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Abstract

The early detection of disease epidemics reduces the chance of successful introductions into new locales, minimizes the
number of infections, and reduces the financial impact. We develop a framework to determine the optimal sampling
strategy for disease detection in zoonotic host-vector epidemiological systems when a disease goes from below detectable
levels to an epidemic. We find that if the time of disease introduction is known then the optimal sampling strategy can
switch abruptly between sampling only from the vector population to sampling only from the host population. We also
construct time-independent optimal sampling strategies when conducting periodic sampling that can involve sampling
both the host and the vector populations simultaneously. Both time-dependent and -independent solutions can be useful
for sampling design, depending on whether the time of introduction of the disease is known or not. We illustrate the
approach with West Nile virus, a globally-spreading zoonotic arbovirus. Though our analytical results are based on a
linearization of the dynamical systems, the sampling rules appear robust over a wide range of parameter space when
compared to nonlinear simulation models. Our results suggest some simple rules that can be used by practitioners when
developing surveillance programs. These rules require knowledge of transition rates between epidemiological
compartments, which population was initially infected, and of the cost per sample for serological tests.
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Introduction

The effectiveness of disease control measures often depend on

when outbreaks are first discovered. Early detection can signifi-

cantly reduce the costs associated with disease eradication, human

illnesses, and devastation of livestock or crops. For example, the

2001 epidemic of foot and mouth in Great Britain was reported

only 2 weeks after the epidemic began [1] yet had an estimated

financial impact of $11.9–$18.4 billion dollars [2]. A hypothetical

foot and mouth epidemic in California not detected for 2 weeks

could have a financial impact of over $15 billion dollars, and an

epidemic not detected for 3 weeks could have an impact of up to

$69 billion dollars [3]. Although many studies have examined

alternative control strategies and the impact of detection time on

control [1,2,4], the complementary question of how to achieve

early detection has been relatively neglected by theory. Greater

attention to the design of disease surveillance methods may

facilitate earlier detection and reduce the economic impacts of

disease epidemics.

Passive surveillance methods are the voluntary reporting of

cases by primary care providers and citizens to public health

officials [5]. Recent work on passive surveillance methods for

human infectious diseases has progressed rapidly and includes

developing methods to optimize the placement [6,7] and

performance [8] of surveillance sites. Integrating these physical

surveillance systems with internet search data has led to

improvements in the performance of traditional physical reporting

systems [7,9]. Active surveillance methods of zoonotic diseases are

the periodic sampling by health authorities [5]. For vector-borne

diseases active surveillance may include the use of sentinel animals

and the longitudinal sampling of vector populations [10]. Active

surveillance may often perform better for targeted objectives than

passive methods [5], and recent work has begun to link active

zoonotic surveillance data to epidemiological models. For exam-

ple, Gerardo-Giorda et al. [11] combined surveillance data and

epidemiological models to identify counties that were most

important for surveillance efforts of rabies in New York State. It

is likely that analytical approaches will prove useful in making

active zoonotic surveillance methods more cost effective, an

important consideration for surveillance organizations with limited

resources [12].

Past analytical work on active disease detection examined how

sampling for infected individuals in a susceptible population

affects the time at which an epidemic is detected [13,14] and the

subsequent incidence of a disease at the time of discovery [15].
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These studies have examined the dynamics of diseases that are

directly transmitted and thus lack a disease vector. As a result, we

still have little knowledge to guide early detection theory for

zoonotic diseases (e.g., Lyme disease, malaria, Rift Valley fever

virus, West Nile virus, dengue fever), where sampling could occur

in vector populations or host populations. Here, we studied the

optimal sampling design for early disease detection using

formulations of a disease with one host population and one

vector population. We combined models of host-vector dynamics

with a periodic sampling procedure in which sample size is

constrained by economic limitations. We used a susceptible-

infected (SI) model to examine how to allocate sampling effort

between the vector and host populations, and we used a

susceptible-infected-recovered (SIR) model to look at allocating

sampling effort between the vector population, infected hosts, and

recovered hosts.

The CDC guidelines for evaluating public health surveillance of

human based diseases [16] are standards that have been used in

many assessments of zoonotic surveillance systems, although

differences may exist between human and zoonotic surveillance

goals [17]. A recent survey on the assessment of surveillance

systems found that a number of different metrics have been used to

determine zoonotic surveillance performance; two of the most

frequently mentioned criteria are the sensitivity of surveillance (the

ability to detect outbreaks or infection rates) and the time to

outbreak detection from initial exposure [17]. Here we assume the

goal of surveillance is to detect the outbreak as early as possible to

minimize financial damages or spillover human infections, a

common goal for zoonoses [12]. Our results provide some basic

rules of thumb for practitioners designing active surveillance

protocols for vector-borne diseases.

Models

We modeled the early dynamics of a disease with a single vector

species and a single, non-human host species. Here we define

early-time approximations to systems where vectors follow SI

dynamics and hosts follow either SI- or SIR- dynamics. We then

define a sampling model that can be applied to these dynamical

systems. The sampling of human hosts often has additional

considerations not accounted for in this sampling framework. We

therefore address specific issues about human populations in the

discussion.

Vector-host SI model
We made assumptions common to other SI models of vector-

borne diseases: vectors and hosts can be in either a susceptible or

an infected state at time t, the disease epidemic (the dynamics of

interest) occur on a relatively short time-scale and thus infected

individuals cannot recover nor do individuals give birth or die over

the course of the epidemic, and infection spreads only through

interspecific interactions [18,19]. Subscripts are used to denote

population-level parameters: e.g., IH (t) and IV (t) denote the

number of infected hosts (H ) and vectors (V ) at time t, respectively

(Table 1). These assumptions give the following system of

equations for the dynamics of infection of the SI model:

_IIV (t)~bV ,H

IH (t)

NH

NV {IV (t)ð Þ ð1aÞ

_IIH (t)~bH,V

IV (t)

NV

NH{IH (t)ð Þ, ð1bÞ

where bH,V and bV ,H correspond to the disease transmission rates

from vectors to hosts and hosts to vectors, respectively. NH and

NV correspond to the total host and vector population sizes,

respectively. Throughout this work we assume that population

sizes are constant over the course of the epidemic and that

individuals are in the population only if they can potentially

contract the disease. This implies that individuals that are

epidemiologically isolated are not a part of the population. Note

that the dynamics of susceptible host (SH (t)) and vector (SV (t))
populations are completely determined by system (1) because

SH (t)~NH{IH (t) and SV (t)~NV {IV (t).

Because we are interested in detecting a disease as early as

possible, we focus on the dynamics of the system immediately after

disease introduction. Therefore we linearized system (1) about the

disease-free state (IV (0)~0,IH (0)~0) and obtained:

_IIV (t)~bV ,H

NV

NH

IH (t) ð2aÞ

_IIH (t)~bH,V

NH

NV

IV (t): ð2bÞ

We focus our subsequent analyses on the specific scenario of an

epidemic started by an infected host with the initial conditions

(IH (0)w0,IV (0)~0) though analyses of alternative initial condi-

tions (IH (0)~0,IV (0)w0) are presented in Text S3 and S4.

Because of the symmetric nature of system (2), this analysis yields

similar results. With the assumptions listed above, the solution to

system (2) is:

IV (t)~IH (0)
bV ,HNV

lNH

sinh(lt) ð3aÞ

IH (t)~IH (0)cosh(lt), ð3bÞ

where l~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ,HbH,V

p
.

SIR host- SI vector model
For the SIR model we assume that recovered hosts obtain

immunity over the timescale of the epidemic. As in the SI model

Author Summary

Outbreaks of zoonoses can have large costs to society
through public health and agricultural impacts. Because
many zoonoses co-occur in multiple animal populations
simultaneously, detection of zoonotic outbreaks can be
especially difficult. We evaluated how to design sampling
strategies for the early detection of disease outbreaks of
vector-borne diseases. We built a framework to integrate
epidemiological dynamical models with a sampling pro-
cess that accounts for budgetary constraints, such as those
faced by many management agencies. We illustrate our
approach using West Nile virus, a globally-spreading
zoonotic arbovirus that has significantly affected North
American bird populations. Our results suggest that simple
formulas can often make robust predictions about the
proper sampling procedure, though we also illustrate how
computational methods can be used to extend our
framework to more realistic modeling scenarios when
these simple predictions break down.
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the disease cannot spread through direct contacts within host and

vector populations, transmission is frequency-dependent, and

individuals are not born and do not die over the course of the

epidemic. The full model for a single host population and single

vector population is given by

_IIV (t)~
bV ,H

NH

IH (t)(NV {IV (t)) ð4aÞ

_IIH (t)~
bH,V

NV

IV (t)(NH{IH (t){RH (t)){cIH (t) ð4bÞ

_RRH (t)~cIH (t) ð4cÞ

where RH (t) designates recovered individuals and c is the recovery

rate of infected individuals. Note that the dynamics of susceptible

host (SH (t)) and vector (SV (t)) classes are completely determined

by system (4) because SH (t)~NH{IH (t){RH (t) and

SV (t)~NV {IV (t). The corresponding linearized model evaluat-

ed at (IV (0)~0,IH (0)~0,RH (0)~0) is

_IIV (t)~bV ,H

NV

NH

IH (t) ð5aÞ

_IIH (t)~bH,V

NH

NV

IV (t){cIH (t) ð5bÞ

_RRH (t)~cIH (t): ð5cÞ

For an epidemic begun by an infected host

(IV (0)~0, IH (0)w0, RH (0)~0), the solution of (5) is:

IV (t)~IH (0)e{ct=2 2NV bV ,H

mNH

sinh(mt=2) ð6aÞ

IH (t)~IH (0)e{ct=2 cosh(mt=2){
c

m
sinh(mt=2)

� �
ð6bÞ

RH (t)~IH (0)e{ct=2 2c

m
sinh(mt=2), ð6cÞ

where m~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2z4bH,V bV ,H

q
. Solutions for the alternative initial

conditions (IV (0)w0,IH (0)~0,RH (0)~0) for system (5) are given

in Text S4. This analysis is slightly more complicated than that

presented in the main text, but the core ideas remain the same.

Sampling model
Consider sampling at time t from a population with potentially

infected hosts and vectors. Let D(t) denote the set of events such

that the disease is detected from a sample of size s. If the total

population abundance is much greater than the sample size then

P(D(t)), the probability of detecting the disease, can be modeled

as a binomial random variable. When the sample size is

comparable to the population abundance, the hypergeometric

distribution is a suitable sampling model. We do not consider the

hypergeometric model here as the binomial distribution provides a

reasonable approximation for realistic sample sizes. The propor-

tion of infecteds at time t is given by I(t)=N. In a sample of size s,

P(D(t)) is the complement of not detecting any infected

individuals,

Table 1. Descriptions of parameters and sources of parameter estimates.

Parameter Description Value Source

NV Abundance of vectors.

NH Abundance of hosts.

IV or H Number of infected individuals in the vector or host populations.

RH Number of recovered individuals in the host population.

bH,V Daily transmission rate from vectors to hosts. 0.0792 [26]

bV ,H Daily transmission rate from hosts to vectors. 0.0144 [26]

1=c Number of days until infected host recovers. varied

gV or H or R The economic efficiency of the vector, infected host, or recovered host populations.

Cmax Resources allocated to obtaining and running samples in a fixed period of time. 88 in text

bV or H or R Cost of running a sample from the vector population, infected host population,
or recovered host population.

bV ~bH~bR~1 in text

sV or H or R Sample size of the vector population, infected host population, or recovered host
population.

s Optimal sample design for a epidemiological system that is sampled with economic
constraints.

pV or H or R Pool sizes of the vector population, infected host population, or recovered host
population.

pV ~50, pH~pR~6 in text

tX?Y Critical time in a linearized system. At this time the optimal sampling design
changes from stratum X to stratum Y .

doi:10.1371/journal.pcbi.1003668.t001
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P(D(t))~1{ 1{
I(t)

N

� �s

: ð7Þ

When the disease is rare (I(t)=N%1) equation (7) is well

approximated as

P(D(t))&1{e{sI(t)=N :

If there are two sampling strata (e.g., a host and vector, although

the approach works as well for two host species or two strata of

hosts in a single species), we need the probability of detecting the

disease in either of those strata, P(D1(t) or D2(t)). For two strata

this quantity is given by

P(D1(t)|D2(t))~P(D1(t))zP(D2(t)){P(D1(t)\D2(t)) ð8Þ

& 1{e{s1I1(t)=N1

� �
z 1{e{s2I2(t)=N2

� �
{ 1{e{s1I1(t)=N1

� �
1{e{s2I2(t)=N2

� �
& 1{e{s1I1(t)=N1

� �
z 1{e{s2I2(t)=N2

� �
{ 1{e{s1I1(t)=N1{e{s2I2(t)=N2

�
ze{s1I1(t)=N1{s2I2(t)=N2

�
&1{e{s1I1(t)=N1{s2I2(t)=N2 : ð9Þ

A more general form when there are n sampled strata is given by

P
[n
i~1

Di(t)

 !
&1{e

{
Pn

i~1
siIi (t)=Ni , ð10Þ

as shown in Text S1.

We also consider the probability of detecting the disease for the

first time in the kth sample when sampling occurs regularly at

discrete time intervals. A model of detecting the disease in the

current sampling period, but not before, is a geometric distribution

with time-dependent detection probabilities:

P(k)~ 1{e
{
Pn

i~1
si Ii (tk )=Ni

� �
P
k{1

j~1
e
{
Pn

i~1
si Ii (tj )=Ni

� �
: ð11Þ

Here the number of infecteds in stratum i in the jth sampling

period is given by Ii(tj). Sampling strata are defined by both the

animal population being sampled and the type of test that is run.

For example, immunological tests on bird populations for West

Nile virus can test whether individuals are currently infected or

have been previously infected by the type of antibody present in

the sample. Antibody-specific tests therefore distinguish between

infected birds and recovered birds. The first term on the right-

hand side of expression (11) represents the probability of detecting

the disease in time period k. The remaining k{1 terms (given in

capital Pi notation, P) represent the probability of not detecting

the disease in sampling period j, where j runs from 1 to k{1. The

product of these k{1 terms gives the probability of not detecting

the disease in any of the j~1 to k{1 sampling periods. We

minimized the time until detection of the epidemic using the

geometric probability distribution defined in equation (11) and by

using the expected time to detection, given by

E½K �~
X?
k~1

kP(K~k): ð12Þ

This expected value is an infinite series that converges to an

unknown quantity, therefore we numerically approximated E½K�.
We have so far considered the possibility of sampling and testing

infected and recovered individuals in populations. However, a

common practice in zoonotic surveillance is to combine samples

from multiple individuals in the stratum of interest in order to save

money (e.g., [20]). Though this pooled sampling does not identify

which individual tested positive for the virus, the goal of

surveillance is often to identify the presence of the virus instead

of a specific infected individual. Pooling sizes must be constrained

to prevent the possibility of a positive individual sample being

diluted below detectable levels, often determined using experi-

mental dilutions in the laboratory (e.g., [21]). To incorporate

pooled sampling into our sampling model, we rescaled the

probability of a positive detection in a single sample by the

number of individuals in a pool, p: the probability of detection in a

single pooled sample of strata i at time t can then be approximated

using a linearized binomial expansion:

1{ 1{
Ii(t)

Ni

� �pi

&pi
Ii(t)

Ni

: ð13Þ

Approximation (13) works well when
Ii(t)

Ni

vv1. Our simulations

indicate that a 10% approximation error occurs when

p
Ii(t)

Ni

&0:25, suggesting the approximation is robust for the

purpose of early detection. Pooled sampling modifies (10) and (11)

to

P
[n
i~1

Di(t)

 !
&1{e

{
Pn

i~1
pisiIi (t)=Ni ð14aÞ

P(k)~ 1{e
{
Pn

i~1
pisi Ii (tk)=Ni

� �
P
k{1

j~1
e
{
Pn

i~1
pisi Ii (tj )=Ni

� �
: ð14bÞ

Our goal is to determine the resource allocation that will allow us

to detect a disease as early as possible. We therefore introduce

economic constraints on this sampling process in the next section.

Economic constraints and optimization
Agencies are often faced with monitoring endemic and

emerging diseases with finite resources. This necessitates allocating

those resources in the most efficient way possible. We applied a

cost function to describe these constraints: we let Cmax be the

budget for a set of samples taken periodically and C(s1, . . . sn) be

the cost of sampling si individuals from stratum i, 1ƒiƒn. If we

assume that we spend our entire budget then C(s1, . . . sn)~Cmax.

For example, a linear cost function for a vector stratum and a host

stratum can be written as

Cmax~aV zbV sV zaHzbH sH , ð15Þ

where aV and aH are the overhead costs (operating costs)

associated with sampling vectors and hosts respectively, while bV

and bH are the corresponding costs per sample.

Optimal Sampling Strategies for Detecting Zoonotic Disease Epidemics
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We used the Karush-Kuhn-Tucker (KKT) conditions [22] to

find the sampling strategy s�~(s�1, . . . s�n) that maximizes the

probability of detection (given by equation (14a)) or minimizes the

time to disease detection (given by equation (14b)). The KKT

approach allows the minimization of a function subject to

inequality constraints, e.g., constraining the sample sizes to be

nonnegative. Further details on this method, as well as some

general results for cases with linear objective functions, are

provided in Text S2 and S3.

Results

Here we apply the sampling framework defined in the Methods

to hypothetical epidemics of West Nile virus. We provide some

analytical results and examine via computer simulation how well

our early-time approximations match the corresponding full

models.

SI dynamics
A general solution to the host-vector SI model. We now

determine the sampling scheme that maximizes the probability of

disease detection under the assumptions of the full SI model for

one host and one vector species, given by system (1). To find

potential optimal sampling schemes in the SI host-vector model,

s�~(s�V ,s�H ), we maximize the probability that the disease will be

detected in a single sampling trial at a fixed time t, assuming that

the states IV (t) and IH (t) are known. When applying the KKT

conditions to equations (10) or (11), we see that the optimal

sampling scheme depends on a quantity that we call the economic

efficiency of a stratum. The economic efficiency of stratum j is

gj : ~
Ij(t)

NjCsj
(s�)

, ð16Þ

where Csj
(s�) is the partial derivative of the cost function with

respect to the sample size of the jth stratum evaluated at the

optimal strategy s�. The economic efficiency, g, gives the marginal

return on a dollar investment: i.e., it gives the expected number of

new positive detections for a small change in added investment.

This quantity, derived in Text S3, is useful for testing the

conditions needed to determine the optimal sampling design.

With reference to Text S3, and making no assumptions about

the form of the cost function C, we see that there are five possible

types of optimal sampling scheme. First, it is possible that there is

no nontrivial optimal sampling sampling scheme. This would be

the case if the total overhead cost was as large or larger than the

budget (i.e. aV zaH§Cmax). Next, if the disease is not present, all

economically feasible sampling schemes give the same (zero)

probability of detection. Lastly, if neither of these cases holds, then

there exists some nontrivial optimal sampling scheme s�. The

KKT conditions give candidates for s�. All candidates must then

be evaluated to determine the true optimal sampling scheme s�.
Candidates for the nontrivial optimal sampling scheme at a fixed

time t are determined by comparing gV (t) and gH (t):

First, if there exists some s�~(s�V ,s�H ) such that s�V §0, s�H§0

and if

gV (s�)~gH (s�) ð17Þ

then s� is a candidate for the optimal sampling scheme. This

sampling scheme would involve sampling from both the vector

and the host populations. Second, if there exists some s� such that

s�V §0, s�H~0 and if

gV (s�)wgH (s�) ð18Þ

then s� is a candidate for the optimal sampling scheme. This

sampling scheme would entail sampling from only the vector

population. Third, if there exists some s� such that s�V ~0, s�H§0

and if

gV (s�)vgH (s�) ð19Þ

then s� is a candidate for the optimal sampling scheme. This

sampling scheme would entail sampling from only the host

population. Note that for a nonlinear cost function, it is possible

that more than one of (17)–(19) may hold at the same time for

different sampling strategies. Once all candidates for s� have been

found, the probability of detection (given in (10)) must be evaluated

for each candidate and maximized.

In the case of a linear cost function, that is, when

C(sV ,sH )~aV zbV sV zaHzbH sH , the partial derivatives

CsV
(sV ,sH ) and CsV

(sV ,sH ) are constants. Thus, the expressions

for gV and gH are independent of s�:

gV (s�)~
IV (t)

NV CsV
(s�)

~
IV (t)

NV bV

gH (s�)~
IH (t)

NH CsH
(s�)

~
IH (t)

NH bH

:

Now, since at any time t only one of the relations (17)–(19) can

hold, there is only one candidate for the nontrivial sampling

scheme s� and we have that the relative magnitudes of
IV (t)

NV bV

and

IH (t)

NH bH

, or equivalently
IV (t)=NV

IH (t)=NH

and
bV

bH

, determine the nontrivial

optimal sampling scheme s�. Thus, we deduce the shape of the

curve
IV (t)=NV

IH (t)=NH

with respect to time t. A complete treatment of

this problem is given in Text S3. Here, we give an outline of the

solution, though the rest of this section can be skipped by readers

uninterested in this level of mathematical detail.

To simplify our notation in the following analysis, we define

V (t)~
IV (t)

NV

and H(t)~
IH (t)

NH

ð20Þ

to be the proportion of the vector (host) population that is infected.

We are then concerned with the curve
V (t)

H(t)
. Noting that whenever

V (t) is positive H(t) is strictly increasing with respect to time t, we

reparameterize V (t) as a function of H to obtain V (H). We now

see that our original problem is equivalent to characterizing the

curve
V (H)

H
with respect to H. Thus we can rewrite the conditions

outlined in equations (17)–(19) as:

V (H)

H
~

bV

bH

[sample both vectors and hosts ð21Þ

V (H)

H
w

bV

bH

[sample only vectors ð22Þ

Optimal Sampling Strategies for Detecting Zoonotic Disease Epidemics
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V (H)

H
v

bV

bH

[sample only hosts: ð23Þ

The curve
V (H)

H
can be completely characterized by the ratio

bH,V=bV ,H and the initial conditions (Text S3). The three relative

states of bH,V=bV ,H (i.e., w1, ~1, or v1) and the two initial

conditions (i.e., the disease starts in the vector vs. the host) define

six qualitatively different curves for
V (H)

H
(Figure 1). It is

important to note that for fixed sampling costs bV and bH , the

optimal sampling scheme depends only on the proportion of a

population that is infected (V and H ). Thus the number of

infecteds (IV and IH ) and the time since introduction affect the

optimal sampling scheme only via their influence on the

proportion of a population that is infected.

We can use Figure 1 to elucidate the optimal sampling scheme

at a given time. If the curve
V (H)

H
lies above

bV

bH

(i.e. satisfies (22)),

then the optimal scheme is to sample only vectors. Conversely, if

the curve
V (H)

H
lies below

bV

bH

(i.e. satisfies (23)), then the optimal

scheme is to sample only hosts. In all six cases, the best sampling

scheme at very early times (corresponding to a small proportion of

the host population being infected, i.e. small H) is to sample the

population in which the epidemic originated; however, as the

epidemic progresses, it is possible to have a switch to sampling the

population that was not initially infected.

Lastly, we consider the effect of sampling error on our

determination of optimal sampling scheme. Suppose there is a

small error EV (EH ) in the detected proportion of infected vectors

(hosts). Then by equations (21)–(23), the optimal sampling scheme

is determined by comparing the relative magnitudes of
V (H)+EV

H+EH

and bV

bH
. Early in the progression of the epidemic, both V (H) and

H may be very small, even on the same order of magnitude as the

errors EV and EH . In this case, sampling error can easily alter the

determined optimal sampling scheme. As the disease progresses,

V (H) and H become larger and the perturbation by EV (EH )

becomes less significant. In the following example, we revert to our

original notation, given in (20).

A general SI model of West Nile virus. We illustrate an

application of sampling optimization by applying our approach to

West Nile virus, a mosquito-borne pathogen introduced to the

United States in 1999 [23]. Since introduction the disease has

resulted in numerous deaths in humans [24] and large-scale

declines in bird abundances [25]. Testing for West Nile virus has

often relied on counts of dead birds. However, as pointed out by

Hochachka et al. [10], this may only be useful for indicating the

later stages of severe epidemics and thus fails to lead to effective

containment of the epidemic. Here, we examine an alternative

strategy wherein both mosquito traps and sentinel chickens,

groups of chickens placed in cages and distributed throughout an

area, are used to detect a disease epidemic. In the following

analyses we investigate sampling between vector and bird host

populations but neglect spillover hosts such as humans and horses.

Epidemiological parameter values are taken from the literature

[26] or determined here; a summary is provided in Table 1. We

Figure 1. The relative magnitudes of V(H) and H under six cases that differ in initial condition and relative transmission rates. The

position of V (H)
H

(above or below) relative to the red dashed line (of height one) remains the same for any choice of bH,V and bV ,H within each case

shown. The parameters used are as follows. Case 1:
bH,V

bV ,H
~0:2, V (0),H(0)ð Þ~(0:04,0); Case 2:

bH,V

bV ,H
~0:2, V (0),H(0)ð Þ~(0,0:04); Case 3:

bH,V

bV ,H
~1,

V (0),H(0)ð Þ~(0:04,0); Case 4:
bH,V

bV ,H
~1, V (0),H(0)ð Þ~(0,0:04); Case 5:

bH,V

bV ,H
~5, V (0),H(0)ð Þ~(0:04,0); Case 6:

bH,V

bV ,H
~50, V (0),H(0)ð Þ~(0,0:04). Note

that smaller initial conditions do not change the qualitative behavior shown. Instead, as H?0, the blue curve would approach the origin in Cases 2, 4,
and 6, and the blue curve would approach positive infinity in Cases 1, 3, and 5.
doi:10.1371/journal.pcbi.1003668.g001
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assumed that the overhead costs were zero (aV ~aH~0) and that

the cost of running a test is the same for a sample of mosquitoes or

birds, which we set to the arbitrary value of 1 (bV ~bH~1).

Mosquito samples are usually pooled into batches of around 50

individuals [20], while blood samples are pooled from birds in a

single sentinel chicken cage, usually with 6 birds. Therefore we let

pV ~50 and pH~6. In the following analyses we assumed that the

disease is introduced by the host, rather then the vector. This is

likely a more common method of introduction for West Nile virus

as birds typically move over much greater distances than

mosquitoes (e.g., [27]).

We let sV be the number of pooled vector samples tested and sH

be the number of pooled host samples tested so that pV sV and

pH sH are the total number of individuals tested in the vector and

host populations. Plugging the values defined above into (15) gives

Cmax~sVzsH , while the economic efficiencies for the vector and

host populations are given by

gH~pH

IH (t)

NH

~6
IH (t)

NH

and

gV ~pV

IV (t)

NV

~50
IV (t)

NV

,

respectively. The slight modification of the economic efficiencies

given in (16) includes the effect that pooling has on increasing the

economic efficiency of sampling. We assumed a weekly budget

commensurate with a county-level mosquito control agency. For

example, the agency in Hillsborough County, Florida maintains

13 sentinel chicken flocks and 75 mosquito light traps that are

typically checked weekly during peak season. Thus, we assumed

that the weekly budget is Cmax~75z13~88.

We now use the analysis of the previous section to obtain some

qualitative results regarding the aforementioned disease detection

scenario. Recall that bV~bH , but that different numbers of

mosquitoes (pV ~50) and chickens (pH~6) are pooled. As a result,

the conditions given in (21)–(23) become:

IV (t)=NV

IH (t)=NH

~
bV pH

bH pV

~
6

50
[sample both vectors and hosts

IV (t)=NV

IH (t)=NH

w

bV pH

bH pV

~
6

50
[sample only vectors

IV (t)=NV

IH (t)=NH

v

bV pH

bH pV

~
6

50
[sample only hosts:

Note that from the parameter values given in Table 1 we have

bH,V

bV ,H

~
0:0792

0:0144
~5:5,

which is larger than one. Thus, (by Table 3 in Text S3) if a vector

is initially infected, the curve
IV NH

NV IH

is qualitatively similar to that

shown in Case 5 of Figure 1. If a host is initially infected, the curve
IV NH

NV IH

is qualitatively similar to that shown in Case 6 of Figure 1.

Suppose that a host is initially infected. (Figure 1, Case 6) Then
IV NH

NV IH

is close to zero at early times, so the above conditions imply

that the optimal sampling strategy is to sample only hosts. As the

infected vector population grows and becomes larger than
6

50
,

there is a switch from sampling only the host population to

sampling only the vector population. Since this switch depends on

the ratio of the proportions of the populations that are infected, the

switch will occur at different times for different total population

sizes, assuming a constant number of initially infected individuals

and constant transmission rates. Note that if it is more expensive to

sample the host population than the vector population (bV vbH )

then the time to switch from sampling only hosts to sampling only

vectors is earlier. Conversely, if it is more expensive to sample

vectors (bVwbH ) then the switch time becomes later.

It is easy to show that for the parameter values given in Table 1

if a vector is initially infected, then
IV NH

NV IH

is always greater than
6

50
and the optimal sampling strategy is to expend the entire budget

sampling vectors. If it becomes more expensive to sample hosts

(bHwbV ), then the optimal sampling scheme does not change.

Conversely, if it becomes sufficiently less expensive to sample hosts

(bHvbV ) then there is a switch from sampling only vectors to

sampling only hosts. As bH becomes smaller, the switch time

becomes earlier. In the following section we show how to solve for

the switch times using an approximation to this model.

Optimal sampling of the linearized SI model. Here we

consider specific solutions of the linearized SI system, given by

system (2), under the linear cost function described in the previous

section: Cmax~sV zsH . This simplified system can provide

practitioners with some insight on sampling design when not

much detailed information is known about the functional form of

disease dynamics. When there is doubt about the validity of these

approximations, the full solutions developed in the previous

section can be used to determine the range over which linear

approximations will be useful. Here and through the rest of the

manuscript we only consider the introduction of disease by the

more migratory host population, though calculations are provided

for alternative initial conditions in Text S4.

Applying the KKT conditions (Text S2) to the linear solutions

(3) shows it is optimal to place all of the sampling effort into either

the host or vector populations when cost functions are linear. As

above, we determined the stratum to sample by calculating and

comparing the economic efficiencies of each stratum. The

economic efficiencies with pooled sampling for this system are

given by gH~pH

IH (t)

bH NH

and gV ~pV

IV (t)

bV NV

. With this model it is

possible for the sampled population to switch at some critical time

as discussed in the previous section, denoted tH?V , when the most

economically efficient stratum changes from host to vector. If such

a switch occurs, the critical time occurs when

gH (tH?V )~gV (tH?V )

pHIH (0)
cosh(lt)

bHNH

~pV IH (0)
NV bV ,Hsinh(lt)

bV NV lNH

tH?V ~
1

l
atanh

lpH bV

bV ,H pV bH

� �
: ð24Þ
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Substituting l~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bH,V bV ,H

p
in the above equation, and since

atanh is defined only when its argument is less than one in

absolute value, we see that tH?V exists only if

ffiffiffiffiffiffiffiffiffiffi
bH,V

bV ,H

s
pH bV

pV bH

v1: ð25Þ

Additionally, since
d

dt
gV (t)

����
t~tH?V

w

d

dt
gH (t)

����
t~tH?V

wheneverffiffiffiffiffiffiffiffiffiffi
bH,V

bV ,H

s
pH bV

pV bH

v1, vectors are the most economically efficient

stratum at times later than tH?V . The critical time for the

alternative case, (IV (0)w0,IH (0)~0), is given in Text S4.

The linearized SI sampling model applied to West Nile

virus. We now revisit the example of West Nile virus using the

linearized approximations derived in the previous section. First,

the presence of a critical-time in the binomial sampling model was

demonstrated because

ffiffiffiffiffiffiffiffiffiffi
bH,V

bV ,H

s
pH

pV

bV

bH

~0:28 (parameter values

given in Table 1), which satisfied condition (25). Using (24), the

critical time to switch from sampling hosts to vectors was

tH?V ~8:6 days. This is a short timescale when the sampling

period is weekly; therefore, if the population is large then it is

unlikely that the virus will be detected in the first week after initial

infection and a reasonable time-independent strategy is to place

most or all of the sampling effort into the vector population.

We also explored optimal sampling in the full SI model through

simulation. This allowed us to determine how well our decisions

based on binomial sampling with linearized dynamics approxi-

mated the full SI model with geometric sampling. We used the

same parameter values as above but we varied both population

abundances independently over several orders of magnitude. NH

was varied from 103 to 1010 individuals and NV from 104 to 1010

individuals. For each combination of population abundances

considered, we simulated the dynamics of an SI epidemic using

numerical solutions to the nonlinear system (1). We then calculated

the expected time to disease discovery using (12) and tested each

potential sampling strategy (the host sample size, sH , ranged from

integers 0 to 88 and the vector sample size was sV ~88{sH ). We

found that the optimal sampling strategy, s�, for all population

abundances considered was dependent on NH and independent of

NV . When NH§3299 the optimal solution was (s�V ~88,s�H~0),

when NHƒ1399 the optimal solution was (s�V ~0,s�H~88), while

within this relatively narrow range of abundances we found that a

linear relationship described a mixed ideal strategy, where

s�H~{0:046NHz152:80 and s�V ~88{s�H . Slope and intercept

coefficients were calculated from simulation output. This suggests

that when the sample size, sH , is less than 16% of the total

population size, NH , then the linearized system provides a

reasonable approximation.

Finally, we looked at the error due to suboptimal sampling by

calculating the difference in time to detection of the epidemic by

comparing the applied sampling design consistent with the

parameters we inferred from the Hillsborough County mosquito

control agency with sV ~75, sH~13 to the optimal sampling

design s�(NH ). Proportional error levels were high when the

vector population abundances were low, with an error of

approximately 30% when NH&103, but this value quickly

decreased (Figure 2). The absolute error in expected detection

timing between the optimal and suboptimal sampling designs was

about a week for all population abundances considered.

SIR dynamics
A solution to the linearized SIR host- SI vector

dynamics. In the case where the host population follows the

SIR dynamics defined in (5) we must consider sampling between

infected vectors (IV (t)), infected hosts (IH (t)), and recovered hosts

(RH (t)). As a host progresses through the infected class and into

recovery the relative quantities of virus and antibodies within the

host change. Typically, different testing procedures are used to

detect infected individuals and recovered individuals [28,29].

Therefore, a framework to determine whether to sample for

infected or recovered individuals can save resources and poten-

tially lead to faster detection times. Here, using the expression for

P(D(t)) (10), the linearized solutions (6), and assuming a linear cost

function (15), we solve for critical times at which the optimal

sampling strategy changes.

We consider four critical times: tH?V , tH?R, tV?R, and tR?V .

The first, tH?V , is the time at which the optimal sampling strategy

switches from sampling only infected hosts to sampling only the

vector population. The time at which the optimal sampling

strategy switches from sampling infected hosts to sampling

recovered hosts is tH?R. The times tV?R and tR?V give the

critical switches from sampling only the vector population to

recovered hosts or vice-versa. The other potential critical times

tV?H and tR?H are not considered here because they do not exist

at early times for for these initial conditions

(IV (0)~0,IH (0)w0,RH (0)~0), but expressions are given for

alternative initial conditions in Text S4.

The first critical time, tH?V , is given by the equivalence of the

economic efficiencies for the infected vectors and hosts,

gH (tH?V )~gV (tH?V ). Similar to the process in the SI model

we plug in IV (tH?V ) and IH (tH?V ) from (6) into the economic

efficiencies and solve for tH?V . This gives

tH?V ~
2

m
atanh

mbV pH

2bH,V bH pV zcbV pH

� �
: ð26Þ

Figure 2. Percent difference in the expected detection time
between the optimal, s�, and suboptimal, (sV~75, sH~13),
sampling schemes as a function of the host population
abundance, NH. The vector sample size is denoted as sV , and
the host sample size is denoted by sH .
doi:10.1371/journal.pcbi.1003668.g002
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Note that since the argument of atanh must be less than one in

absolute value, tH?V exists only if
mbV pH

2bH,V bH pV zcbV pH

v1.

Additionally, since
d

dt
gV (t)

����
t~tH?V

w

d

dt
gH (t)

����
t~tH?V

whenever

mbV pH

2bH,V bHpV zcbV pH

v1, vectors are the most economically

efficient class at times later than tH?V . This formula is analogous

to the SIS case given in equation (24), with some slight

modifications due to the additional recovery state. As the recovery

rate c goes to 0, the above expression for tH?V approaches the

SIS formula given in (24).

The second case, tH?R, occurs when the economic efficiencies

of infected and recovered hosts are equal, gH~gR. We first need

to define bR and pR, the cost per sample and pooling sizes of the

recovered vector stratum. Plugging in solutions from (6) gives,

tH?R~
2

m
atanh

mbRpH

2cbH pRzcbRpH

� �
, ð27Þ

where bR is the cost per sample for recovered hosts and tH?R

exists only if
mbRpH

2cbHpRzcbRpH

v1. Additionally, since

d

dt
gR(t)

����
t~tH?R

w

d

dt
gH (t)

����
t~tH?R

whenever
mbRpH

2cbH pRzcbRpH

v1, recovered hosts are the most economically efficient class at

times later than tH?V .

The third and fourth cases are the switch from infected vectors

to recovered hosts and vice versa. As before we set equal the

economic efficiencies, gV (t)~gR(t), with appropriate substitutions

for IV (t) and RH (t). With the linearized solutions (6), the ratio of

the economic efficiencies is a constant,

gV (t)

gR(t)
~

pV bRbV ,H

pRbV c
ð28Þ

This means that tV?R and tR?V do not exist. Instead, the

economic efficiencies determine which stratum is sampled by

evaluating whether (28) is greater than or less than 1. If the ratio is

greater than 1 it will be optimal to sample from the vector stratum;

when less than 1 it is optimal to sample from the recovered host

stratum. Critical times for an alternative initial conditions

(IV (0)w0,IH (0)~0,RH (0)~0) of the linearized SIR model with

binomial sampling are provided in Text S4.

An SIR model of West Nile virus. We first applied the

critical time expressions derived in the previous section using the

linear approximation (6) and binomial sampling model (14a) to

determine the optimal sampling design, s�. We then used

simulations to determine if these values were consistent with the

nonlinear SIR (4) and geometric sampling model (14b). We

explore the optimal sampling design as a function of the unknown

recovery time of the bird populations, 1=c.

Applying the linearized dynamics and binomial sampling

model, we found that the critical switch between infected hosts

and vectors, tH?V (equation (26)), was less than two days for all

recovery times (Figure 3). Therefore, with a weekly sampling

protocol it will be more economically efficient to sample for

infected vectors rather than for infected hosts. We next tested

whether it is better to sample infected vectors or recovered hosts.

Looking at equation (28), we found it is optimal to sample from the

recovered host class when 1=cv8:33. Otherwise, it is optimal to

sample from the infected vectors class. Taken together, our

analysis suggests that if the recovery time is less than about 8 days,

it will be best to sample from the recovered host stratum; otherwise

it will be best to sample from the infected vector stratum, and in all

scenarios the infected host class can be ignored.

Applying equation (26) can potentially be misleading when the

initial infection is presumed to be in the host population and it

really originates in the vector. In this case the true switch time is

given by tV?H (Text S4, equation (S27)) for which a switch time

does not exist for any c. The switch from vectors to recovered hosts

for these alternative initial conditions is given by equation (S27),

and this exists when 1
c ~8:33. However, the switch times predicted

are all very large with tV?Rw100 days so the optimal strategy

would be to always sample for infected vectors. This suggests there

would be error in this scenario from poor assumptions about the

initial condition when 1
c ƒ8:33, though for higher recovery times

we correctly decide to sample infected vectors. We examine the

potential costs of this incorrect decision in terms of the expected

time to detection at the end of the following analysis.

We examined the robustness of our predictions using simula-

tions of the full SIR model with geometric sampling to find the

optimal sampling design s� for recovery times ranging from 1 to 50

days (c~1 to 1=50). Our model predictions showed that s�

depends on the recovery time in a manner similar to the linearized

solutions, however, at low NH there was a narrow region of

parameter space where a mixed solution was optimal. At sampling

levels where the host sample size, sH , was *20% or more of the

total host population size, NH , the optimal solution, s�, depended

on the infected host population mixed with either recovered hosts

(1=cƒ8) or infected vectors (1=cw8) (Figure 4). The critical value

of 1=c~8 defined where the solution switches between recovered

hosts and infected vectors consistent with predictions from the

Figure 3. The critical time as a function of the unknown
recovery time, 1=ª. Because the switch time between infected hosts
and vectors (tH?V ) is always be less than two days, with weekly
sampling periods it will be better to sample for infected vectors than for
infected hosts.
doi:10.1371/journal.pcbi.1003668.g003
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linearized model. There were no values of s� where all three

classes were to be sampled. Overall, the linearized results provided

a useful guide to the optimal sampling design except for the

narrow region of parameter space where mixed sampling designs

were found to be optimal at low NH (Figure 4).

Our results from the linearized binomial sampling models for

both the SI and SIR dynamics appeared robust to several of our

assumptions as the effects of both the linearized dynamics and

choice of sampling model had little effect on the optimal sampling

design for West Nile virus. However, our results were sensitive to

low host population sizes where the nonlinear models suggest that

a mixed sampling design that incorporates both vectors and

infected hosts will be optimal when it is possible to sample a

significant proportion of the host population. In cases where the

host population is sufficiently large, our analysis recommends

placing sampling effort into infected vector populations given that

current evidence suggests either long recovery times or persistent

infections for West Nile virus in bird populations [30,31]. When

the sampling size is 20% or more of the total population size then

more detailed models should be explored such as the full SI and

SIR models.

We tested the sensitivity of the time to detection on the initial

conditions by simulating the optimal decision of an outbreak with

initial conditions (Iv(0)~0,IH (0)~1,RH (0)~0) when the out-

break actually occurred with initial conditions

(Iv(0)~1,IH (0)~0,RH (0)~0) for 1
c ~1 to 30 and NH~103

and 104. We found that when the recovery time, 1
c w8, and NH

was high the optimal decisions between the two initial conditions

were consistent and there was no error (Figure 5). However when

NH was low, or the recovery time was less than 8 days the optimal

decisions differed strongly between initial conditions. This led to

significant error in the expected time to detection, on the order of

5 to 6 weeks for low recovery times and 1–3 weeks for the low

population sizes and high recovery times (Figure 5).

Discussion

Active surveillance is an important tool for decision makers;

treating the process analytically can provide some important

insights on how to conduct cost-efficient surveillance. Very little

past work in mathematical epidemiology has focused on early

detection despite these potential benefits. One of the important

products of this analysis has been to explicitly define the kinds of

data that will be needed to design basic surveillance studies.

Specific knowledge about the costs associated with sampling

different populations and information about disease transmission

rates will be necessary when making very specific predictions, but,

as we have shown, applying the procedure with only basic

knowledge of these quantities can make predictions that may be

robust. This is fortunate for monitoring agencies as ecological and

epidemiological parameters can be difficult and costly to obtain.

Our analyses of West Nile virus illustrates robustness to

parameters that are often unknown over a variety of models and

assumptions.

Although we focused on basic SI and SIR models, this

framework can be easily extended to include more specific models

when they are available. It is likely that West Nile virus models

that incorporate more biological realism (e.g., [32]) will be

necessary to provide more targeted advice concerning surveillance

practices for specific management agencies, whose monitoring

capabilities may differ from what was assumed in this work.

Figure 4. The optimal sampling strategy as a function of vector population abundance, NH and the time to recovery, 1=ª. The pure
magenta region corresponds to an optimal sampling design of (s�V ~88,s�H~0,s�R~0), where the vector sample size is denoted as sV , the sample size
for testing infected hosts is denoted by sH , and the sample size for testing recovered hosts is denoted by sR. The pure cyan region corresponds to an
optimal sampling design of (s�V ~0,s�H~0,s�R~88). These two regions are separated at recovery times of 1=c~8. Regions with yellow correspond to
mixed solutions of the form (s�V ~0,s�Hw0,s�Rw0) when 1=cƒ8, or (s�V ~w,s�H~0,s�Rw0) when 1=cw8.
doi:10.1371/journal.pcbi.1003668.g004
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However, because the timescales we are examining are relatively

short, our models may provide robust predictions when sampling

is conducted over limited spatial scales. Therefore, even the

simplified models examined here may be useful for designing

sampling strategies when more detailed ecological and epidemi-

ological information is not available.

Our results suggest that the optimal sampling design will often

focus all sampling effort on a particular species or compartment.

This result is due to the linear nature of the cost functions and the

approximately linear nature of the dynamical systems as functions of

our control variable, the sample sizes, s. These on-off or ‘‘bang-

bang’’ types of solutions arise in other epidemiological problems

when determining how to treat or remove individuals in infected

populations to stop an epidemic [33–35]. More recent work on the

control of epidemics suggests that when considering multiple control

strategies the optimal solution is not simply an additive combination

of the independent control solutions [36]. Similar results may hold

for surveillance methods when combining different types of

surveillance strategies, for example active and passive sampling

strategies. In cases where linearity and large population approxi-

mations for the dynamics do not hold, our analysis suggests that the

optimal sampling design can be a mixture of sampling strata but this

occurs over a very limited parameter space for West Nile virus

(Figure 4). Nonlinear cost functions may also arise when the cost per

sample changes when performing a large number of samples due to

reductions in the associated personnel costs or in the laboratory fees

incurred in performing a large number of tests. Changing the

dynamical model by incorporating more detailed ecological and

epidemiological considerations may also reduce the robustness of

our linearization approximation. For example, introducing spatial

structured populations [37] or heterogeneous contact rates are

known to lead to additional nonlinearities in incidence functions

[38,39].

There are several additional considerations that may improve

upon our efforts. Many disease models include exposed compart-

ments (e.g., malaria [40]) in the host and/or vector population that

can delay the onset of infectiousness once bitten. This may lead to

additional possibilities in the switch time analysis that we did not

consider. For example, if a host population is initially infected but

has a long exposed period then there may be a quick switch to

sampling the vector population followed by switches at longer time

scales back to the host population. Additional important develop-

ments include treating the initial conditions and transmission

process as random variables. This will likely lead to a distribution

of optimal strategies rather than a single, fixed strategy [41].

Recognizing uncertainty in the initial conditions may be especially

important when the source of infection is unclear given the

potential sensitivity of the sampling process to the initial infections.

We also did not consider the possibility of testing for multiple

pathogens in this analysis. For example in Florida, mosquito

control agencies regularly screen for malaria, West Nile virus, and

dengue fever among others [12]. Applying a mixed sampling

strategy may allow managers to hedge their bets because the

optimal strategy for West Nile virus may not necessarily translate

to the early detection of other pathogens. Finally, our assumption

that diagnostic tests for pathogen or antibodies provide perfect

indicators of an individual’s state may be violated by several

factors. First, immunological dynamics can lead to low viral or

antibody levels even when individuals have been infected, which

may lead to low test reliability [29]. Extending the approach to

coupled immunological-epidemiological models may account for

this source of uncertainty. Second, and perhaps more importantly,

imperfect diagnostic test reliability can arise due to stochastic

factors that cannot be accounted for in conventional lab

techniques. These effects can be incorporated into a sampling

model by multiplying the economic efficiency by a random

variable representing the test sensitivity and specificity [42].

Despite the recognized impact of emerging zoonoses on human

health [43] we are aware of no work that attempts to integrate the

active surveillance systems explored here with disease surveillance

in humans. In diseases where humans are spillover hosts, such as

West Nile virus, low human incidence is expected. Passive

surveillance is often more economically efficient when dealing

with rare events [44] but this reporting process differs from the

assumptions made in this work. In passive surveillence the

reporting effort will often vary through time due to seasonal and

institutional effects. Incorporating these factors into a predictive

framework will require the statistical analyses of these patterns

[11]. When including the surveillance of humans for West Nile

virus we expect that reductions in the time to detection will occur

when the recovery rate (c) is high or the human population size is

low relative the the vector population, as this is when hosts are

most efficient to sample for detecting the disease (Figure 4), though

the particular effects will depend on the amount of sampling effort

and the transmission rate to humans from the vector. In general

we expect that accounting for passive human surveillance of

zoonoses may change the optimal active surveillance strategy for

wildlife populations as it may not be necessary to sample hosts that

have strong interactions with humans or species that significantly

lag behind the epidemiological response of humans.

Another important case that we did not consider here are

zoonotic diseases such as avian influenza, which spread much

more easily within one zoologic species than across-species. For

these diseases, the goal of surveillance is to detect a subtype of the

disease more virulent in humans, indicated by sustained human to

human transmission. This sampling needs to be tailored to detect

clusters of human cases linked to a single avian-to-human

Figure 5. The sensitivity of the expected time to detection on
initial conditions. We calculated the deviation from the minimal time
to detection when we assume that an epidemic starts in the host
population and the the number of initially infected vectors is zero
(IV (0)~0,IH (0)~1), but the initial conditions of the outbreak are
actually (IV (0)~1,IH (0)~0). We did this for two host sample sizes of
NH~103 and NH~104 , and over a range of recovery times (1=c) from 1
to 30 days.
doi:10.1371/journal.pcbi.1003668.g005
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transmission that deviate from what is to be expected from low-

level human-to-human and bird-to-human transmission [45]. This

kind of surveillance will require more detailed contact tracing that

is not accounted for in our framework, though the basic structure

we have described here could still be applied. More complex

statistical analyses will also be needed to determine whether levels

of infecteds and recovereds are significantly higher than

background levels in order to determine if an outbreak is

occurring. Analyses such as those determining epidemic thresholds

from public health data (e.g. [45–47]) will be useful starting points

for integrating thresholds into detecting epidemics of endemic

zoonotic diseases.
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