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Abstract

The second wave of COVID-19 in Malaysia is largely attributed to a four-day mass gathering

held in Sri Petaling from February 27, 2020, which contributed to an exponential rise of

COVID-19 cases in the country. Starting from March 18, 2020, the Malaysian government

introduced four consecutive phases of a Movement Control Order (MCO) to stem the spread

of COVID-19. The MCO was implemented through various non-pharmaceutical interven-

tions (NPIs). The reported number of cases reached its peak by the first week of April and

then started to reduce, hence proving the effectiveness of the MCO. To gain a quantitative

understanding of the effect of MCO on the dynamics of COVID-19, this paper develops a

class of mathematical models to capture the disease spread before and after MCO imple-

mentation in Malaysia. A heterogeneous variant of the Susceptible-Exposed-Infected-

Recovered (SEIR) model is developed with additional compartments for asymptomatic

transmission. Further, a change-point is incorporated to model disease dynamics before

and after intervention which is inferred based on data. Related statistical analyses for infer-

ence are developed in a Bayesian framework and are able to provide quantitative assess-

ments of (1) the impact of the Sri Petaling gathering, and (2) the extent of decreasing

transmission during the MCO period. The analysis here also quantitatively demonstrates

how quickly transmission rates fall under effective NPI implementation within a short time

period. The models and methodology used provided important insights into the nature of

local transmissions to decision makers in the Ministry of Health, Malaysia.

Introduction

Imported cases from China contributed to the first COVID-19 wave in Malaysia from January

25, 2020 to February 26, 2020 [1]. This first wave had a total of 22 cases out of which 20 were
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directly linked to foreign travel while the remaining two cases were local transmissions [2, 3].

The second wave of COVID-19 in Malaysia was largely attributed to a four-day mass gathering

held in Sri Petaling from February 27, 2020, which contributed to an exponential rise of

COVID-19 cases in the country. This gathering involved over 16, 000 participants including a

large number of foreign visitors from countries that later registered COVID-19 cases; see, for

example, [4] which refers to the official Facebook link of the Ministry of Health, Malaysia [5].

On March 18, 2020, the Malaysian government introduced a nationwide lockdown which was

the Phase 1 Movement Control Order (MCO) throughout the country to stem the spread of

COVID-19. Phase 1 MCO was enforced for a 2-week period starting from March 18, 2020 to

March 31, 2020. During this phase, various non-pharmaceutical interventions (NPIs) were

strictly enforced by means of movement restrictions, wearing of face masks, social distancing

and hand hygiene practices to reduce disease transmission. The Phase I MCO was then evalu-

ated after 2 weeks based on case trends and model forecasts by the Ministry of Health (MOH)

Malaysia. As local transmission persisted, the MCO was extended a total of four times until

May 12, 2020. Phases 2, 3 and 4 of the MCO covered periods starting from April 1, 2020 until

May 12, 2020 (Phase 2—April 1, 2020 to April 14, 2020, Phase 3—April 15th to April 30, 2020,

and Phase 4—May 1, 2020 to May 12, 2020). Subsequently, from May 4, 2020, the MCO was

eased into the Conditional MCO (CMCO) until June 9, 2020. However, during CMCO, there

were still several identified hot-spots of COVID-19 which were placed under Enhanced MCO

(EMCO) with the aforementioned strict movement control restrictions.

The implementation of MCO proved to be effective—the reported COVID-19 cases

reached its peak around the first week of April and subsequently started to reduce. However,

concerns remained whether a rebound in transmission would occur when the MCO was lifted

and if compliance to NPIs were not followed strictly at that time. In order to gain a quantitative

understanding of the effect of MCO, we developed a class of mathematical models to capture

the dynamics of COVID-19 spread before and after the MCO implementation. A variant of

the Susceptible-Exposed-Infected-Recovered (SEIR) model is proposed and developed in this

paper which incorporates heterogeneity in the transmission dynamics, additional compart-

ments for asymptomatic transmission and a change-point, chosen adaptively based on data, to

reflect the shift in spread dynamics after the MCO implementation. The models developed in

this paper are able provide a quantitative assessment of the extent of COVID-19 spread during

the pre-MCO (large gathering) and MCO periods by means of a measure of infectivity devel-

oped from them. This measure is similar to the basic reproduction number, commonly

denoted by R0, but can be calculated for more complex epidemic models such as the ones pro-

posed here.

Deterministic compartmental models, such as the Susceptible-Infected-Recovered (SIR) or

the Susceptible-Exposed-Infectious-Recovered (SEIR) models, provide a good theoretical

framework to study infectious disease spread, and have been widely used and reported in the

literature. However, more complex versions of these models, and their stochastic counterparts

require data-rich inputs to model all aspects of the disease dynamics. Data-rich inputs, if lack-

ing, can be compensated using reliable and informative prior elicitation. Considering the acute

nature and scale of the pandemic as well as the urgent need for a multisectorial response, com-

prehensive data availability of the pandemic was limited in Malaysia. For example, the open

source website outbreak.my initially reported a transmission network for all cases; how-

ever, it was unable to cope with the scale of the pandemic when it intensified. Factoring in this

data limitation, we choose to develop models that are deterministic, rather than stochastic,

while ensuring that they are able to capture salient transmission dynamics satisfactorily. As

mentioned earlier, we enhance the deterministic models by incorporating compartments for

asymptomatic transmission and a change-point to reflect the shift in disease dynamics. We
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also take into account heterogeneity in the disease spread such as varying contacts among sus-

ceptibles within the closed population. The starting point of our proposed models are the class

of epidemic models with power transmission dynamics which are shown to incorporate het-

erogeneity (see [6, 7]).

Several studies in the literature [8–12] have analyzed the effects of NPIs in reducing the

number of COVID-19 cases. In [8], the effects of different types of NPIs on COVID-19 cases

are modeled using a negative-binomial distribution whose underlying parameters incorporate

country information, type of NPI implemented and change-point effects. The associated

Bayesian analysis is carried out using Markov Chain Monte Carlo (MCMC) algorithms to

arrive at posterior parameter estimates and credible intervals. No epidemic models are consid-

ered in this work. A generalization of the SEIR epidemic model is considered in [10] to under-

stand the dynamics of transmission in New York, USA, under various NPI settings. However,

the model is complex and requires data-rich inputs for the estimation of all unknown parame-

ters. As a result, the authors derive baseline epidemiological parameters from published litera-

ture and not from actual observed cases in New York, and in the end conduct a simulation

study based on the assumed parameter values. The study in [9] extends the work of [13] and

computes a time-varying basic reproduction number as a way of gauging the effect of NPIs

over time. Both these works assume that serial intervals (i.e., the time between onset of symp-

toms for the infector and the infectee) can be computed for each case, which is another situa-

tion requiring data-rich input.

Studies that use compartmental epidemic models as a way of gauging the time-varying

effects of NPIs have emerged over the course of the pandemic [14–16]. Compartmental epi-

demic models naturally model disease spread via contact rates which directly quantify the

extent of NPIs (since, as mentioned earlier, NPIs are designed to reduce person-to-person

transmission). Thus, epidemic models provide a natural approach for considering time-vary-

ing effects of the MCO period. Further, in this paper, the estimation of SEIR parameters is car-

ried out based on local considerations and local data; they are not obtained from published

literature based on studies conducted elsewhere where their local dynamics can be vastly

different.

We seek to address one important aspect of Malaysia’s multifaceted response to the

COVID-19 pandemic, that is, to inform the health officials at MOH and aid them in their deci-

sion-making. Thus, our model was developed under local considerations using local data. Our

model and related analyses are able to provide a quantitative assessment of (1) the impact of

the Sri Petaling gathering, and (2) the extent of decreasing transmission during the MCO

period by incorporating a time-varying contact rate parameter, which is estimated using

locally available data. In essence, the proposed models here are being used as a lens to interpret

the observed data in terms of when, and to what extent, a reduction in COVID-19 transmis-

sion occurred as result of the implementation of MCO.

Materials and methods

Data collection

Daily situation reports on COVID-19 cases in Malaysia are published by the National Crisis

Preparedness and Response Centre (CPRC) of MOH, as well as other official websites (such as

outbreak.my). The data on daily COVID-19 cases have been published since 21 January

2020 and are publicly available. The reports consist of confirmed daily and cumulative cases,

recovered cases and deaths, as well as cases requiring ICU care and ventilator support. Cases

by states are also available for the 13 states and 3 federal territories. In this study, we studied

characteristics of the second COVID-19 wave in Malaysia starting from March 1, 2020
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(corresponding to the final day of the Sri Petaling gathering). Data used for the current study

are confirmed daily cases for Malaysia, and for two states: Selangor and Sarawak. These states

were chosen to illustrate the aggressive transmission propagated by the Sri Petaling gathering.

Selangor is the state where Sri Petaling is located and from where a majority of the participants

originated, whereas Sarawak represents a state which was essentially not affected by this gath-

ering. The time period of study is between March 1, 2020 (end of Sri Petaling gathering) and

April 28, 2020, covering the period immediately after the Sri Petaling gathering and the first

three phases of the MCO. Our study duration is further divided into two periods. The first

period ranges from March 1, 2020 until March 18, 2020, which covers the subsequent 17 days

after the gathering. The second period is taken from March 18, 2020 until April 28, 2020, cov-

ering the three successive Phases 1, 2 and 3 of the MCO. Fig 1 gives the trajectories of reported

daily COVID-19 cases between March 1, 2020 and April 28, 2020 for Malaysia, and the states

of Selangor and Sarawak.

All COVID-19 cases reported by MOH were confirmed by real-time reverse transcriptase-

polymerase chain reaction (real-time RT-PCR) tests. A positive case was reported when the

person in question was found to be positive for SARS-CoV-2 via a real-time RT-PCR test.

Upon confirmation, the individual was isolated at COVID-19 designated hospitals and health-

care facilities [17]. Active cases are defined as infected persons who were currently undergoing

treatment, and hence, isolated and removed; the individual is assumed to be unable to infect

other susceptibles in the population, and hence “removed” from further modelling steps. This

study did not consider transmission from positive isolated COVID-19 patients to health per-

sonnel as there was no evidence of this type of transmission occurring in the COVID-19 desig-

nated hospitals in Malaysia.

The SEIR model

The typical and well-known SEIR compartmental model consists of four compartments (Sus-

ceptible, Exposed, Infected and Recovered) representing different stages of evolution of an

infectious disease, such as COVID-19, in a population. Susceptible individuals come in contact

with one or more infected individuals in the population, and subsequently, become exposed to

the virus. The virus then incubates within these individuals for some time. At the end of the

incubation period, the exposed person becomes infectious and transmits the disease to other

susceptibles in the population who come in close contact to him/her. The infected person is

assumed to be infectious for a certain period (called the infectious period) after which the

Fig 1. Reported daily cases. Reported daily cases for (a) Malaysia, (b) Selangor and (c) Sarawak. The time period

considered is from March 1, 2020 to April 28, 2020.

https://doi.org/10.1371/journal.pone.0252136.g001
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person recovers, dies or becomes immune. The deterministic SEIR model is given by a set of

nonlinear ordinary differential equations (ODEs):

_SðtÞ ¼ � hðSðtÞ; IðtÞÞ ð1Þ

_EðtÞ ¼ hðSðtÞ; IðtÞÞ � dEðtÞ ð2Þ

_IðtÞ ¼ d EðtÞ � g IðtÞ; and ð3Þ

_RðtÞ ¼ g IðtÞ ð4Þ

where S(t), E(t), I(t) and R(t) represents, respectively, the susceptible, exposed, infected and

recovered compartments representing the total number of individuals in each compartment at

time t (here, _xðtÞ denotes the derivative of x(t) with respect to time t for x 2 {S, E, I, R}), N is

the total population size, and hðS; IÞ ¼ b S
N I is the rate of new infections (or, the number of

new cases in the population). The parameters that govern the trajectory of the SEIR model are

θ� (β, δ, γ, i0, e0) which are, respectively, the transmission rate (i.e., number of individuals in

the population an infected person comes in contact with and successfully transmits the disease

per unit time), the rate of incubation of the disease, the rate of infectiousness, the initial num-

ber of infectives and the initial number of exposed individuals. Since

_SðtÞ þ _EðtÞ þ _IðtÞ þ _RðtÞ ¼ 0, it follows that S(t) + E(t) + I(t) + R(t) = N for all t. Reparame-

trizing S(t) = S(t)/N, E(t) = E(t)/N, I(t) = I(t)/N and R(t) = R(t)/N, the renormalized versions of

S, E, I and R represent the proportion, rather than the total number of individuals, in each

compartment. In the renormalized SEIR model, S(t) + E(t) + I(t) + R(t) = 1 and the rate of new

infections become

hðS; IÞ ¼ b S I: ð5Þ

Based on initial values of Sð0Þ � s0 ¼ 1 �
i0
N �

e0
N , Eð0Þ ¼ e0

N , Ið0Þ ¼ i0
N, and R(0) = 0 at time

T0 = 0, the SEIR ODE system can be solved numerically to yield the values of S(t), E(t), I(t) and

R(t) for every t 2 [T0, T1] where T1 denotes the final time-point. In (1)–(4), the incubation

period, 1/δ, is the reciprocal of the incubation rate δ, and similarly, the infectious period 1/γ is

the reciprocal of the infectious rate γ. The correspondence between rates and exponential

sojourn times is only approximately so since it is not so straightforward to establish this corre-

spondence with an individual-based stochastic model given the non-linear nature of the

process.

Modifications to the SEIR formulation (1)–(4) are made to adapt it to COVID-19 in Malay-

sia. The last compartment of the SEIR model in this case should be “Removed”, and not

“Recovered”, representing all infectious individuals who are effectively isolated following a

positive test result. In Malaysia, such patients are isolated in hospital wards to avoid further

contacts with susceptibles [17]. For COVID-19 in particular, the onset of symptoms does not

necessarily indicate the start of infectiousness; in fact, the onset of infectiousness may be some-

what earlier. Thus, the infectious period 1/γ represents the period of effective infectiousness,

that is, the period from the start of infectiousness (asymptomatic or symptomatic) until the

individual is isolated and can no longer infect others. Based on this understanding, 1/δ repre-

sents the incubation period, which is the period starting from getting infected until the onset

of infectiousness. Recent studies on COVID-19 have also reported growing evidence of asymp-

tomatic infections [18–20] which the original SEIR model does not incorporate. Hence, a new
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modified SEIR model is developed in the next section to account for isolated patients and

asymptomatic transmissions.

Observed data in Malaysia consists of the total number of confirmed daily cases as reported

by outbreak.my and CPRC (i.e., the number of cases that were tested positive, and hence,

effectively isolated). Hence, only the R compartment of the SEIR model can be related to

observed data while other compartments of the SEIR model remain unobserved. In the subse-

quent model development, the R compartment is further split into two: observed and asymp-

tomatic sub-compartments corresponding to reported and asymptomatic infections; details

are provided in the next section. An additional assumption made is that individuals from the R
compartment do not return to the S compartment—at least on the timescales over which the

epidemic is observed; see, for example, [21, 22].

In order to provide a quantitative assessment of the impact of the MCO, we modify (1)–(4)

to incorporate an instantaneous time-varying transmission rate, β� β(t) (see [23], for exam-

ple) which is able to quantify the extent of disease transmission at time t. The MCO can be

deemed effective if the function β(t) shows a decay reflecting an increasing effectiveness in

reducing transmission among individuals over time due to implementation of the NPIs.

The modified SEIR model

The aforementioned SEIR model does not account for heterogeneity, asymptomatic transmis-

sion and change points. To this end, we propose models with power transmission dynamics

that incorporate heterogeneity in the disease parameters; see, for example, [6, 7]. Further, the

infectious compartment in (3) of the SEIR model is now split into two, Io and Ic, for symptom-

atic (or, observed) and asymptomatic (or, cryptic) individuals, who, respectively, exhibit and

do not (or, mildly) exhibit symptoms but are nevertheless infectious. Correspondingly, the R
compartment is also split into two, as mentioned earlier, to accommodate quarantined and

un-quarantined cases. It is assumed that the proportion of individuals transiting from E to Io is

p. The remaining exposed individuals (a proportion of 1 − p) transition into the Ic compart-

ment and remain undetected throughout their disease experience.

From now on, we consider only renormalized state values which represent proportions,

and not actual numbers, of the population. The modified SEIR model with asymptomatic and

observed infectiousness is given by the following system of ODEs:

_SðtÞ ¼ � hðSðtÞ; IoðtÞ; IcðtÞÞ ð6Þ

_EðtÞ ¼ hðSðtÞ; IoðtÞ; IcðtÞÞ � d EðtÞ ð7Þ

_IoðtÞ ¼ p d EðtÞ � go IoðtÞ ð8Þ

_RoðtÞ ¼ go IoðtÞ ð9Þ

_I cðtÞ ¼ ð1 � pÞ d EðtÞ � gc IcðtÞ ð10Þ

_RcðtÞ ¼ gc IcðtÞ ð11Þ

where the rate of new infections is now given by

hðSðtÞ; IoðtÞ; IcðtÞÞ ¼ ðaþ boðtÞ ½IoðtÞ�
wo þ bcðtÞ ½IcðtÞ�

wcÞ � ½SðtÞ�v ð12Þ
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as opposed to βS(t)I(t) in (5) for the SEIR model. Fig 2 gives the flow chart of the modified

SEIR model and its associated parameters.

A key difference of the model formulation in (6)–(12) is the power transmission dynamics

used to model heterogeneity in the population; see [6, 7]. The epidemic models developed in

[6, 7] incorporate parametric heterogeneity, that is, these models describe a heterogeneous

population where individuals in the population have different trait values from one person to

another. In this framework, disease characteristics related to the population, such as the likeli-

hood of a successful transmission for a susceptible or the rate of infectivity of an infectious

individual, can be taken to vary heterogeneously. This heterogeneity is characterized via prob-

ability distributions, and is known as distributed susceptibility and infectivity in [6, 7]. When a

susceptible and infectious trait, respectively, has a Gamma(k1, ν1) and Gamma(k2, ν2) distribu-

tion (where Gamma(k, ν) refers to the Gamma distribution with shape parameter k> 0 and

scale parameter ν> 0), it is shown in [6, 7] that the resulting epidemic model has power law

transmission characteristics with the rate of incidence (of new infections) given by

hðSðtÞ; IðtÞÞ / ½SðtÞ�q1 ½IðtÞ�q2 ; ð13Þ

where the powers on S and I are q1 = 1 + 1/k1 and q2 = 1 + 1/k2 depending on the shape param-

eter of the corresponding Gamma distribution assumed for distributed susceptibility and

infectivity, respectively. Since k1, k2 > 0, it follows that q1, q2 > 1. The values of q1 = 1 and q2 =

1 corresponding to (5) can be thought as the limiting case when k1!1 and k2!1 repre-

senting homogeneity. From this discussion, it follows that the powers v, wo and wc on S(t), Io(t)
and Ic(t), respectively, are such that v� 1, wo� 1 and wc� 1. The lower bounds on v, wo and

wc recover the original SEIR model dynamics with no heterogeneity. The remaining parame-

ters have the following interpretation: (1) α represents a small yet significant force of infection

that starts the local infection process but is eventually overwhelmed by it. In our context, α rep-

resents the initial force of infection arising from, say, foreign infectious individuals attending

the large gathering at Sri Petaling starting February 27th. (2) The parameters γo and γc have the

same interpretation as γ in (3), that is, they are rates of infectiousness but for the observed and

asymptomatic compartments, respectively. (3) The parameter δ is the same as before, namely,

it is the rate of incubation associated with the exposed compartment. (4) The functions βo(t)
and βc(t) are time varying transmission rates for the observed and asymptomatic compart-

ments, respectively, in the modified SEIR model with βc(t) = μβ0(t) and μ 2 [0, 1]. In other

Fig 2. Flow chart of the modified SEIR model. Compartments of the modified SEIR model and their associated

parameters.

https://doi.org/10.1371/journal.pone.0252136.g002
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words, we assume that the transmission rate for asymptomatic individuals is smaller than that

of symptomatic individuals; this is a plausible assumption to make as asymptomatic individu-

als generally possess a lower viral load which leads to lower chances of a successful transmis-

sion. On the other hand, a longer asymptomatic infectious period may compensate for the

lower transmission rates for an asymptomatic individual, and this possibility is captured by the

model via the parameter γc.
A change-point is incorporated into the modified SEIR model to capture the shift in disease

dynamics before and after the start of the MCO. Several works in the COVID literature have

incorporated change-points to study the effectiveness of interventions; see, for example, [24–

26]. To incorporate our change-point, an unknown threshold date, T�, is chosen so that

observed daily cases fall either to the left or right of T�. We denote the observation window to

the left of T� by WL consisting of dates from March 1st up to and including T�. The window to

the right of T� is denoted by WR which consists of dates after T� up to and including April

28th, 2020. The change-point date T� is inferred from data; it is not taken as March 18th, 2020

which is the date of the start of MCO. Choosing T� in this data-driven way is justified as the

impact of MCO on observed cases may not be realized immediately. The modified SEIR

model with change-point T� is governed by the ODE system (6)–(12) for all time points

t 2WL. For the parameters of the modified SEIR model in WL, we denote them using the

same symbol as before but with a subscript L. For WR, the same ODE system (6)–(12) is con-

sidered but now with a different set of parameter values in WR compared to WL which are

denoted using a subscript R.

The transmission rates in WL are assumed to be constant, that is, bo;L ¼ go;L ea0;L and βc,L =

μL βo,L. The transmission rate for the Io compartment in WR is taken as

bo;RðtÞ ¼ go;R½ea0;Rþa1 ðt� T�Þ þ a2 ½1 � ea1 ðt� T�Þ��; ð14Þ

to model possible changes in disease transmission over time. The functional form of βo,R(t) in

(14) has an initial value of go;R ea0;R at t = T� after which it decreases (provided a1 < 0) to the

asymptotic value of a2 γo,R as t!1. Thus, a2 γo,R represents the residual disease transmission

that may be present even during the MCO period, for example, due to close contact between

family members in the same household. The general functional form of βo,R(t) subsumes the

constant disease transmission rate model as a special case by taking a1 = a2 = 0 in (14). The

constant rate submodel has the advantage of not explicitly assuming any functional form for

the change in disease transmission over time. On the other hand, it can only ascertain if there

is an overall change (increase or decrease) in transmission after the change point T�. Similar to

the relationship βc,L = μL βo,L in WL, we assume βc,R(t) = μR βo,R(t) for WR for a possibly differ-

ent μ value.

In the subsequent text, several redundancies are removed based on the interpretation of the

parameters involved. These simplications are reasonable and lead to a reduction in the number

of unknown parameters. This reduction, in turn, improves the model fitting and inference

procedures. It is reasonable to assume that γc,L = γc,R� γc, δL = δR� δ, μL = μR� μ and pL = pR
� p; in other words, intervention does not change the values of these parameter in WL and

WR. These parameters can be assumed constant since they relate to intrinsic characteristics of

the disease and of the underlying population. The parameter γc relates to asymptomatic infec-

tions which are not detected in both WL and WR, δ relates to the incubation period of the dis-

ease, μ refers to the transmissibility ratio of asymptomatic to symptomatic individuals (which

depends on the viral load of infectees only), and p refers to the proportion of symptomatic ver-

sus asymptomatic infectees. Hence, these parameters are characteristics of the overall popula-

tion and the disease, and not the intervention. However, we do not assume that γo,L = γo,R for
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the symptomatic infectious periods, but rather 1/γo,R� 1/γo,L since the process of detecting

and isolating symptomatic individuals during MCO was generally quicker and more efficient

in WR compared to WL, resulting in a shorter symptomatic infectious period in WR compared

to WL.

In the Results section, the constant transmission rate submodel is first fitted to observed

data to determine if the MCO is succesful in reducing the overall disease transmission. Only

when this is established, the full change-point model, with the explicit decay form of (14) and

a1 < 0, is fitted to the observed data. Further, in the model formulation of (6)–(11), only the Ro
compartment is modelled directly using a likelihood function based on daily observed cases.

The other compartments of the modified SEIR model remain latent and do not have any direct

observation processes for modelling based on likelihoods; see the Bayesian Inference section

for further details.

Quantitative assessment of disease spread

The basic reproduction number, R0, is defined as the number of secondary infections caused

by one primary individual during his/her infectious period. It is the most important quantita-

tive indicator reported to assess whether the disease is in control or not. It is well-known that

the threshold value of 1 for R0 distinguishes between the situations where a major epidemic

occurs versus the disease dying out before a major outbreak can become established in the

population. In fact, several studies in the literature report a gradual decrease in R0 after lock-

down [27–29]. For the SEIR model in (1)–(4), R0 is given by the well-known formula R0 = β/γ
Time-varying measures of secondary infections per primary infected, Rt, are also available in

the literature. However, for the modified SEIR model, R0 and Rt cannot be computed. There-

fore, we resort to an alternative quantitative assessment of disease spread—the total number of

infections (i.e., generational) caused by the introduction of one additional infectious individual

into the infection process at time point t. This procedure is illustrated using the Io compart-

ment. Based on (6)–(12), new values for the ODE system are calculated from time point t
onwards with current state values serving as initializations of the ODE system for all except

one compartment: For the Io-compartment, the current value Io(t) is replaced by Io(t) + 1/N as

the initial value. The new rate of incidence is given by hðS�; I�o ; I
�
c Þ over the infectious period of

the individual when the ODE system is propagated using (6)–(12) in [t, t + 1/γo]. The increase

in the rate of incidence by the introduction of this individual in the Io compartment is given by

DtðIoÞ ¼
Z

t;tþ 1
go½ �
h S�ðuÞ; I�oðuÞ; I

�

c ðuÞ
� �

� h SðuÞ; IoðuÞ; IcðuÞð Þ
� �

du: ð15Þ

Similarly, the increase in the rate of incidence by the introduction of one infectious individ-

ual into the Ic compartment at time point t can be calculated. This is denoted by Δt(Ic). The

final increase in the incidence is the mixture

Dt ¼ pDtðIoÞ þ ð1 � pÞDtðIcÞ ð16Þ

where p is the proportion of exposed individuals who enter the Io compartment in (8).

Bayesian inference

Model fitting and inference is carried out in a Bayesian framework.

The likelihood. The total numbers of daily cases, Dt; t 2WL [WR, which constitute

noisy observations from the Ro-compartment in the modified SEIR model, are assumed to be
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distributed as

Dt�
iid NBð� ; go IoðtÞ; tÞ ð17Þ

where NB(x;ν, τ) denotes the negative binomial probability function with mean ν and variance

ν + τν2. The parameter τmeasures overdispersion with respect to the Poisson probability func-

tion which is recovered from NB(x;ν, τ) when τ = 0; see, for example, [30, 31]. The observed

data on daily cases in Malaysia exhibited significant overdispersion, and as a result, the Poisson

likelihood did not fit the observed cases well. More discussion on this aspect is presented later.

Assignment of priors. Several parameters of the modified SEIR model in (6)–(12) take

different values in WL and WR, and reflect changes in the disease trajectory due to interven-

tion. Other parameters, including those that relate to the intrinsic characteristics of the disease,

remain constant throughout WL and WR. Defining

YH � f a0;H; go;H; wo;H; wc;H; vH; aH g

forH 2 {L, R}, we denote the collection of all parameters of the full change-point model in

WL [WR by

Y � YL [YR [ f d; gc; p; t; T
�; a1; a2; e0; i0 g;

where all notation used for the parameters is as before. In the subsequent discussion, separate

priors are elicited either on individual components of Θ, or on specific subsets of Θ where the

parameters within these subsets satisfy certain restrictions. A full prior on Θ then follows from

assuming independence between the separate prior assignments. For each ξ1 2 {p, μ}, the prior

distribution on ξ1 is assumed to be uniform, UðAx1
;Bx1
Þ with hyperparameters Ax1

and Bx1
,

representing the lower and upper bounds, respectively. Since each ξ1 represents a proportion,

we have Ax1
� 0 and Bx1

� 1; however, the choices of hyperparameters used in the experi-

ments for all parameters, including ξ1 2 {p, μ}, will be discussed later. For now, we provide

only the explicit forms of the priors assumed on the components of Θ.

The parameters that relate to the infectious periods, γo,L, γo,R and γc, satisfy the relations 1/

γo,R� 1/γo,L (as pointed out earlier) and 1/γo,L< 1/γc. The latter condition follows from the

fact that the asymptomatic infectious period, being undetected, will generally be longer than

its symptomatic counterpart in WL, since symptomatic individuals will be isolated once they

test positive. The joint prior distribution on {γo,L, γo,R, γc} can be specified according to the fol-

lowing generation scheme: We first generate 1=go;R � UðAgo;R ;Bgo;RÞ, then set 1/γo,L = 1/γo,R +

ξ2, and finally take 1/γc = 1/γo,L + ξ3 where xj � UðAxj ;BxjÞ with Axj ¼ 0 and Bxj > 0, indepen-

dently for j = 2 and 3. We refer to the infectious periods reported in literature, namely [18–20,

32], to choose reasonable values for Ago;L , Bgo;L , Bx2
and Bx3

. Based on the reported values, infec-

tious periods within 2–8 days are found to provide a reasonable range for our experiments.

The prior on δ, where 1/δ is the incubation period, is taken as 1/δ* U(Aδ, Bδ). To select rea-

sonable values for the lower and upper bounds, we refer to the reported literature (for example,

see [33]) and consider an incubation period between 2–13 days to be a satisfactory range for

our study.

The proposed Bayesian methodology calls for Θ-samples to be generated from its full prior

specification as described above. For this purpose, explicit mathematical experssions of the

joint prior density function on parameter subsets of Θ, such as {γo,L, γo,R, γc}, are not required.

One only needs to be able to simulate the reciprocals based on the generation scheme

described above, and then invert the reciprocals to obtain prior samples of γo,L, γo,R and γc
from their implicit joint density specification.

PLOS ONE A change-point epidemic model for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0252136 May 27, 2021 10 / 25

https://doi.org/10.1371/journal.pone.0252136


Next, the prior on τ is taken as τ* U(Aτ, Bτ) where 0� Aτ< Bτ, and Bτ is a pre-specified

positive constant representing the maximum extent of overdispersion apriori. The prior on αL
is assumed to be UðAaL ;BaLÞ, where AaL0 ¼ 0 and BaL > 0 represents the maximum value of a

small but constant force of infection arising, for example, from infectious foreign attendees of

the Sri Petaling gathering. The parameter αR is set to 0 as there is no such force of infection in

WR. For the parameters wo,L, wo,R and vL, independent uniform priors are considered with

lower and upper bounds given by Awo;L and Bwo;L for wo,L, Awo;R and Bwo;R for wo,R, and AvL and

BvL for vL, respectively. Since these parameters have a natural lower bound of 1 that represents

homogeneity, the hyperparameters of the uniform priors are chosen in the range [1,1). The

priors on wc,L, wc,R and vR are taken using the following relations: wc,L = wo,L + ξ4, wc,R = wo,R +

ξ5, and vR = vL + ξ6 where xj � UðAxj ;BxjÞ with Axj ¼ 0 and Bxj > 0, independently of each

other for j = 4, 5 and 6.

The prior on the change-point T� is taken to be uniform on dates from March 18th, 2020,

to March 31st, 2020, both inclusive. Since we define T� as the number of days after March 1st

2020, T�* U(17, 30) a priori.

The constant contact rate βo,L during the pre-MCO period cannot be determined by direct

observation. Hence, putting a prior directly on βo,L is difficult. However, since bo;L ¼ ea0;L go;L,

the quantity ea0;L has the interpretation of a reproduction number, a more fundamental quan-

tity for infectious diseases compared to βo,L. Thus, one can obtain a range of values for a0,L

from previous reports on similar flu-like epidemics (see, for example, [34]) where we found

the range 0–3.5 appropriate for covering the true value of a0,L in our case. We take the prior on

a0,L as a0;L � UðAa0;L
;Ba0;L

Þ where Aa0;L
� 0 and Ba0;L

� 3:5 based on benchmark values in [34].

The function βo,R(t) has the form in (14) which depends on coefficients a0,R, a1 and a2. For the

prior on a0,R, we consider two cases: When using the constant rate submodel to determine if

an overall reduction in transmission has occurred or not, the prior on a0,R is chosen as a0;R �

UðAa0;R
;Ba0;R

Þ with Aa0;R
< 0 and Ba0;R

> 0. This ensures that the prior support includes both

positive and negative values to represent possible increase and decrease in the transmission

rate. On the other hand, if the full model of (14) is considered, a0,R is chosen deterministically

(hence, no prior) to ensure continuity of the infection process before and after T�. Specifically,

a0,R is chosen so that the incidence rate of new infections, h(S(t), Io(t), Ic(t)), in WL and WR

coincide at t = T�. In the case of the full change-point model, a1 is given a uniform prior with

support on ½Aa1
;Ba1
�. We take Aa1

< 0 and Ba1
¼ 0 if a reduction in disease transmission is

first established by the constant rate submodel. For the prior on a2, note that 0 � a2 � ea0;R .

Hence, a reasonable prior to put on a2 is Uð0; ea0;RÞ.

Next, we describe the prior assignment on the initial number of symptomatic infectious

and exposed individuals, denoted by i0 and e0, respectively. Given δ and γo,L, whose priors

were elicited earlier, the prior on i0 is taken as i0 � Uðmi0
� Di0 ;mi0

þ Di0Þ, where the mid-

pointmi0
and half-wdith Di0 depend on δ and γo,L. Reasonable choices of the midpointmi0

and

half-width Di0 are made based on the differential equation for the Ro compartment. Noting

that _RoðtÞ ¼ go;LIoðtÞ for t 2WL from (9), we get i0 ¼ _Roð0Þ=go;L. To obtain an estimate of

_Roð0Þ, a second-order polynomial is fitted using least squares to the trajectory of cumulative

cases in a window ofm� 3 days starting from day 0. _Roð0Þ is then estimated by taking the first

derivative of the fitted polynomial and evaluating it at time t = 0. Subsequently,mi0
is set as

_Roð0Þ=go;L. The half-width Di0 > 0 is fixed to be reasonably large to represent the maximum

extent of prior uncertainty aroundmi0
. Similar to i0, the prior on the initial number of exposed

individuals, e0, is taken as e0 � Uðme0
� De0 ;me0

þ De0Þ for the midpointme0
and half-width
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De0 . The midpointme0
is determined similarly as before using the value of the second deriva-

tive of the fitted polynomial evaluated at time t = 0 and the generated value of δ. The half-

width De0 > 0 is once again fixed to be large to represent the maximum extent of prior uncer-

tainty aroundme0
.

The model fitting experiments were conducted either by choosing default values for the

lower and upper bounds, or by choosing values guided by literature when such information is

available. For all other hyperparameters where no information is available, reasonable values

were chosen at the start of the experiments, and the hyperparameters were adjusted by

repeated trial and error runs to achieve the best fit models to the observed data akin to the

empirical Bayes approach [35], at least informally. Table 1 gives the values of the hyperpara-

meters used to obtain the plots and inference in the Results section.

Computational algorithm. Based on the negative binomial likelihood and prior elicita-

tion in The Likelihood and Assignment of Priors, respectively, the posterior of Θ can be

derived using Bayes theorem as

pðY jDÞ / pðYÞ
Y

t2WL

NBðDt ; go;L IoðtÞ; tÞ
Y

t2WR

NBðDt ; go;R IoðtÞ; tÞ ð18Þ

¼ pðYÞ � LðYÞ ð19Þ

where D ¼ fDt : t 2WL [WRg is the collection of observed daily cases from March 1st until

April 28, 2020, L(Θ) is the entire likelihood for D and π(Θ) is the prior on Θ as described in

Table 1. Hyperparameter values for the reported results.

Malaysia Selangor Sarawak

Parameter A B A B A B
p 0.5 1.0 0.5 1.0 0.5 1.0

μ 0.0 1.0 0.0 1.0 0.0 1.0

1/γo,R 6.0 7.5 6.0 7.5 6.0 8.0

ξ2 0.0 1.0 0.0 1.0 0.0 1.0

ξ3 0.0 1.0 0.0 1.0 0.0 1.0

1/δ 6.0 8.0 5.5 8.0 7.0 8.0

τ 0.1 0.25 0.1 0.6 0.0 1.0

αL 0.0 10−6 0.0 10−6 0.0 10−6

wo,L 1.0 1.15 1.0 1.15 1.0 1.10

ξ4 0.0 6.0 0.0 6.0 0.0 6.0

wo,R 1.0 1.5 1.0 2.0 1.0 1.1

ξ5 0.0 6.0 0.0 6.0 0.0 6.0

vL 1.0 6.0 1.0 6.0 1.0 6.0

ξ6 0.0 6.0 0.0 6.0 0.0 6.0

T� 17 30 17 30 17 30

a0,L 1.5 3.5 1.0 3.0 0.0 3.0

a0,R −3 3 −3 3 −3 3

a1 −2.5 0 −3.0 0 −2.0 0

• The upper and lower bounds of a2, i0 and e0 are, respectively, 0 and ea0;R for a2,mi0
þ Di0 andmi0

� Di0 for i0, andme0
þ De0 andme0

� De0 for e0. These upper and

lower bounds are functions of the parameters given in the above table.

• The upper and lower bounds reported for a0,R are for the constant rate submodel.

https://doi.org/10.1371/journal.pone.0252136.t001
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Assignment of Priors. Bayesian inference is carried out using Monte Carlo importance sam-

pling. A total ofM samples, Θi for i = 1, 2, � � �,M, are generated from the prior specification π
(Θ). The likelihood, L(Θi), is computed for each Θi and normalized to obtain weights

wi ¼
LðYiÞ

PM
i¼1

LðYiÞ
ð20Þ

for i = 1, 2, � � �,M. The ensemble of weights and samples fwi;Yig
M
i¼1

constitute a weighted sam-

ple from the posterior distribution π(Θ|D) and any summary posterior measure can be

obtained from the ensemble via Monte Carlo. For any function g of Θ, the posterior expecta-

tion of g(Θ),

EðgðYÞÞ �
Z

Y

gðYÞpðY jDÞ dY;

is approximated by the corresponding ensemble average

ĝM �
1

M

XM

i¼1

wi gðYiÞ;

the latter being an unbiased estimator of E(g(Θ)) with variance proportional to 1/M which

tends to 0 asM!1. Thus, ĝM becomes a more accurate estimate of E(g(Θ)) asM!1. Dif-

ferent choices of g are used to obtain the posterior means, variances and credible intervals of

parameters in Θ.

Resampling from the ensemble fwi;Yig
M
i¼1

converts it to a new ensemble of weights and

samples fw�i ;Y
�

i g
M
i¼1

where the new weights are now uniform, i.e., w�i ¼ 1=M. The usual sam-

ple mean and sample variance of fY
�

i g
M
i¼1

can now be used to provide an (unbiased) estimate

of E(g(Θ)) and its corresponding variance. The above importance sampling methodology is

easy to code and implement but one has to be cautious so that the distribution of weights is

not too extreme. If the prior on Θ is chosen such that it spans a considerably larger region

compared to where the likelihood concentrates its mass, the distribution of weights will be

become extreme. As a result, almost all of the weights fwig
M
i¼1

will be extremely small (close to

zero) and only a few will have large positive values. Resampling these weights will select Θi-
samples associated to these large weights multiple times and this will degrade the estimation of

E(g(Θ)). Thus, it is important to judiciously choose the prior ranges, where possible, so that it

adequately covers regions of high likelihood values. This is achieved in the Results section by

running different selections of the hyperparameters and judiciously adjusting the range of the

priors (where possible and respecting the information on the disease and intervention dynam-

ics) to obtain the best fitting models. Based on this importance sampling method as well, an

approximation to the Maximum-a-Posteriori (MAP) estimator of Θ can be found since

ŶMAP � arg max
Y

pðY jDÞ � arg max
1�i�M

½wi pðYiÞ� � ŶM; ð21Þ

say, for largeM. To see why the above approximation is valid, we partition Θ into Θ = (C, T�)
whereC consists of all continuous parameters in Θ and T� is the change point which takes on

finitely many values apriori. Correspondingly, partition ŶMAP as ŶMAP ¼ ðCMAP;T
�
MAPÞ. Fur-

ther assume that the posterior pððC;T�MAPÞ jDÞ is continuous at C =CMAP and ŶMAP lies in
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the interior of supp[π(Θ|D)] where

supp ½pðYjDÞ� ¼ fY : pðYjDÞ > 0g:

The occurence of the event EM � f jŶMAP � ŶMj > � g for an arbitrarily small � > 0 implies

that there exists a neighbourhood N � ðN 0;T�MAPÞ of ŶMAP which is contained in supp[π(Θ|

D)] with l �
R

N 0
pððC;T�MAPÞjDÞ dC > 0, and none of theM samples fYig

M
i¼1

lie in N .

Hence,

PðjŶMAP � ŶMj > �Þ ¼ PðEMÞ � PðYi=2N for all i ¼ 1; 2; � � � ;MÞ

¼ ð1 � lÞ
M
! 0

asM!1. In other words, asM becomes large, the sampling based maximum ŶM will be

close to the true MAP estimate ŶMAP with probability tending to 1. The approximation in (21)

could fail if any one of the assumptions made above is not valid: The posterior pððC;T�MAPÞjDÞ
could be discontinuous at C =CMAP or ŶMAP may not lie in the interior of supp[π(Θ|D)].

However, discontinuity is not a concern here as pððC;T�MAPÞ jDÞ is a continuous (in fact, dif-

ferentiable) function of C. To ensure that ŶMAP lies in the interior of supp[π(Θ|D)], the experi-

ments were run based on judicious choices of the prior hyperparameters which has been

mentioned earlier as well. The resampled fY
�

i g
M
i¼1

values are used for plotting and providing a

quantification of uncertainty around ŶMAP (see, for example, Figs 10 and 11 in the Results sec-

tion). Numerical measures of uncertainty can be obtained, for example, by computing the

usual sample variance based on fgðY�i Þg
M
i¼1

to describe the variablity around the sample mean

which in this case is an unbiased estimate of E(g(Θ)).

The Bayesian computational algorithm described in this section is developed using R and

RStudio1. The likelihood L(Θ) for a specific Θ is evaluated numerically from the solution of

the ODE system (6)–(12) obtained using the deSolve package in R.

Results

The study period is from March 1, 2020 until April 28, 2020 with T0 = 0 and T1 = 59. The

impacts of the Sri Petaling gathering and MCO implementation are analyzed here using the

proposed model described in The modified SEIR model section. Reported daily cases at the

national level as well as for Selangor and Sarawak are used for model fitting and parameter

estimation. Note that all states in Malaysia implemented MCO Phases 1–3 using the same

guidelines and protocols. Thus, one can gauge the impact of the Sri Petaling gathering on

COVID-19 spread in Malaysia based on a comparison between states and the national experi-

ence. Here, Selangor and Sarawak are chosen as two such representative states with high and

low population densities, respectively.

First, we investigate if the MCO implementation had an overall effect of reducing COVID-

19 transmission rates. For this purpose, the constant rate submodel of (14) is used and the

prior on a0,R in WR is chosen to be uniform with support on both positive and negative values.

The Bayesian inference methodology described in the Bayesian Inference section is carried out

withM = 50, 000 to obtain ŶMAP and samples Y
�

i from the posterior of Θ in (19). The curves

of F(t), defined as

FðtÞ ¼

(
go;L IoðtÞ if t � T�

go;R IoðtÞ if t > T�
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and ΔRo(t)�Ro(t) − Ro(t − 1) for each day t are obtained based on ŶMAP and are displayed in

Fig 3. This submodel captures broad features (increasing and decreasing trends) of the

reported cases trajectories in all three panels for Malaysia, Selangor and Sarawak. To quantify

the overall change in transmission before and after MCO implementation, Δt (see (16)) is

obtained for t in WL and WR. The plots of Δt versus t are shown in Fig 4. A consistent feature

of the plots in all three panels is that they first increase for time points t� T� followed by a sig-

nificant drop for t> T�. Hence, we conclude that an exponential rise in cases occurred right

after the completion of the Sri Petaling gathering on March 1st 2020, and the implementation

of the MCO successfully stemmed the exponential rise at the national, Selangor and Sarawak

levels.

With reduced disease transmission established in WR, we next proceed to utilize the func-

tional form (14) of βo(t) as a quantitative model for transmission decay in WR. The Bayesian

inference methodology in the Bayesian Inference section is applied to the full model with

M = 50, 000 to obtain ŶMAP and samples Y
�

i from the posterior of Θ in (19). The curves of F(t)
and ΔRo(t)�Ro(t) − Ro(t − 1) for each day t are obtained based on ŶMAP and are displayed in

Fig 5. Daily cumulative cases and the curve of Ro(t) are displayed in Fig 6. We note from these

figures that the proposed model captures broad features of the observed data and is an

improvement over the constant rate submodel. Uncertainty estimates are obtained for all

unknown parameters in Θ based on the ensemble fY
�

i g
M
i¼1

. Variability estimates can be

obtained for all parameters and their functions. As an illustration, we demonstrate the extent

of variability inherent in the posterior visually for the F(t) curve (see (17)) for t 2 [T0, T1]. This

Fig 3. Constant rate submodel—Daily cases. Reported daily cases (red line), and overlay plots of ΔRo(t) (blue line)

and F(t) (green line) based on ŶMAP for the constant rate submodel for (a) Malaysia, (b) Selangor and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g003

Fig 4. Constant rate submodel—Δt. Plots of Δt versus t for the constant rate submodel for (a) Malaysia, (b) Selangor

and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g004
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is displayed in Fig 10 which shows that most of the reported case numbers are well within the

limits of variability of the posterior of F(t). Hence, the proposed model together with the nega-

tive binomial likelihood are able to explain the variability in the reported case numbers. How-

ever, there are a few exceptions, the most notable being the reported case number on Day 14

for Malaysia in Fig 10(a). We present an explanation for this outlying case later in the section

Discussion on Reporting Delays, Case Redistribution and Overdispersed Likelihoods.

Further results from the Bayesian analyses are summarized in Tables 2–4. These tables give

the MAP estimates of parameters and their corresponding 95% credible intervals for Malaysia,

Selangor and Sarawak, respectively. The correlation plots of selected pairs of parameters are

provided in Figs 7 and 8. From these figures and others which we did not provide due to space

limitations, we find that the posterior samples of parameter pairs are not strongly correlated

with each other, except for the pairs for which correlation was induced apriori via the joint

prior elicitation.

We provide a summary of the salient findings of our inference procedure. The symptomatic

and asymptomatic infectious periods as well as the incubation periods are found to be around

6–8 days for Malaysia, Selangor and Sarawak. These findings are similar to values reported in

the literature for other countries; see, for example, [18–20, 32]. Change-points T� are estimated

not too far away from the date of MCO implementation, March 18th 2020. For Malaysia, T� =

17 is the MAP estimate which corresponds to March 18th, 2020, and the associated 95% credi-

ble interval is (17, 23). For Selangor, the MAP estimate of T� is T� = 24 (March 25th 2020)

Fig 5. Modified SEIR model: Daily cases. Reported daily cases (red line), and overlay plots of ΔRo(t) (blue line) and F
(t) (green line) based on ŶMAP for (a) Malaysia, (b) Selangor and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g005

Fig 6. Modified SEIR model: Cumulative cases. Reported cumulative cases (red line), and overlay plots of Ro(t)
(green line) based on ŶMAP for (a) Malaysia, (b) Selangor and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g006
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Table 2. MAP estimates and associated credible intervals for Malaysia.

Window Parameter MAP 95% Credible Interval

WL a0 2.458 (1.663, 3.424)

wo 1.070 (1.008, 1.141)

wc 1.846 (1.377, 6.795)

v 5.816 (1.313, 5.838)

α 4.69 × 10−7 (2.57 × 10−8, 9.22 × 10−7)

1/γo 7.161 (6.604, 8.326)

WR a1 -0.371 (-2.420, -0.216)

a2 4.162 (0.867, 21.381)

wo 1.221 (1.042, 1.420)

wc 5.959 (1.295, 7.251)

v 10.345 (3.325, 11.086)

1/γo 6.866 (6.194, 7.478)

– 1/γc 7.661 (7.113, 9.272)

1/δ 7.864 (6.389, 7.940)

μ 0.780 (0.117, 0.932)

p 0.765 (0.518, 0.988)

τ 0.153 (0.127, 0.241)

i0 5.786 (1.120, 9.439)

e0 255.20 (211.60, 301.88)

T� 17 (17, 23)

https://doi.org/10.1371/journal.pone.0252136.t002

Table 3. MAP estimates and associated credible intervals for Selangor.

Window Parameter MAP 95% Credible Interval

WL a0 2.819 (1.121, 2.866)

wo 1.139 (1.005, 1.146)

wc 6.113 (1.293, 7.033)

v 4.244 (1.124, 5.887)

α 3.30 × 10−7 (7.16 × 10−9, 9.68 × 10−7)

1/γo 7.900 (6.460, 8.327)

WR a1 -1.756 (-2.830, -0.307)

a2 1.830 (0.056, 15.621)

wo 1.942 (1.220, 1.980)

wc 3.351 (1.535, 7.464)

v 4.984 (2.053, 10.683)

1/γo 6.978 (6.085, 7.470)

– 1/γc 8.640 (6.808, 9.107)

1/δ 7.190 (5.654, 7.904)

μ 0.881 (0.036, 0.969)

p 0.713 (0.533, 0.986)

τ 0.351 (0.211, 0.542)

i0 20.38 (10.52, 30.58)

e0 103.86 (67.72, 113.72)

T� 24 (20, 28)

https://doi.org/10.1371/journal.pone.0252136.t003
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with (20, 28) being the 95% credible interval. For Sarawak, the transition date is less precise.

The MAP estimate is T� = 28 (March 29th 2020) but the 95% credible interval (19, 33) is much

larger indicating higher uncertainty in T�. This can be attributed to the fact that the trajectory

of reported case numbers for Sarawak shows a slower and more gradual increase, then

decrease, compared to Malaysia and Selangor (see Fig 5).

The plots of Δt versus t for Malaysia, Selangor and Sarawak are provided in Fig 9. We note

that all three panels in Fig 9 indicate a decay in the transmission rates after T�. The measure

Δt is calculated to be approximately 3.39, 2.50 and 2.08 for Malaysia, Selangor and Sarawak,

respectively, at the start of WL, that is, when t = T0. Starting from t = T0, Δt showed an

increase in WL, reaching values of4.55, 3.42 and 2.50 at t = T�, respectively, for Malaysia,

Selangor and Sarawak. Hence, before the MCO was introduced, Selangor achieved a rate of

increase higher than that of Sarawak. After T�, Δt for Malaysia, Selangor and Sarawak regis-

tered a decay demonstrating the effectiveness of the MCO. Δt declined sharply to a value

around0.33, 0.0003 and 0.31, respectively, for Malaysia, Selangor and Sarawak at t = T� + 10,

and after that, it declined more gradually to its corresponding asymptote. Based on Δt, it is

seen that the initial transmission rates tend to be higher for areas with a higher population

density (comparing Selangor and Sarawak). On the other hand, based on the MAP estimates

of a1 in WR of −1.756 and −0.325 for Selangor and Sarawak, respectively (see Tables 3 and 4),

higher population density areas also experience a faster decline in the transmission rates

under an effective implementation of the MCO. Although the MAP estimate of a1 for Malay-

sia (a1 = −0.371 from Table 2) is not as negative as it should be, we will show in the next sec-

tion that a redistribution of cases further improves this estimate of a1 and brings it closer to

that of Selangor.

Table 4. MAP estimates and associated credible intervals for Sarawak.

Window Parameter MAP 95% Credible Interval

WL a0 1.605 (0.953, 2.401)

wo 1.051 (1.002, 1.093)

wc 6.848 (1.622, 6.879)

v 5.502 (1.112, 5.956)

α 9.18 × 10−7 (9, 22 × 10−9, 9.74 × 10−7)

1/γo 7.721 (6.404, 8.754)

WR a1 -0.325 (-1.908, -0.131)

a2 0.573 (0.204, 3.114)

wo 1.046 (1.006, 1.097)

wc 2.633 (1.264, 6.603)

v 5.879 (3.410, 11.490)

1/γo 7.015 (6.144, 7.942)

– 1/γc 8.242 (7.036, 9.674)

1/δ 7.433 (7.069, 7.974)

μ 0.784 (0.074, 0.935)

p 0.810 (0.511, 0.966)

τ 0.240 (0.153, 0.585)

i0 1.783 (1.217, 8.695)

e0 18.06 (15.23, 36.13)

T� 27 (19, 33)

https://doi.org/10.1371/journal.pone.0252136.t004
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Fig 7. Correlation plots 1. Correlation plots of selected pairs of parameters of the modified SEIR model for Malaysia (top

row), Selangor (middle row) and Sarawak (bottom row).

https://doi.org/10.1371/journal.pone.0252136.g007
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Discussion on reporting delays, case redistribution and

overdispersed likelihoods

Fig 10 indicates the presence of outliers that fall outside the limits of variability of the posterior.

The most notable outlier is the total number of new cases reported on Day 14 for Malaysia.

Generally speaking, such outliers highlight a mismatch between the proposed model and the

observed data, and point towards model inadequacy. However, we wish to emphasize that this

Fig 8. Correlation plots 2. Correlation plots of a different set of pairings of parameters of the modified SEIR model for

(a) Malaysia, (b) Selangor and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g008

Fig 9. Modified SEIR model: Δt. Plots of Δt versus t: (a) Malaysia, (b) Selangor and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g009

Fig 10. Variation of modelled daily cases. Illustration of the variability of F(t) from the posterior: Reported

cumulative cases (red line), and overlay plots of F(t) for (a) Malaysia, (b) Selangor and (c) Sarawak.

https://doi.org/10.1371/journal.pone.0252136.g010
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is not the case here. One key consideration is the effect of delay, that is, whether or not the

reported case numbers coincide with the day of testing. It is highly likely that a lag occurred in

the reporting of cases since the COVID-19 experience was new to Malaysia. Based on the

report [36], it is reasonable to assume that delays in testing and reporting were expected during

the initial days of the COVID-19 outbreak in Malaysia. The peak on Day 14 seem to suggest a

significant backlog of reporting of cases coupled by the fact that the day was a Monday, the

first day of the week.

The effects of reporting delays on observed case trajectories and parameter inference are

illustrated here based on a simulation study. A delay-in-reporting model based on the multino-

mial distribution is assumed: Let X*Mult(Dt;p1, p2, � � �, pK), where X = (X1, X2, � � �, XK) with

K = 5 and Xk is the number of cases (out of the total reported cases on day t, Dt) that is to be

redistributed to day t − k + 1 for k = 1, 2, � � �, K. The probabilities pk, k = 1, 2, � � �, K are chosen

according to a truncated geometric distribution taking values in k − 1 for k = 1, 2, � � �, K with

success probability 0.4. The cases redistribution model is applied to new cases reported from

Day 10 until Day 15. The redistributed reported case trajectory, the best fit curves and associ-

ated variabilities are shown in Fig 11. Comparing Figs 10(a) and 11(b), one can immediately

notice that the reported case numbers in Fig 11(b) are better explained by the variabilities of

the underlying model and the negative binomial likelihood. Parameter estimates and credible

intervals for the redistributed case numbers are given in Table 5. The new infectious periods

are still within the 6–8 day range and are consistent with previously reported literature. The

redistribution of case numbers have also reduced the uncertainty around the MAP value of T�

= 20: The credible interval for T� in Table 5 is narrower compared to that in Table 2. The MAP

estimate of a1 is now −1.693, which is about halfway between Selangor and Sarawak.

A final point to be discussed is our preference for the negative binomial likelihood com-

pared to the more traditional Poisson likelihood for modelling COVID-19 case numbers. Our

initial investigation used the Poisson likelihood for reported case numbers but we found that

the underlying model together with the Poisson likelihood was not able to capture inherent

variabilities in the observed data. Hence, we opted for the overdispersed negative binomial

Fig 11. Effect of redistribution. Panel (a) shows the redistributed daily cases and the corresponding best fit curves of

F(t) (blue line) and ΔRo(t) (green line) based on ŶMAP. Panel (b) shows the variability of the fit based on the ensemble

set fY
�

i g
M
i¼1

.

https://doi.org/10.1371/journal.pone.0252136.g011
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likelihood which was able to satisfactorily represent the observed data via its overdispersion

parameter τ. This is evidenced by the variability bands presented in Figs 10 and 11(b) which

successfully enclose most of the reported case numbers. This coverage is further improved in

Fig 11(b) by a redistribution of delayed cases. We also provide the loglikelihood values corre-

sponding to the Poisson and negative binomial observation models in Table 6 for Malaysia

(with original case numbers), Malaysia (with redistributed case numbers), Selangor and Sara-

wak. Note that the negative binomial loglikelihood values are consistently larger than the Pois-

son counterparts indicating a better model fit to observed data.

Conclusion

Quantitative models and assessment of the impacts of the Sri Petaling gathering and imple-

mentation of MCO on COVID-19 spread in Malaysia are developed in this paper. The MCO

implementation is found to be highly effective in containing (an exponential rise of) the

Table 6. Loglikelihood values of the NB and poisson likelihoods.

Country/State Distribution Log-likelihood values

Malaysia Negative Binomial -255.62

Poisson -495.45

Malaysia (redistributed) Negative Binomial -243.62

Poisson -390.01

Selangor Negative Binomial -190.98

Poisson -276.51

Sarawak Negative Binomial -136.30

Poisson -160.92

https://doi.org/10.1371/journal.pone.0252136.t006

Table 5. Summary results for Malaysia (with redistributed cases).

Window Parameter MAP 95% Credible Interval

WL a0 1.787 (1.787, 3.403)

wo 1.007 (1.007, 1.146)

wc 1.420 (1.260, 7.011)

v 4.035 (1.170, 4.789)

α 5.95 × 10−7 (9.23 × 10−8, 9.38 × 10−7)

1/γo 7.537 (6.707, 8.131)

WR a1 -1.693 (-2.393, -0.283)

a2 13.205 (1.125, 25.933)

wo 1.319 (1.063, 1.369)

wc 5.361 (1.660, 6.643)

v 9.550 (1.944, 9.559)

1/γo 7.023 (6.224, 7.478)

– 1/γc 7.615 (7.152, 8.660)

1/δ 7.908 (6.144, 7.996)

μ 0.251 (0.251, 0.974)

p 0.692 (0.529, 0.951)

τ 0.113 (0.103, 0.169)

i0 1.899 (0.365, 9.080)

e0 270.54 (200.02, 285.09)

T� 20 (18, 21)

https://doi.org/10.1371/journal.pone.0252136.t005
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COVID-19 outbreak in Malaysia. The analysis here quantitatively demonstrates how quickly

transmission rates fall under effective NPI implementation within a short time period. Higher

disease transmission is found in Selangor (a state with higher population density) compared to

Sarawak. We also found that under MCO, the decline in transmission was faster in Selangor

compared to Sarawak. The rise and fall of disease transmission in Selangor mirrored the

national level whereas Sarawak showed a more gradual increase and decrease in COVID-19

transmission. The change points were mostly found to be close to the date of MCO implemen-

tation (18th March 2020) although Sarawak exhibited a larger uncertainty around that date

due to its gradual and slower increasing and decreasing trends of reported case numbers. Our

study developed a new model to represent COVID-19 spread in Malaysia that accounts for

heterogeneity and asymptomatic transmissions. We found that reported case numbers in

Malaysia exhibited large variabilities which can possibly be attributed to a delay in reporting,

particularly during the early stages of the pandemic as the experience with handling COVID-

19 was new to the country. Nevertheless, the model developed here together with the overdis-

persed negative binomial likelihood are able to capture salient features of COVID-19 spread in

Malaysia and provide reliable quantitative assessments even under the challenges of limited

and delayed data.

Supporting information

S1 Data.

(XLSX)

Acknowledgments

The authors would like to thank the Director General of Health Malaysia for his permission to

publish this article.

Author Contributions

Conceptualization: Sarat C. Dass, Gavin J. Gibson, Balvinder S. Gill.

Funding acquisition: Sarat C. Dass.

Investigation: Wai M. Kwok, Gavin J. Gibson.

Methodology: Sarat C. Dass, Wai M. Kwok, Gavin J. Gibson, Balvinder S. Gill, Sarbhan Singh.

Project administration: Sarat C. Dass.

Resources: Balvinder S. Gill, Bala M. Sundram, Sarbhan Singh.

Supervision: Sarat C. Dass.

Validation: Wai M. Kwok.

Visualization: Wai M. Kwok.

Writing – original draft: Sarat C. Dass.

Writing – review & editing: Sarat C. Dass, Wai M. Kwok, Gavin J. Gibson, Balvinder S. Gill,

Bala M. Sundram, Sarbhan Singh.

References
1. Kementerian Kesihatan Malaysia. KPK Press Statement 25 January 2020—Detection of A New Case

Infected by The 2019 Novel Coronavirus (2019-nCoV) in Malaysia; 2020. Press Release. Available

PLOS ONE A change-point epidemic model for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0252136 May 27, 2021 23 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0252136.s001
https://doi.org/10.1371/journal.pone.0252136


from: https://kpkesihatan.com/2020/01/25/kenyataan-akhbar-kpk-25-januari-2020-pengesanan-kes-

baharu-yang-disahkan-dijangkiti-2019-novel-coronavirus-2019-ncov-di-malaysia/.

2. Kementerian Kesihatan Malaysia. KPK Press Statement 25 February 2020—The Latest Situation of the

Coronavirus Disease 2019 (COVID-19) Infection in Malaysia; 2020. Available from: https://kpkesihatan.

com/2020/02/25/kenyataan-akhbar-kpk-25-februari-2020-situasi-terkini-jangkitan-coronavirus-

disease-2019-covid-19-di-malaysia/.

3. Kementerian Kesihatan Malaysia. KPK Press Statement 27 February 2020—The Latest Situation of the

Coronavirus Disease 2019 (COVID-19) Infection in Malaysia; 2020. Available from: https://kpkesihatan.

com/2020/02/27/kenyataan-akhbar-kpk-27-februari-2020-situasi-terkini-jangkitan-coronavirus-

disease-covid-19-di-malaysia/.

4. Babulal V, Othman NZ. Sri Petaling Tabligh gathering remains Msia’s largest Covid-19 cluster. New

Straits Times. 2020. Available from: https://www.nst.com.my/news/nation/2020/04/583127/sri-petaling-

tabligh-gathering-remains-msias-largest-covid-19-cluster.

5. Kementerian Kesihatan Malaysia. Ministry of Health Malaysia Facebook link dated 9 April 2020. Avail-

able from: https://m.facebook.com/kementeriankesihatanmalaysia/photos/a.10151657414821237/

10156918887836237/?type=3&source=48&__tn__=EH-R.

6. Novozhilov AS. On the spread of epidemics in a closed heterogeneous population. Math Biosci. 2008;

215(2):177–185. https://doi.org/10.1016/j.mbs.2008.07.010 PMID: 18722386

7. Novozhilov AS. Epidemiological Models With Parametric Heterogeneity: Deterministic Theory for

Closed Populations. Mathematical Modelling of Natural Phenomena. 2012; 7(3):147–167. https://doi.

org/10.1051/mmnp/20127310

8. Banholzera N, van Weenena E, Kratzwalda B, Seeligera A, Tschernuttera D, Bottrighia P, et al. The

estimated impact of non-pharmaceutical interventions on documented cases of COVID-19: A cross-

country analysis. medRxiv. 2020;.

9. Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharma-

ceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational

study. Lancet Public Health. 2020; 5:279–88. https://doi.org/10.1016/S2468-2667(20)30090-6

10. Ngonghala CN, Iboi E, Eikenberry S, Scotch M, MacIntyre CR, Bonds MH, et al. Mathematical assess-

ment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus. Math-

ematical Biosciences. 2020; 325:1–15. https://doi.org/10.1016/j.mbs.2020.108364 PMID: 32360770

11. Imai N, Gaythorpe KAM, Abbott S, Bhatia S, van Elslandand Kiesha Prem S, Liu Y, et al. Adoption and

impact of non-pharmaceutical interventions for COVID-19. Wellcome Open Research. 2020;. https://

doi.org/10.12688/wellcomeopenres.15808.1 PMID: 32529040

12. de Figueiredo M, Codina D, Figueiredo MM, M S, León C. Impact of lockdown on COVID-19 incidence

and mortality in China: an interrupted time series study. Bull World Health Organ [Submitted]. 2020;.

13. Thompsona RN, Stockwind JE, van Gaalene RD, Polonskyf JA, Kamvarg ZN, Demarshh PA, et al.

Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidem-

ics. 2019; 29.

14. Al Wahaibi A, Al Manji A, Al Maani A, Al Rawahi B, Al Harthy K, Alyaquobi F, et al. COVID-19 epidemic

monitoring after non-pharmaceutical interventions: The use of time-varying reproduction number in a

country with a large migrant population. International Journal of Infectious Diseases. 2020; 99:466–472.

https://doi.org/10.1016/j.ijid.2020.08.039 PMID: 32829052

15. Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al. Modelling the COVID-19

epidemic and implementation of population-wide interventions in Italy. Nature Medicine. 2020; p. 1–6.

https://doi.org/10.1038/s41591-020-0883-7 PMID: 32322102

16. Hu FC. The Estimated Time-Varying Reproduction Numbers during the Ongoing Pandemic of the Coro-

navirus Disease 2019 (COVID-19) in 12 Selected Countries outside China. medRxiv. 2020;.

17. Kementerian Kesihatan Malaysia. Annexure 2: Management of Suspected, Probable and Conformed

COVID-19 Cases; 2020. Available from: http://covid-19.moh.gov.my/garis-panduan/garis-panduan-

kkm/Annex_2_Management_of_Suspected,_Probable_and_Confirmed_COVID_07102020.pdf.

18. Yu P, Zhu J, Zhang Z, Han Y. A Familial Cluster of Infection Associated With the 2019 Novel Coronavi-

rus Indicating Possible Person-to-Person Transmission During the Incubation Period. The Journal of

Infectious Diseases. 2020; 221(11):1757–1761. https://doi.org/10.1093/infdis/jiaa077 PMID: 32067043

19. Wei WE, Li Z, Chiew CJ, Yong SE, Toh MP, Lee VJ. Presymptomatic Transmission of SARS-CoV-2—

Singapore, January 23—March 16, 2020. MMWR Morb Mortal Wkly Rep 2020. 2020; 69:411–415.

https://doi.org/10.15585/mmwr.mm6914e1 PMID: 32271722

20. Kimball A, Hatfield K, Arons M, James A, Taylor J, Spicer K, et al. Asymptomatic and Presymptomatic

SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility—King County,

PLOS ONE A change-point epidemic model for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0252136 May 27, 2021 24 / 25

https://kpkesihatan.com/2020/01/25/kenyataan-akhbar-kpk-25-januari-2020-pengesanan-kes-baharu-yang-disahkan-dijangkiti-2019-novel-coronavirus-2019-ncov-di-malaysia/
https://kpkesihatan.com/2020/01/25/kenyataan-akhbar-kpk-25-januari-2020-pengesanan-kes-baharu-yang-disahkan-dijangkiti-2019-novel-coronavirus-2019-ncov-di-malaysia/
https://kpkesihatan.com/2020/02/25/kenyataan-akhbar-kpk-25-februari-2020-situasi-terkini-jangkitan-coronavirus-disease-2019-covid-19-di-malaysia/
https://kpkesihatan.com/2020/02/25/kenyataan-akhbar-kpk-25-februari-2020-situasi-terkini-jangkitan-coronavirus-disease-2019-covid-19-di-malaysia/
https://kpkesihatan.com/2020/02/25/kenyataan-akhbar-kpk-25-februari-2020-situasi-terkini-jangkitan-coronavirus-disease-2019-covid-19-di-malaysia/
https://kpkesihatan.com/2020/02/27/kenyataan-akhbar-kpk-27-februari-2020-situasi-terkini-jangkitan-coronavirus-disease-covid-19-di-malaysia/
https://kpkesihatan.com/2020/02/27/kenyataan-akhbar-kpk-27-februari-2020-situasi-terkini-jangkitan-coronavirus-disease-covid-19-di-malaysia/
https://kpkesihatan.com/2020/02/27/kenyataan-akhbar-kpk-27-februari-2020-situasi-terkini-jangkitan-coronavirus-disease-covid-19-di-malaysia/
https://www.nst.com.my/news/nation/2020/04/583127/sri-petaling-tabligh-gathering-remains-msias-largest-covid-19-cluster
https://www.nst.com.my/news/nation/2020/04/583127/sri-petaling-tabligh-gathering-remains-msias-largest-covid-19-cluster
https://m.facebook.com/kementeriankesihatanmalaysia/photos/a.10151657414821237/10156918887836237/?type=3&source=48&__tn__=EH-R
https://m.facebook.com/kementeriankesihatanmalaysia/photos/a.10151657414821237/10156918887836237/?type=3&source=48&__tn__=EH-R
https://doi.org/10.1016/j.mbs.2008.07.010
http://www.ncbi.nlm.nih.gov/pubmed/18722386
https://doi.org/10.1051/mmnp/20127310
https://doi.org/10.1051/mmnp/20127310
https://doi.org/10.1016/S2468-2667(20)30090-6
https://doi.org/10.1016/j.mbs.2020.108364
http://www.ncbi.nlm.nih.gov/pubmed/32360770
https://doi.org/10.12688/wellcomeopenres.15808.1
https://doi.org/10.12688/wellcomeopenres.15808.1
http://www.ncbi.nlm.nih.gov/pubmed/32529040
https://doi.org/10.1016/j.ijid.2020.08.039
http://www.ncbi.nlm.nih.gov/pubmed/32829052
https://doi.org/10.1038/s41591-020-0883-7
http://www.ncbi.nlm.nih.gov/pubmed/32322102
http://covid-19.moh.gov.my/garis-panduan/garis-panduan-kkm/Annex_2_Management_of_Suspected,_Probable_and_Confirmed_COVID_07102020.pdf
http://covid-19.moh.gov.my/garis-panduan/garis-panduan-kkm/Annex_2_Management_of_Suspected,_Probable_and_Confirmed_COVID_07102020.pdf
https://doi.org/10.1093/infdis/jiaa077
http://www.ncbi.nlm.nih.gov/pubmed/32067043
https://doi.org/10.15585/mmwr.mm6914e1
http://www.ncbi.nlm.nih.gov/pubmed/32271722
https://doi.org/10.1371/journal.pone.0252136


Washington, March 2020. MMWR Morb Mortal Wkly Rep 2020. 2020; 69:377–381. https://doi.org/10.

15585/mmwr.mm6913e1

21. Blackwood JC, Childs LM. An introduction to compartmental modeling for the budding infectious dis-

ease modeler. Letters in Biomathematics. 2018; 5(1):195–221. https://doi.org/10.30707/LiB5.

1Blackwood

22. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of

the royal society of london Series A, Containing papers of a mathematical and physical character. 1927;

115(772):700–721.

23. Anguloa MT, Velasco-Hernandez JX. Robust qualitative estimation of time-varying contact rates in

uncertain epidemics. Epidemics. 2018; 24:98–104. https://doi.org/10.1016/j.epidem.2018.03.001

24. Dehning J, Zierenberg J, Spitzner P, Wibral M, Neto JP, Wilczek M, et al. Inferring change points in the

spread of COVID-19 reveals the effectiveness of interventions. Science 10 Jul 2020; 369 (6500),

eabb9789. https://doi.org/10.1126/science.abb9789 PMID: 32414780

25. Romero-Severson EO, Hengartner N, Meadors G, and Ke R. Change in global transmission rates of

COVID-19 through May 6 2020. PLOS One. 2020. https://doi.org/10.1371/journal.pone.0236776 PMID:

32760158

26. Altahir AA, Mathur N, Thiruchelvam L, Abro GEM, Radzi SSM, Dass SC, et al. Modeling the Impact of

Lock-down on COVID-19 Spread in Malaysia. bioRxiv. 2020. https://doi.org/10.1101/2020.07.17.

208371

27. Becker NG, Glass K, Barnes B, Caley P, Philp D, McCaw J, et al. Using Mathematical Models to Assess

Responses to an Outbreak of an Emerged Viral Respiratory Disease. Final Report to the Australian

Government Department of Health and Ageing National Centre for Epidemiology and Population

Health, Australian National University. 2006;.

28. Hwang J, Park H, Jung J, Kim SH, Kim N. Basic and effective reproduction numbers of COVID-19

cases in South Korea excluding Sincheonji cases. medRxiv. 2020;.

29. Organization WH, et al. Report of the WHO–China Joint Mission on Coronavirus Disease 2019

(COVID-19), 16–24 February 2020; 2020. Available from: https://www.who.int/docs/default-source/

coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.

30. Frasso G, Lambert P. Bayesian inference in an extended SEIR model with nonparametric disease

transmission rate: an application to the Ebola epidemic in Sierra Leone. Biostatistics. 2019; 17(4):779–

792. https://doi.org/10.1093/biostatistics/kxw027

31. Xu X, Kypraios T, O‘Neill P. Bayesian non-parametric inference for stochastic epidemic models using

Gaussian Processes. Biostatistics. 2016; 17(4):619–633. https://doi.org/10.1093/biostatistics/kxw011

PMID: 26993062

32. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report 73; 2020. Available

from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-

covid-19.pdf.

33. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infec-

tions among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance. 2020; 25

(5):2000062. https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062 PMID: 32046819

34. Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, et al. Comparing SARS-CoV-2

with SARS-CoV and influenza pandemics. The Lancet infectious diseases. 2020;. https://doi.org/10.

1016/S1473-3099(20)30484-9 PMID: 32628905

35. Efron B, Two Modeling Strategies for Empirical Bayes Estimation. Statistical Science, 2014; 29 (2).

https://doi.org/10.1214/13-STS455 PMID: 25324592

36. Emil Zainul. Malaysia to boost virus testing with S Korean test kits; 2020. Available from: https://www.

theedgemarkets.com/article/malaysia-boost-virus-testing-s-korean-test-kits.

PLOS ONE A change-point epidemic model for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0252136 May 27, 2021 25 / 25

https://doi.org/10.15585/mmwr.mm6913e1
https://doi.org/10.15585/mmwr.mm6913e1
https://doi.org/10.30707/LiB5.1Blackwood
https://doi.org/10.30707/LiB5.1Blackwood
https://doi.org/10.1016/j.epidem.2018.03.001
https://doi.org/10.1126/science.abb9789
http://www.ncbi.nlm.nih.gov/pubmed/32414780
https://doi.org/10.1371/journal.pone.0236776
http://www.ncbi.nlm.nih.gov/pubmed/32760158
https://doi.org/10.1101/2020.07.17.208371
https://doi.org/10.1101/2020.07.17.208371
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://doi.org/10.1093/biostatistics/kxw027
https://doi.org/10.1093/biostatistics/kxw011
http://www.ncbi.nlm.nih.gov/pubmed/26993062
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://www.ncbi.nlm.nih.gov/pubmed/32046819
https://doi.org/10.1016/S1473-3099(20)30484-9
https://doi.org/10.1016/S1473-3099(20)30484-9
http://www.ncbi.nlm.nih.gov/pubmed/32628905
https://doi.org/10.1214/13-STS455
http://www.ncbi.nlm.nih.gov/pubmed/25324592
https://www.theedgemarkets.com/article/malaysia-boost-virus-testing-s-korean-test-kits
https://www.theedgemarkets.com/article/malaysia-boost-virus-testing-s-korean-test-kits
https://doi.org/10.1371/journal.pone.0252136

