously
been associated with pro- or anti-neoplastic activities in glioblastoma tumors (Table S13).
This percentage can be higher since, to our knowledge, no functional studies have been
conducted on FGFR3, IKZF1, and PRDM2 in this tumor type as yet.

As a second approximation, we utilized the CRISPR–Cas9-based gene dependency
database (DepMap 21Q3 Public + Score, Chronos score) to determine the impact of the
deletion of CiberAMP-identified hits on the proliferation rates of 1045 independent cancer
cell lines (including 43 glioblastoma cell lines). Given that these analyses are not well suited
to pick up increased levels of proliferation upon ablation of suppressor genes, we focused
these analyses on the 56 SCNV-associated upregulated genes in glioblastoma. This approach
revealed that the ablation of 50% of those genes does negatively affect the proliferation
of a wide spectrum of cancer cell lines (Figure 5A). One of these genes (POLR1C, which
encodes the subunit C of RNA polymerases I and III), appears to be essential since its
knockout severely affects the growth of all interrogated cell lines (Figure 5A). Other genes
also induce a statistically significant impact on the proliferation of a wide number of
cell lines (XPO5, RSPH9, QRLS1, MRLP14, MAD2L1BP, and SLC35B2) (Figure 5A, left
column). Eleven of those genes (19.6%) are also important for the proliferation of at least
one of the glioblastoma cell lines present in that database (Figure 5A, right column, gene
symbols in red). As a control, we found using the same analysis that the knockout of 70%
(19) of the 27 upregulated proto-oncogenes found within SCNV-DEGs in glioblastoma
(Figure 3E) causes reductions in the proliferation of some of the cell lines included in
the screening (Figure 5B). Among them, MYC was the one showing the most pan-cancer
cell line essentiality (Figure 5B). The knockout of 12 (44%) of these proto-oncogenes also
affects the proliferation of at least one of the glioblastoma cancer cell lines present in the
interrogated cell collection (Figure 5B, right panel, gene symbols in red).
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Figure 5. Validation of CiberAMP-identified SCNV-DEGs. (A) Effect of knockout of indicated genes
related to SCNV-DEGs found in glioblastoma on the proliferation of cancer cell lines. In the right
column (GBM), we specifically include genes whose knockout affects the proliferation of at least
one glioblastoma cell line. The effect of proliferation is depicted as a blue gradient (see the scale on
the right). Genes are shown on the left. In red, those that affect proliferation in at least one of the
glioblastoma cell lines contained in the screening. Cell lines are shown in vertical lines (we have
omitted the name of these lines for the sake of space). (B) Effect of the knockout of the indicated
glioblastoma SCNV-DEGs harboring known cancer driver genes on the proliferation of cancer cell
lines. Depiction of cell lines and proliferative effect of the gene knockout is shown as in (A). (C) Effect
of knockout of the indicated genes linked to SCNV-DEGs found in glioblastoma on the proliferation
of cancer cell lines that are positive for that SCNV. Depiction of cell lines and proliferative effect of the
gene knockout is shown as in (A). (D) Effect of knockout of the indicated glioblastoma SCNV-DEGs
harboring known cancer driver genes on the proliferation of cancer cell lines that are positive for that
specific SCNV. Depiction of cell lines and proliferative effect of the gene knockout is shown as in (A).
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Finally, we used a more stringent analysis of the CRISPR–Cas9-based gene dependency
database to evaluate whether some of the genes included in the SCNV-DEGs influenced
the proliferation of cancer cell lines according to their amplification status. To this end,
we subdivided the entire collection of 1045 cell lines included in the DepMap into the
“amplified” and “diploid” subsets for each SCNV-DEG under investigation and, subse-
quently, calculated the difference in median dependency scores between these subgroups
using the Wilcoxon test (see Methods). Using this approach, we found that the knockout
of E2F3 is associated with a significant reduction in the proliferation of the cell lines that
contain SCNV-DEGs harboring that gene (Figure 5C). Three additional genes impact the
proliferation at lower levels (ID4, POLH, and TKTL1) (Figure 5C). In the case of SCNV-DEGs
harboring cancer drivers, we found eight of them whose amplification status is associated
with proliferation rates in cancer cell lines (Figure 5D). Collectively, these results indicate
that the information on the genomic context of SCNV-DEGs provided by CiberAMP can be
used to pinpoint a significant number of genes that can influence a very specific parameter
of cancer cells (effect on proliferation rates). It is likely that the spectrum of functionally
relevant SCNV-DEGs could be even larger if we incorporate other experimental readouts
for their characterization. Likewise, it is likely that some of them would require cooperating
inputs from other SCNV-DEGs or pathobiological programs present in cancer cell lines.

4. Conclusions

Here, we have reported a new in silico tool, CiberAMP, which will facilitate studies
aimed at the identification of SCNV-DEGs in pan-cancer data with the widely used R
platform. This method is flexible in terms of the selection of screening parameters by
the users as well as quite robust in performance according to our benchmarking tests. In
addition to allowing the identification of SCNV-DEGs according to user-defined parameters,
CiberAMP provides extra layers of information that may help to select candidates for
further validation. These additional strata of information include: (i) The specific effect
that such SCNVs elicit in the expression pattern of the targeted genes and whether such
an effect is similar or different from those observed between diploid tumors and normal
tissue samples. (ii) The genomic context in which such genomic alterations take place (e.g.,
association or not with enriched SCNV-DEG genomic clusters, or linkage to similar cancer
driver SCNV-DEG located in the vicinity or faraway in the genome). With this information,
users can obtain a comprehensive view of SCNV-DEGs at the whole-genome or single-gene
level for any desired TCGA tumor and, perhaps more importantly, can establish hypotheses
to subsequently select specific SCNV-DEGs for further functional validation using either
wet-laboratory experiments or online experimental database resources.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11101411/s1. Figure S1: Computer screen view of the
CiberAMP interface; Table S1: List of R packages and versions used in this work; Table S2: TCGA
cohort IDs accepted by CiberAMP; Table S3: List of differentially expressed genes found by CiberAMP
in glioblastoma; Table S4: List of SCNV-associated DEGs found by CiberAMP in glioblastoma;
Table S5: List of SCNV-associated DEGs classified in subset a by CiberAMP in glioblastoma; Table S6:
List of SCNV-associated DEGs classified in subset b by CiberAMP in glioblastoma; Table S7: List
of SCNV-associated DEGs classified in subset c by CiberAMP in glioblastoma; Table S8: List of
SCNV-associated DEGs of subclass ii that do not segregate with any other cancer driver gene and
are co-deleted at chromosome 11 identified by CiberAMP in glioblastoma; Table S9: List of SCNV-
associated DEGs of subclass ii that do not segregate with any other cancer driver gene identified by
CiberAMP in glioblastoma; Table S10: List of SCNV-associated DEGs classified within Subclass ii that
are linked to SCNV-DE cancer drivers present in other chromosomes by CiberAMP in glioblastoma;
Table S11: List of SCNV-DEGs of subclass iii identified by CiberAMP in glioblastoma; Table S12:
Literature about SCNV-DEGs associated with tumorigenic effects in glioblastoma and other types of
cancer; Table S13: Literature of cancer driver genes associated with tumorigenic effects in glioblastoma
and other types of cancer.
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