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Abstract 
Spine surgeries are vulnerable to wrong-level surgeries and postoperative complications because of their complex structure. 
Unavailability of the 3D intraoperative imaging device, low-contrast intraoperative X-ray images, variable clinical and patient 
conditions, manual analyses, lack of skilled technicians, and human errors increase the chances of wrong-site or wrong-level 
surgeries. State of the art work refers 3D-2D image registration systems and other medical image processing techniques 
to address the complications associated with spine surgeries. Intensity-based 3D-2D image registration systems had been 
widely practiced across various clinical applications. However, these frameworks are limited to specific clinical conditions 
such as anatomy, dimension of image correspondence, and imaging modalities. Moreover, there are certain prerequisites 
for these frameworks to function in clinical application, such as dataset requirement, speed of computation, requirement 
of high-end system configuration, limited capture range, and multiple local maxima. A simple and effective registration 
framework was designed with a study objective of vertebral level identification and its pose estimation from intraoperative 
fluoroscopic images by combining intensity-based and iterative control point (ICP)–based 3D-2D registration. A hierarchical 
multi-stage registration framework was designed that comprises coarse and finer registration. The coarse registration was 
performed in two stages, i.e., intensity similarity-based spatial localization and source-to-detector localization based on the 
intervertebral distance correspondence between vertebral centroids in projected and intraoperative X-ray images. Finally, 
to speed up target localization in the intraoperative application, based on 3D-2D vertebral centroid correspondence, a rigid 
ICP-based finer registration was performed. The mean projection distance error (mPDE) measurement and visual similar-
ity between projection image at finer registration point and intraoperative X-ray image and surgeons’ feedback were held 
accountable for the quality assurance of the designed registration framework. The average mPDE after peak signal to noise 
ratio (PSNR)–based coarse registration was 20.41mm. After the coarse registration in spatial region and source to detector 
direction, the average mPDE reduced to 12.18mm. On finer ICP-based registration, the mean mPDE was finally reduced to 
0.36 mm. The approximate mean time required for the coarse registration, finer registration, and DRR image generation at the 
final registration point were 10 s, 15 s, and 1.5 min, respectively. The designed registration framework can act as a supporting 
tool for vertebral level localization and its pose estimation in an intraoperative environment. The framework was designed 
with the future perspective of intraoperative target localization and its pose estimation irrespective of the target anatomy.

Keywords  Preoperative computed tomography · Intraoperative 3D-2D registration · Intensity-based 3D-2D registration · 
Coarse registration · Iterative control point registration · C-arm pose modeling

1  Introduction

In spinal procedures, most of the local hospitals employ 
C-arm as an intraoperative imaging system for vertebral 
level identification, and also for positioning the surgical 
instruments relative to the tissue anatomy. Spinal surgeries 

 *	 Shyamasunder N Bhat 
	 shyambhat.n@manipal.edu

Extended author information available on the last page of the article

/ Published online: 10 June 2022

Medical & Biological Engineering & Computing (2022) 60:2271–2289

http://orcid.org/0000-0001-9545-4838
http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-022-02600-5&domain=pdf


1 3

are considered arduous due to varieties in pathological cases, 
variable vertebrae curvature, and periodic vertebral similari-
ties [1]. In addition, the limited 2D views of spinal X-ray 
images reduce the perception of positioning pedicle screws 
relative to vertebral tissue and its vulnerable neighboring 
tissue regions. Furthermore, arbitrary field of view (FOV) of 
the target region and low-contrast X-ray images complicate 
decision-making in an intraoperative environment. Problems 
addressed above are addressed by accurate identification 
and localization of target regions in intraoperative images 
with the support of preoperative images such as computed 
tomography (CT), magnetic resonance imaging (MRI), or 
ultrasound (US).

Precisely, in the pedicle screw insertion procedure, once a 
patient is positioned in the prone position, the vertebral lev-
els are exposed and X-ray images are acquired by position-
ing C-arm’s X-ray source below the operating table. X-ray 
images are acquired to identify the right vertebral levels for 
pedicle screw insertion by placing surgical tools or markers. 
Multiple X-ray images are acquired to visualize anatomical 
regions of the fractured vertebrae, to analyze the pedicles to 
be screwed, and to examine the neighboring tissues that are 
vulnerable to screw insertion. Acquiring multiple intraopera-
tive X-ray images intending target localization is hazardous 
to both patients and surgeons. Hence, in the absence of 3D 
intraoperative imaging devices by utilizing minimal X-ray 
images, vertebral level identification has been addressed 
through various computer-assisted tools (CAS).

Numerous methods had been applied for vertebral level 
identification and localization utilizing multi-dimensional 
imaging systems. These approaches can be broadly classi-
fied based on the techniques being applied such as machine 
learning [2–4], segmentation [5], and registration [1, 6]. 
The proposed method partly incorporates an intrinsic type 
of intensity-based 3D-2D registration for vertebral level 
identification in the anterior-posterior (AP) X-ray view. A 
conventional intensity-based 3D-2D registration system 
includes digitally reconstructed radiograph (DRR) gen-
eration, similarity measurement, and optimization process. 
DRR generation is a subprocess of intensity-based image 
registration, wherein a 3D preoperative CT (pCT) volume 
image is projected onto a 2D projection plane, as depicted 
in Fig. 1. The DRR-based image registration technique was 
claimed to be the most accurate image registration system 
alternative to feature-based image registration systems [7]. 
DRR-based registration utilizes the entire image intensity 
details rather than limited details such as points, curves, con-
tours, or surfaces to generate projection images possessing 
structural correspondence with real X-ray images. Addition-
ally, it was claimed that unlike feature-based registrations, 
DRR-based registrations are free from registration inaccura-
cies due to segmentation errors. However, the computational 
complexity, multiple local maxima, limited capture range, 

and visual dissimilarities of DRR images from the real X-ray 
images hamper the applicability of DRR-based image reg-
istration [7, 8].

To function as an assistant tool in identifying and estimat-
ing the target vertebral pose in intraoperative fluoroscopic 
images, a three-level registration framework is proposed. 
The proposed work was targeted for estimating C-arm’s 
geometrical pose to generate a projection image possess-
ing vertebral structure and pose as that of an intraoperative 
X-ray image. The process includes an iterative vertebral 
pose optimization process and the generation of synthetic 
X-ray images from pCT images. In the framework, similar-
ity-based measurement was performed for the initial pose 
estimation about the spatial region. In the source to detec-
tor (S-D) direction, around the familiar anatomical area, a 
dimension-wise registration was performed. Finally, to mini-
mize Euclidean distance between reference and projected 
landmarks, a finer level registration was performed.

The coarse registration was conducted based on the inten-
sity similarity measurements between DRR and X-ray fluor-
oscopic images. The similarity between two images can be 
measured by considering the differences in intensities, dif-
ferences in gradient-related information, and/or shared pixel 
distribution information. The similarity measure between 
the DRR and real X-ray image depends on multiple fac-
tors such as intensity of images, differences due to quantum 
noise, distortion and X-ray scattering, X-ray beam harden-
ing, veiling glare, pCT slice resolution, and thickness [8]. In 
medical image registration, various similarity metrics were 
applied. Mutual information (MI) and normalized cross-
correlation (NCC) are classified to be global intensity cor-
respondence similarity measures. On the other hand, pattern 
intensity (PI), gradient difference (GD), gradient correlation 
(GC), and gradient intensity (GI) are categorized as local 
intensity correspondence similarity measures. According 
to the study conducted by Markelj et al. [7], local intensity 

Fig. 1   Depiction of DRR generation: The pCT volume exposure to 
virtual X-rays to generate synthetic X-ray image
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correspondence similarity measures are asserted as more 
robust than global intensity correspondence similarity meas-
ures. Precisely, intensity-based 3D-2D registration majorly 
depends on the preprocessing of pCT and postprocessing of 
the projection image, projection techniques, target anatomy, 
imaging device system configurations, etc.

To match anatomical landmarks between 3D and 2D 
planes and to overcome issues of intensity-based registra-
tion such as capture range and multiple local maxima traps, 
a variant of ICP-based finer registration is proposed. The 
ICP-based registration was performed for C-arm’s geo-
metrical pose estimation to map vertebral pose between 3D 
and 2D images. This type of finer level registration without 
generating computation-intensive projection images makes 
the system convenient for faster intraoperative pose estima-
tion. Finally, a high-resolution DRR image was generated 
at the optimum registration point to visually confirm the 
estimated ICP-based registred transformation parameters. 
The developed 3D-2D landmark correspondence-based 
registration framework can also be aimed for target identifi-
cation, localization, and pose estimation irrespective of the 
anatomical region.

2 � Literature review

The literature review includes the significance of various 
types of DRR generation techniques, alternatives to optimi-
zation-based conventional intensity-based 3D-2D registra-
tions and ICP-based 3D-2D registrations, and the degree of 
potential of various methodologies utilized in vertebral level 
identification in X-ray images.

2.1 � DRR generation technique applied in 3D‑2D 
registration

The Raycasting-based DRR generation is an accurate way 
to generate a perspective projection of a 3D CT image, but 
at a higher computation time O(n3) [7, 8]. Light field and 
Fourier slice theorem–based DRR generations were explored 
to minimize computation time required for the projection 
image generation. In light field-based DRR generation, a 
ray of data structure is generated in the preprocessing stage 
prior to DRR computation. This data structure is a database 
of rays with attenuation recorded from multiple viewpoints 
computed prior to intraoperative DRR generation. DRR 
generation is performed by cumulating pCT attenuation 
coefficients by eliminating replicated rays reducing DRR 
computational complexity from O(n3) to O(n2) and main-
taining an acceptable signal-to-noise ratio closer to the con-
ventional raycasting based DRRs [9]. In the Fourier slice 
theorem-based approach, the IFFT of the extracted central 
2D slice from the 3D spectrum represents the DRR image in 

a direction perpendicular to the extracted central slice. The 
method generates orthographic projections reducing DRR 
computational complexity from O(n3) to O(n2logn) [10]. 
Tetrahedra, shear warp factorization, splatting, and cylin-
drical harmonics are some of the other alternative techniques 
developed for DRR generation [11–15].

2.2 � Regression‑based 3D‑2D registration

To minimize dependability from the optimization techniques 
and to perform faster image registration, a hierarchical 
regression-based image registration framework was devel-
oped [16, 17]. The designed framework provided solution 
to small capture range issues that are usually encountered 
during the conventional intensity-based registration pro-
cess. A CNN-based regression framework was designed to 
estimate residual transformation parameters by computing 
local image residuals between DRR and real X-ray images. 
The design of the 3D-2D registration framework was func-
tionally divided into learning and application stages. In the 
learning stage, the network was trained to map the relation 
between transformation parameters and feature differences 
between the projected and real X-ray images. Subsequently, 
in the application stage, the extracted features were referred 
to estimate the transformation parameter. The difficulty level 
of out-of-plane registration was overcome by dividing the 
search space into smaller zones and training the individual 
zones for the image residuals corresponding to hierarchically 
decomposed transformation parameters. The smaller zones 
made the regression task simpler but increased the training 
effort and memory consumption during the runtime. The 
framework improved registration accuracy through minimal 
iterations compared to other intensity-based registrations. 
The experiment was conducted on clinical implants [17] and 
resulted in moderate registration accuracy in the anatomical 
registration [16].

2.3 � Vertebral level identification in X‑ray image

Intensity-based CT to fluoroscopic X-ray image registration 
systems known as LevelCheck algorithms have been pro-
posed for vertebral level identification in AP and/or lateral 
X-ray images [1, 6, 18–20]. In a study by Otake et al. [1], 
preoperative CT vertebral centroids were overlaid on X-ray 
images using hierarchical registration employing iterative 
optimization. In a study by Otake et al. [20], 3D-2D registra-
tion was conducted in the uncalibrated C-arm system condi-
tion and unconstrained source to detector distance condi-
tion. The optimization included estimation of transformation 
parameters in the 9 degree-of-freedom (DOF) search space, 
which included tuning of additional translational parameters 
associated with the relative position between the object and 
X-ray source with respect to the fixed detector. The designed 
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9DOF registration framework provided better registration 
accuracy than the 6DOF registration framework at the cost 
of higher computation time.

Considering various registration scenarios and anatomi-
cal deformation, a normalized gradient intensity similarity 
metric and multi-start CMAES optimizer-based 3D-2D 
registration framework was designed for vertebral locali-
zation in AP X-ray images [6]. The partitioning of search 
space into subspaces and performing an independent search 
in these subspaces utilizing the global multi-start strategy 
guided to overcome false local maxima and short capture 
range issues. A registration scenario with fewer multistarts, 
large degrees of deformation, and poor initialization reduced 
the robustness of the registration system. Specifically, to 
improve robustness against image content mismatch, various 
gradient-based similarity metrics have been applied in verte-
bral centroid registration between CT and lateral plane X-ray 
images [19]. The registration was performed in the presence 
and absence of polygonal mask, and different number of 
multi-starts. The Gradient Orientation similarity metric was 
found to be robust because it equally weights vertebral gra-
dients and extraneous objects; and hence, a larger vertebral 
body gradient region in the lateral plane made it convenient 
to localize robustly under different registration scenarios.

In another variant of the LevelCheck algorithm, a multi-
stage registration framework was proposed by Ketcha et al. 
[21]. The framework performed vertebral level registration 
under spinal deformation constraints in the thoracolumbar 
region. To provide better registration accuracy, the individ-
ual vertebral levels corresponding to its deformation were 
piecewise registered in multiple stages without employing 
any segmentation. It was stated that though the framework 
performed more evaluations compared to its predecessor 
algorithms, for faster convergence its execution could be 
extended for parallel operations across multiple stages. Pre-
viously discussed LevelCheck algorithms were architectured 
based on intensity-based registration and hence are prone to 
generate thousands of DRR images during the optimization 
stage. Hence, this makes the process computation-intensive 
and necessitates a high-end GPU-based rendering or par-
allel computation platform to support faster intraoperative 
applications.

To perform fully automatic cervical segmentation in the 
lateral X-ray image planes, a deep learning-based framework 
was developed by Al et al. [22]. The framework employed 
a deep learning approach in spine localization, centroid 
detection, and shape-aware segmentation. The centroid 
localization was performed through training a model for 
Gaussian-wise variable annotated ground-truth centroid 
positions. Deep segmentation model performance outper-
formed Active Shape Model (ASM)–based segmentation. 
In the experiment, poor localization errors resulted due to 
osteophytes and implants. The framework was aimed for 

vertebral segmentation and centroid localization rather than 
vertebral level identification.

A pose-driven deep learning technique and hierarchical 
segmentation-based approach was proposed for compres-
sion fracture grading in the lumbar region [23]. Based on 
extracted local features, a confidence map was developed 
from a multi-class predictor to predict the possible center 
position of individual vertebrae. Vertebral levels of the 
lumbar region were identified from the confidence map. 
The framework was claimed to be robust enough for lum-
bar region identification and segmentation—addressing 
various challenges and degree of robustness under different 
constraints such as X-ray images with multiple overlapping 
shadows of ribs and pelvis, poor X-ray contrast, unclear edge 
boundaries, and inter-patient variability.

A wider region of spinal lateral images was considered 
for vertebral landmark localization and radiographic spin-
opelvic parameter generation in designing a deep learning-
based model [24]. The experiment was conducted for spine 
curvature analysis under various spinal pathological condi-
tions. The cervical and lumbosacral region landmarks were 
localized optimally. The localization in the mid-thoracic 
region was moderate due to overlapped regions of scoliotic 
curves. The thoracolumbar region landmark recognition was 
found to be challenging for the deep learning-based model 
due to the occlusions by ribs, implants, and bone cement 
when viewed in the lateral plane.

A fully automatic framework for initial vertebra poses 
estimation and identification was proposed by Varnavas 
et al. [25]. To reduce computational complexity and manual 
interventions, General Hough Transform (GHT) based initial 
pose estimation was preferred over 2DOF intensity-based 
localization. In the preoperative stage, for individual verte-
bral levels, at variable operating range (6DOF), a database 
of edge points from the DRR images was built to construct 
a GHT array. Later in the intraoperative stage, the GHT of 
the vertebral fluoroscopic image was similarity checked with 
the previously built GHT array. The framework was sturdy 
for vertebral detection due to the sensitivity of GHT and the 
gradient similarity metric for subnormal shape differences.

2.4 � Iterative control point–based 3D‑2D 
registration

The ICP-based registration and its variants had been prac-
ticed in image registration because of their simplicity and 
low computational complexity. It iteratively estimates the 
transformation for the closest distance between two point 
sets of objects or images. The ICP-based registrations are 
applied to map 3D shapes [26, 27] and surfaces [28]. The 
ICP registrations are prominent in non-rigid 3D-2D registra-
tions of vessel structures and arteries for its flexibility under 
variable degree of deformations [29–31]. ICP-based 3D-2D 
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registration was performed for faster and accurate patient 
and machine positioning in radiotherapy [32]. Using the 
Z-buffer algorithm, the problem of information loss in the 
projection image was addressed through retaining source-
to-object distance details. The robustness of a variant of 
ICP-based registration was tested against intensity-based 
registration to test its applicability in neurointerventions 
[33]. Due to erroneous 3D-2D point pairs, the ICP-based 
registration was found to be marginally reliable when experi-
mented with phantom data as against clinical data. However, 
the capture range and speed of computation of ICP registra-
tion were dominating against its alternative. The higher SNR 
in digital subtraction angiography (DSA) resulted in clear 
vessel skeleton-centerline extraction and improved the ICP 
registration accuracy. The registration accuracy deteriorated 
when the number of vessels considered for point pairing 
was increased. In another work, to determine 3D bone kin-
ematics, ICP-based 3D-2D rigid registration was performed 
between high-speed biplanar videoradiography (HSBV) and 
MRI-based bone models [34]. The registration precision was 
not sacrificed when 3D bone model points were randomly 
downsampled to 10%. In another variant of non-rigid ICP-
based 3D-2D registration, 3D femur reconstruction was per-
formed utilizing biplanar radiography [35]. The extracted 
2D contours were registered with a 3D template surface 
model using moving least square deformation metric and 
by avoiding the requirement of shearing and non-uniform 
scaling transformations. The proposed work provided bet-
ter surface reconstruction and asserted that the registration 
accuracy would improve on adjoining elastic deformation 
characteristics.

3 � Method

The registration framework was targeted for vertebral 
level identification and its intraoperative pose estimation 
in an intraoperative environment. A hierarchical registra-
tion framework was designed to localize vertebral regions 
taking the support from an intraoperative X-ray image and 
multilevel CT data (T5 to L4). The methodology depicted 
in Fig. 2 incorporates tools and techniques employed in 
designed registration framework. These tools and techniques 
were employed during the preoperative and intraoperative 
processes of the designed image registration system. The 
preoperative process includes C-arm gantry modeling, and 
CT and C-arm system calibrations followed by vertebral 
labeling in CT. The vertebral levels in pCT were marked 
after knowing the familiar anatomical region and confirming 
target anatomical landmarks. In the preoperative process, 
the DRR image database required for the coarse registra-
tion was generated (Algorithm 1). The intraoperative process 
includes similarity measurement between DRR image and 

X-ray image (Algorithm 2), coarse localization in the S-D 
direction (Algorithm 3), and ICP-based finer registration for 
intraoperative vertebral pose estimation (Algorithm 4). A 
detailed hierarchical framework is depicted in Fig. 3.

3.1 � Preoperative process

The preoperative process was defined to conduct faster 
registration. The process includes C-arm camera mod-
eling, system calibration, vertebral labeling in pCT, and 
DRR database generation required for intraoperative coarse 
registration.

3.1.1 � C‑arm pose transformation modeling

The C-arm pose modeling process includes modeling of 
geometrical transformation of C-arm imaging device for 
DRR generation at different angles and positions as per the 
conventional C-arm imaging system. It was suitable to pre-
fer rigid body transformation for our clinical study since 
the vertebral region is a bony rigid composite and it was 
assumed that it would not undergo any structural deforma-
tion during intraoperative image acquisition. The rigid body 
registration includes translational ( Tx , Ty , Tz ) and rotational 
( Rx , Ry , Rz ) transformations known as extrinsic parameters. 
The projected image also depends on the intrinsic param-
eters of the imaging device—crucially pixel size ( Px , Py ) 
to focal length (SDD) ratio in both horizontal and vertical 
directions of the projection plane. During the registration 
process, the center of projection (COP) of the source point 
on the detector plane guides in identifying the center point 
of projection. A 2D projection point (u,v) was computed 
from extrinsic ( Textrinsic ) and intrinsic parameters ( Tintrinsic ) 
of C-arm device as defined in Eq. 1.

Fig. 2   Workflow of 3D-2D ICP-DRR–based registration designed for 
vertebral level identification and its intraoperative pose estimation
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The factor Tintrinsic*Textrinsic is the projection matrix that trans-
forms a 3D pCT coordinate point “ PCT ” to the 2D projec-
tion plane [1]. During the optimization process, the modeled 
C-arm position would get tuned iteratively about its initial 
pose such that mPDE minimizes over successive iterations.

(1)(u, v, 1)T = TintrinsicTextrinsicPCT
3.1.2 � DRR generation

In the raycasting process, the attenuation coefficients are 
weighted by intersection length “l” and cumulated along 
the ray traversing through the pCT volume image as 
defined in Eq. 2 [8].

(2)I = Io exp
−
∑

�(ECT )i∗li

Fig. 3   The framework of 3D-2D 
coarse to finer registration with 
the demarcation of its subproc-
esses, algorithms, and modules

2276 Medical & Biological Engineering & Computing (2022) 60:2271–2289



1 3

Where “I” is the projected pixel intensity through tissue vol-
ume, “ Io ” is the X-ray intensity subjected to no attenuation, 
and “l” is the voxel intersection length and “i” denotes voxel 
index [36].

Generated DRR image and real X-ray image always 
differ because of multiple factors such as X-ray inten-
sity difference between different modalities, pincushion 
distortion in an X-ray image, X-ray source-detector posi-
tion relative to patient pose (supine or prone), presence 
or absence of surgical devices in intraoperative X-ray 
image, and resolution of CT image dataset. The differ-
ence between DRR and real X-ray images can be mini-
mized by preprocessing pCT images and X-ray images 
through image processing techniques such as scaling the 
voxels to different intensities, windowing pCT intensi-
ties of tissue interest [37], morphological image pro-
cessing [38], or utilizing postprocessing techniques such 
as texture extraction and contrast enhancement using 
histogram equalization [39]. However, despite applying 
preprocessing and postprocessing techniques, there exist 
differences between DRR and X-ray images that are usu-
ally quantified in terms of SNR and image contrast.

3.1.3 � Preoperative calibration

The pCT study datasets included spinal columns ranging 
from the mid-thoracic to lumbar vertebrae (T5 to L4). 
The axial pCT images were acquired along the cranio-
caudal axis with the patient being in a supine position 
utilizing Philips CT system set to peak X-ray generator 
voltage ranging from 120 to 140 kVp and X-ray tube 
current ranging from 300 to 400mA. The experiment 
included datasets specifically acquired for diagnosis 
purposes and spinal fusion surgeries. During the raycast-
ing process, the anterior-posterior (AP) axis of a pCT 
imaging system was aligned with the source to detector 
axis of the C-arm system. The pCT volume center was 
aligned with the isocenter of the C-arm image coordi-
nate system. Since in pedicle screw insertion surgery, 
the C-arm’s X-ray source is placed below the operating 
table, during the raycasting process, the anterior region 
of the vertebrae was exposed towards the X-ray source 
[1]. The pixel size and focal length of the C-arm system 
were acquired from the calibrated C-arm system con-
figuration. The C-arm source and detector were modeled 
using a transformation matrix for translational ( Tx , Ty , 
Tz ) and rotational ( Rx , Ry , Rz ) movements as depicted 
in Fig. 1. During the raycasting process, the pCT center 
and isocenter = (SDD/2, 0, 0), the source position ( xs , 
ys , zs ) = (0, 0, 0), and the C-arm position ( Tx , Ty , Tz , �x , 
�y , �z ) = (0, 0, 0, 0, 0, 0) were defined as the nominal 

position to generate synthetic X-ray images along the 
AP axis.

3.1.4 � Preoperative CT labeling

The datasets included adolescent patients’ spinal images 
who had undergone spinal injuries, specifically in the thora-
columbar region. The collected dataset possesses complete 
axial pCT images, and vertebral levels ranging from T5 to 
L4 were cropped for the DRR database generation. The 
dataset specifications of CT and vertebral levels from intra-
operative X-ray images considered in our experiment are 
given in Table 2 of the Annexure section. Since the anatomi-
cal transition from T12 to L1 both in the X-ray images and 
pCT images can be easily identifiable by surgeons, we chose 
floating ribs or thoracic to lumbar region transition as the 
landmark for the pose validation during the different stages 
of registration. The coordinates of the vertebral centroids in 
pCT were marked such that they attained the center position 
when viewed in the axial, coronal, and sagittal planes.

3.1.5 � Preprocessing of CT image

The X-ray photons pass through the patient’s body through 
different tissues undergoing a different level of attenuation. 
In CT systems, these attenuation coefficients are represented 
in the Hounsfield unit (HU) scale where every voxel’s HUx 
value is mapped to linear attenuation coefficients ( �(ECT ) ) 
relative to water attenuation coefficient ( �water(ECT ) ) at X-ray 
energy ECT as defined in Eq. 3 [1].

3.1.6 � Projection image database generation

In the coarse registration procedure, both pCT and X-ray 
images were downsampled to a resolution of 4mm × 4mm, 
and similarity was measured between projected and real 
X-ray images. The coarse registration requires a DRR data-
base that was generated in the preoperative process. The 
projection of the pCT image was generated from the raw 
cropped CT data by perturbing the C-arm position along 
the superior-inferior (SI) and mediolateral (ML) directions 
ranging from −50 to +50 mm in step interval of 2 mm. The 
source to detector distance was fixed such that around the 
fractured region at least three to four vertebral levels would 
get displayed on projection. Hence, the initial coarse search 
database had 2601 DRR images to be similarity checked 
with real X-ray images. In the case of the lower vertebral 

(3)�(ECT ) =
1000 + HUx

1000
�water(ECT )
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study, i.e., in the third dataset, more DRR images were gen-
erated along the patient’s superior-inferior axis. A pseudoc-
ode algorithm for generating the DRR database in the pre-
operative process and utilized to perform coarse registration 
during the intraoperative process is given in Algorithm 1.

3.2 � Intraoperative process

The intraoperative process primarily includes similarity 
measurements for spatial localization (Algorithm 2), locali-
zation in the S-D direction (Algorithm 3), and ICP-based 
3D-2D registration (Algorithm 4). The detailed registration 
framework is shown in Fig. 3. The objective of the designed 
framework was intensively oriented towards selecting simi-
larity metric which is robust enough to provide multilevel 
vertebral localization between CT and X-ray datasets when 
acquired under different X-ray generator settings.

3.2.1 � Initial pose estimation: spatial search

Similarity measurement was performed using five similarity 
metrics namely mutual information (MI), gradient informa-
tion (GI), peak signal to noise ratio (PSNR), structural simi-
larity index metric (SSIM), and normalized cross-correlation 
(NCC). Across all datasets, the similarity metric which pro-
vided better localization in terms of mPDE measurement 
was considered the best similarity metric for our experiment. 
The similarity metrics employed during the coarse registra-
tion are defined as follows.

Mutual information (MI)- If A(a, b) is a DRR image and 
B(a, b) is an X-ray image, then the mutual information, 

entropy, and joint entropy are defined as in the order of 
Eqs. 4, 5, and 6.

On accurate registration, the joint entropy between the DRR 
image (A) and X-ray image (B) would be minimum—maxi-
mizing individual entropies reflecting the fact that overlap-
ping regions appearing in both of the images are similar.

Gradient intensity (GI) - The gradient intensity as a simi-
larity measure is defined in Eq. 7.

Where “w(a, b)” and “ �(a, b) ” are the weighting function 
and angle between the gradients. The min operator between 
the magnitude of gradients excludes the extraneous gradients 
due to the sole presence of surgical tools in intraoperative 
images; thereby, it is robust against the mismatches between 
the two images projecting the same anatomy. Additionally, it 
has been claimed as sturdy against mismatches caused due 
to soft tissue resection and the energy difference between the 
imaging modalities [1].

Peak signal to noise ratio (PSNR) - The peak signal to 
noise ratio was chosen as a similarity measure in image reg-
istration [36]. For an image of size M*N, PSNR in dB can 
be defined as in Eq. 10.

Where “R” is the peak intensity of an image and “MSE” is 
the mean squared error as defined in Eq. 11.

Structural similarity index metric (SSIM) -  Structural simi-
larity index metric is the similarity metric for quality percep-
tion—modeled after the human visual system. It depends 
on image components such as luminance, contrast, and 

(4)MI(A,B) =H(A) + H(B) − H(A,B)

(5)H(A) = −
∑

PAlogPA

(6)H(A,B) = −
∑

a,b

PAB(a, b) logPAB(a, b)

(7)GI(A,B) =
∑

a,b

w(a, b)min(|▽A(a, b)|, |▽B(a, b)|)

(8)w(a, b) =(cos�a,b + 1)∕2

(9)cos(�a,b) =
▽A(a, b).▽B(a, b)

|▽A(a, b)|.|▽B(a, b)|

(10)PSNR = 10log10
R2

MSE

(11)MSE =
1

M ∗ N

∑

a,b

[A(a, b) − B(a, b)]2
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structure, as described in Eq. 12 [40]. The SSIM measures 
overall closeness between the images in terms of luminance 
(L), contrast (C), and structure (M).

Normalized cross-correlation (NCC) - Normalized cross-
correlation measures the correlation coefficient between two 
images A and B having mean intensities Ā and B̄ as defined 
in Eq. 13.

A pseudocode for coarse search in the spatial region is given 
in Algorithm 2. A similarity metric (SM) with maximum 
similarity value and minimum mPDE was considered the 
best metric for initial localization ( T2DOF).

3.2.2 � Initial pose estimation: source to detector search

The out-of-plane translational ( Tx ) registration in source-to-
detector direction was challenging due to the spatial diver-
gence and uneven similarity pattern. Hence, initial guess 
in the S-D direction was perceived through the manual 

(12)SSIM(A,B) = L(A,B)C(A,B)M(A,B)

(13)

NCC(A,B) =

∑
a,b(A(a, b) − Ā)(B(a, b) − B̄)

�∑
a,b(A(a, b) − Ā)2

�∑
a,b(B(a, b) − B̄)2

registration procedure. Initially, according to the C-arm 
camera model configuration, the source was placed at the 
farthest point (FP), i.e., 40 cm or 50cm away from the nomi-
nal position. Then, by positioning the X-ray source centering 
the previous search space parameters ( Ty and Tz ), centroid 
points were projected from 3D to the 2D projection plane by 
moving the source towards the CT volume in a step interval 
of 10 mm. The differences in Euclidean distance between 
the intervertebral projected centroids and true centroids were 
measured as depicted in Fig. 4. This procedure points out 
the approximate magnification factor that is reflected in the 
acquired X-ray image, and also enhances speed of conver-
gence during the finer registration stage. At the end of this 
registration, all the three translational parameters(Tx,Ty,Tz ) 
get approximately tuned to intraoperative X-ray image pose. 
After the search in the S-D direction, to visually confirm the 
initial transformations possessing proximal transformations 
as that of real X-ray images, the DRR image can be gener-
ated at an isotropic resolution of 0.5 mm. A pseudocode 
algorithm for coarse localization in the S-D direction is 
defined as in Algorithm 3.

3.2.3 � Finer registration: 6DOF search

Since, after multiple iterations, intensity-based similarity 
measurements at higher resolution were not consistently 
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converging towards global maxima, we have employed a 
novel technique to perform finer registration. The finer 
registration was performed by minimizing the Euclidean 
distance measurements between projected centroids and 
true centroid landmarks. This procedure bypasses the 
requirement of computation-intensive DRR generation as 
usually practiced in conventional intensity-based registra-
tion. The data coordinate system resolution was defined 
such that anatomical landmarks can be precisely labeled 
both in CT and X-ray images.

After initial pose localization, when the vertebral 
structural appearance in the DRR image falls within the 
vertebral boundary region as in the X-ray image, finer 
registration was initiated. Iteratively, the Euclidean dis-
tance between projected landmarks and true landmarks 
was minimized, estimating the C-arm’s transformation 
for minimum mean projection distance error (mPDE) 
measurement. Just by the projection of centroid points, 
we cannot clinically validate the registration framework; 
hence, on finer registration, we have visually verified 
the projected image relative to anatomical landmarks 
that are visible in the target fluoroscopic image. When 
the final registration position upon initial referenced 
search space resulted in a minimum mPDE, and when 
the DRR image at this registration point structurally 
and orientationally resembled the intraoperative X-ray 
image, the registration process was terminated.

Covariance matrix adaptation evolution strategy 
(CMAES) optimization scheme was applied for finer 

registration, wherein the search space parameters are 
sampled out from the multivariate normal distribution 
[41]. These sample populations are characterized after 
their mean, standard deviation, and covariance matrix, 
as stated in Eq. 14. In every generation of evolution, the 
fitness value is computed at all � sample populations, and 
� best sample points called offspring points are selected. 
The mean and covariance of selected samples are adapted 
across generations, converging the search space to the 
optimal bounded region.

If xt=xt
1
,xt

2
,xt

3
,......,xt

n
 ∈ ℜn denote n objective vectors, 

in every t iteration, the objective value “f” computed at xt 
would get optimized over successive number of genera-
tions. The search point distribution can be represented as 
per Eq. 14 [41].

Where k = 1, 2, ...� are offspring search points and m(g) , 
�(g) , C(g) are the mean, standard deviation and covariance 
matrix of sample distribution at generation g = 0, 1, ...... 
In every iteration, the fitness value would get optimized 
to a better level, indicating the fact that the search direc-
tion is apparently the same. The fitness function consid-
ered during the optimization is defined in Eq. 16. The 
transformation parameters of the C-arm camera model 
were estimated through CMAES optimization as given 
in Algorithm 4 by initializing registration, and loading 
CT–X-ray landmark point pair positions.

(14)x
(g+1)

k
= m(g) + �(g)N

(
0,C(g)

)
∼ N

(
m(g),

(
�(g)

)2
,C(g)

)

Fig. 4   The source to detector 
direction localization: Interver-
tebral distance measurement 
between different vertebral lev-
els in X-ray image (a) and DRR 
image—generated after initial 
spatial localization (b). Source: 
Orthopaedics and Radiology 
Department - KMC Manipal
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CMAES algorithms are implemented by Hansen in MAT-
LAB [41]. The parameters for step size control and covari-
ance matrix adaptation were defined as mentioned in this 
work. Population size for sample generation and initial step 
size for various transformation parameters were tuned based 
on the initial coarse registration results. For faster conver-
gence, population size can be set to a smaller value, and to 
avoid local maxima larger population size can be selected 
[41]. In our optimization process, the sample population and 
number of evaluations were set to 50 and 2000, respectively. 
The standard deviation for the transformation in the S-D 
direction was fixed to 10, and 3 for the rest of the transfor-
mation parameters. The mPDE measurement of 0 mm or the 
number of evaluations was set as the convergence criteria.

4 � Experiment

The X-ray fluoroscopy images were acquired utilizing Zie-
hm’s 9-in. C-arm - Image Intensifier system by position-
ing the patients in the prone position. During pedicle screw 
insertion surgery, X-ray images were acquired for vertebral 
level identification. The AP X-ray view was taken as refer-
ence image in our registration process. The intraoperative 
datasets in the experiment were acquired at X-ray generator 
voltage and X-ray tube current falling in the range of 66 to 

86kV and 3.3 to 3.8 mA, respectively. For clear vertebral 
structural visibility, these settings were tuned according 
to the patient’s morphology and bone mineral density. In 
our experiment, target localization was performed on real 
X-ray images acquired for four patients. From intraopera-
tive X-ray images, a set of three vertebral columns ranging 
from T11 to L3 was considered for the study purpose. The 
vertebral levels specific to a dataset, its pCT data resolu-
tion, and voxel dimensions are given in Annexure - Table 2. 
Though the intraoperative images were acquired without any 
C-arm gantry rotation, during the finer registration stage, 
the C-arm model position was perturbed even rotationally 
to compensate the patient positioning differences between 
preoperative and intraoperative environments. The distances 
between the projected centroids and X-ray centroids were 
minimized throughout the optimization process, converging 
the corresponding anatomical landmarks and vertebral poses 
for an optimal match. The framework was implemented on 
the MATLAB platform under Windows 7 Professional 64-bit 
and HP Z230 workstation configurations.

5 � Evaluation method

More often, in registration procedures, the fiducial markers 
and/or external trackers are employed for the patient or the 
C-arm pose estimation [42]. For ground truth registration, 
fiducial markers are placed in the study model, and spatial 
information is tracked using an optical or electromagnetic 
tracker. Through the registration algorithm, the fiducial 
marker position is estimated and compared with the transfor-
mation matrix derived from the intrinsic and extrinsic matri-
ces of the C-arm imaging system. Finally, the difference 
between these measures, known as target registration error 
(TRE), is measured as described below. If TReg is the trans-
formation matrix derived from the registration algorithm and 
TGT is the transformation matrix derived after ground truth 
registration, then mean TRE for “k” pCT coordinate points 
“ PCT ” is defined as in Eq. 15 [43, 44].

In 3D-2D registration, based on the plane of error meas-
urement, registration error measurements are classified into 
three types, i.e., TRE, projection distance error (PDE), and 
reprojection distance error (RPDE) [44]. The registration 
error TRE is suitable in image-guided navigation systems, 
wherein localization is performed in 3D by relatively map-
ping landmarks from 2D image planes. In 3D-2D registra-
tion, PDE is a distance metric between estimated and tar-
get points measured on 2D projection plane. The RPDE 
is the distance between two points in 3D obtained after 

(15)mTRE(PCT , TGT , TReg) =
1

k

k∑

i=1

TGTPCTi
− TRegPCTi
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back-projecting 2D test points at estimated projections and 
3D gold standard position of it. To validate the design of 
registration systems, a set of “k” test points are chosen, 
and aforementioned applicable registration error types are 
measured.

We measured mPDE to evaluate the designed registration 
framework by considering vertebral centroid landmarks as 
reference [1, 45]. The Euclidean distance (ED) was meas-
ured between a set of three projected centroids and corre-
sponding X-ray centroids as defined in Eq. 16 [1].

Where TReg is the estimated final registration transforma-
tion parameter, “ PCT ” and “ PXray ” are the vectors of “N” 
centroid points in the world coordinate system. Figure 5 
depicts the projection of the pCT coordinate point on the 
detector plane and measurement of PDE. Since the frame-
work functions without any marker or tracker, for validation, 
the optimum C-arm pose was confirmed when the distance 
between the projected points and target points is minimum. 
In support, we have verified the final pose by generating a 
high-resolution DRR image possessing an optimal match 
with the real X-ray image in terms of shape, structure, and 
pose. In addition, we validated the framework’s registration 

(16)mPDE(PCT , TReg, TXray) =
1

N

k=N∑

k=1

TRegPCTk
− PXrayk

accuracy and pose estimation capabilities based on three 
surgeons’ feedbacks.

6 � Result

6.1 � Coarse registration: intensity‑based similarity 
measurement

The similarity measurement using different similarity met-
rics during coarse registration is shown in Fig. 6. It was 
observed that the PSNR metric consistently provided a bet-
ter initial point of localization across all the datasets. The 
variation in PSNR-based similarity measure was distrib-
uted almost evenly about coarse registration point (Fig. 6c). 
The average mPDE for the study dataset after PSNR-based 
coarse registration was found to be 20.41 mm. In Fig. 7, 
mPDE and its range after spatial localization are displayed 
as per the different similarities and the study datasets.

6.2 � Coarse registration: intervertebral distance–
based localization in the S‑D direction

In the S-D direction, an approximate localization point was 
achieved when the metric converged towards a minimum 
value. From Fig. 8, it can be observed that the magnifica-
tion factor of the study dataset varies in a range of 1.2 to 
1.6, indicating an actual magnification factor as that of the 
intraoperative C-arm imaging environment projecting four 
to five vertebral levels.

6.3 � Finer registration: ICP registration

The convergence of transformation parameters towards opti-
mum transformation across a successive number of itera-
tions is shown in Fig. 9. The mPDE convergence plot after 
initial pose estimation is shown in Fig. 10. The initial mPDE 
measurements were due to the spinal rotation, displacement, 
and deformation that occur due to the positioning differ-
ences between the preoperative and intraoperative imaging 
environments. The mPDE measurement at the initial and 
the final estimated poses for various datasets is displayed in 
Table 1. The mPDE after the first generation of optimization 
was in a range of 5 to 6.5mm and progressively converges 
up until the final generation registering vertebral pose opti-
mally, as displayed in Fig. 11. The pCT centroid landmarks 
were registered optimally, projecting the corresponding ana-
tomical region in and around the target region. However, 
there were challenges associated with the tuning of out-of-
plane transformations that can be addressed by individually 
registering vertebral levels utilizing 3D-2D landmarks from 
multiple planes.

Fig. 5   Depiction of C-arm camera model projecting pCT coordinate 
point and measurement of PDE
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7 � Discussion

The necessity of various types of preprocessing and post-
processing techniques at the DRR generation stage, DRR 
computational complexities, and low registration accuracy 
due to poorly contrasted intraoperative X-ray images were 
overcome through our designed registration framework. The 
registration framework referred to anatomical landmarks 
without utilizing fiducial markers or trackers, hence mak-
ing the experimental procedure convenient and amicable for 
vertebral identification and its pose estimation during spinal 
fusion procedures. The designed framework has the potential 

to explore pose estimation problems irrespective of anatomy 
in intraoperative applications through 3D-2D landmark cor-
respondence knowledge and limited generation of projection 
images. The huge dataset requirement and generalizability 
issue of machine learning-based registration and multiple 
local maxima issues of intensity-based registration were over-
come through our designed registration system.

The preoperative DRR database creation benefited in 
terms of time complexity, which is an essential factor for 
the registration framework to support intraoperative appli-
cations. Additionally, at the coarse registration stage, dur-
ing the DRR database generation, the skull, cervical, prior 
thoracic levels, and pelvis regions were excluded from the 

Fig. 6   Similarity measurement plot between X-ray image and coarse registration database using MI (a), GI (b), PSNR (c), SSIM (d), and NCC 
(e)

Fig. 7   Stacked bar graph of 
mPDE for various similarity 
metrics across different datasets 
(a) and range of mPDE for the 
study dataset after the spatial 
localization (b)
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preoperative CT for faster intraoperative registration and to 
avoid multiple false maxima. Furthermore, to improve ini-
tial registration accuracy of coarse registration, horizontally 
wider intraoperative images possessing vertebral columns 
along with the attached ribs were considered. A combined 
metric of maximum intensity-based similarity and minimum 

projection distance error was considered for spatial region 
localization. In coarse registration of unpreprocessed data-
sets, among the considered similarity measures, the PSNR 
metric was found to be robust. The PSNR metric managed 
to distinguish vertebrae along the superior-inferior axis 
despite poor X-ray image contrast and vertebral level struc-
tural repeatability. At low resolution, the absence of the rib 
region in the thoracolumbar region was easily detected by 
this metric. It was also observed that the PSNR metric pro-
vided a spatially closer localization point when the DRR 
database was created for a translational step interval of 2 
mm as against 10 mm. In the case of the fourth dataset, the 

Fig. 8   Intervertebral length 
differences between DRR 
image and X-ray image and 
mPDE measurements during the 
search in the source to detector 
direction are plotted against the 
magnification factor (LX and 
LD labels are as depicted in 
Fig. 4)

Fig. 9   Transformation param-
eter convergence about the final 
estimation over successive num-
ber of evaluations (dataset 1)

Fig. 10   Convergence of mPDE measurement over successive genera-
tions in different datasets 

Table 1   The mPDE measurement for different datasets  at the initial 
and final points of registration 

Dataset Initial mPDE Final mPDE

1 13.62 0.33
2 09.36 0.47
3 18.85 0.33
4 06.88 0.33
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mPDE measurement was consistently poor across all the 
metrics except PSNR, crucially due to the blurred edges of 
the pedicle and vertebral body endplates.

To ease our registration process and for faster finer regis-
tration convergence rate, intervertebral length metric-based 
registration was performed in the S-D direction. Since, in the 
S-D direction, the cost function was sensitive to the magni-
fication factor, we can bypass manual search to improve the 
speed of computation. Moreover, feature-based localization 

in the S-D direction like ours beats the major issue of inten-
sity-based out-of-plane translational parameter registration 
[25].

Across all the experiments on the studied datasets, on 
repeatedly performing finer registration about the ini-
tial localization, all the estimated final transformation 
parameters did not get deviated substantially about their 
mean values. This signifies that the framework is efficient 
enough for pose reproducibility. This was possible because 

Fig. 11   Overlay of vertebral 
centroids from pCT image 
on DRR image at initial pose 
(column 1, green), final pose 
(column 2, yellow), and on 
intraoperative X-ray image 
(column 3, red)
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in its first generation the CMAES optimizer successfully 
managed to sink all the transformation parameters within 
a narrow basin. The localization in dataset 2 took higher 
number of evaluations to depreciate the mPDE value due 
to the increased degree of noncollinearity between the 
three vertebral levels and initialization to lower magnifi-
cation factor. Additionally, in the inter-imaging environ-
mental conditions, variable out-of-plane rotations among 
different vertebral levels resulted in lower registration 
accuracy.

The out-of-plane transformation parameters can be esti-
mated more accurately by considering multiple landmarks 
from the individual vertebrae and their 3D-2D plane land-
mark correspondence knowledge. On final registration, we 
generated visually optimal projection images at minimum 
projection distance error. These projection images visually 
differ from real X-ray images due to the rigid registration 
practice of all three levels. However, the optimality of pro-
jection images can be further enhanced by registering the 
individual vertebral levels which are subjected to variable 
degrees of inter-imaging environmental deformations. Reg-
istration accuracy may differ by a length of fewer than 2 
mm due to landmark marking variations in both 3D and 2D 
planes. Furthermore, automatic centroid localization in pCT 
and X-ray image may reduce the manual interventions.

8 � Conclusion

The difficulty of vertebral centroid identification and its 
pose estimation in low-contrast anterior-posterior view 
X-ray fluoroscopy images was overcome through the pro-
cess known as preoperative CT to intraoperative X-ray image 
registration. The PSNR-based similarity metric provided a 
better initial localization point considering unprocessed data. 
The ICP-based finer 3D-2D registration facilitated bypass-
ing the computation-intensive DRR generation during the 
optimization stage, permitting our framework’s applicability 
in the intraoperative applications. The designed framework 
accurately registered vertebral levels in the intraopera-
tive application with an average mPDE of 0.36mm within 
a mean time of fewer than 2 min. The PDE measurement 
and speed of computation in our process of vertebral level 
identification and pose estimation were well within the clin-
ical acceptance range. The designed framework could be 
extended to investigate spinal deformation between preop-
erative and intraoperative images through individual verte-
bral registration. Though the framework was truly designed 
for identifying and localizing vertebral centroids in intraop-
erative images, it can also be extended to estimate various 
anatomical poses between preoperative and intraoperative 
imaging environments.

Annexure

Dataset specification

The specifications of the pCT images and intraoperative 
X-ray images that are acquired for the study purposes are 
given in Table 2.
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