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Focal adhesions (FA) are large macromolecular assemblies relevant for

various cellular and pathological events such as migration, polarization,

and metastatic cancer formation. At FA sites at the migrating periphery of

a cell, hundreds of players gather and form a network to respond to extra

cellular stimuli transmitted by the integrin receptor, the most upstream

component within a cell, initiating the FA signaling pathway. Numerous

cellular experiments have been performed to understand the FA architec-

ture and functions; however, their intricate network formation hampers

unraveling the precise molecular actions of individual players. Here,

in vitro bottom-up reconstitution presents an advantageous approach for

elucidating the FA machinery and the hierarchical crosstalk of involved

cellular players.

Cellular adhesions are crucial for the development of

multicellular organisms and tissue morphogenesis, as

they enable cells to connect to each other and to their

environment. Cells attach to their surroundings via

large intracellular molecular assemblies called focal

adhesions (FA), which are localized at the plasma

membrane. They are responsible for two major cellular

processes: First, they provide direct mechanical links

between the extracellular matrix (ECM) and the cell

through connections to the cytoskeleton. Second, they

sense the environment and bidirectionally transmit sig-

nals across the plasma membrane [1–3]. Besides pro-

viding structural connections, FAs also play a role in

transmitting signals that can affect cell survival or dif-

ferentiation by altering gene expression (reviewed in

[4]). Aberrant FA functions have detrimental effects

and are linked to several pathologies. Therefore, it is

critical to understand how cells manage to properly

function during adhesion and how they dynamically

connect to their surrounding tissue.

A central component of FAs is the transmembrane

integrin receptor, recognizing extracellular cues [5].

The activation of integrin can be triggered either by

the binding of an extracellular ligand like fibronectin

(outside-in signaling) or by intracellular proteins talin

and kindlin (inside-out signaling) [5]; therefore, it

transmits bi-directional signals. In both signaling direc-

tions, activated integrin further facilitates the recruit-

ment of FA players and the FAs mature into a vast

complex containing ~200 different proteins that exten-

sively connect to the actin cytoskeleton [2,6,7]. Using

super-resolution microscopy techniques [8–10], organi-
zational properties of adhesions, both in vertical (per-

pendicular to plasma membrane) and lateral (parallel

to membrane) directions, have been studied. 3D imag-

ing revealed that a ~ 40-nm-wide region lies between

integrins and the actin cytoskeleton, which consists of

three layers: the integrin signaling, the force transduc-

tion, and the actin regulatory layers [9] (Fig. 1). Each

layer contains distinct sets of proteins, with an
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exception of talin that connects between integrin and

actin, thus, spanning over all three layers [11]. Later-

ally, FAs extend along the actin retrograde flow as

maturation proceeds, and proteins such as talin and

vinculin align in this direction [12–14].
The mechanism of interactions of the key proteins

with integrin, actin fibers, and other FA proteins has

been extensively studied, employing numerous tech-

niques such as biophysical techniques, mass spectrome-

try, super-resolution, and structural biology methods

like electron microscopy, X-ray crystallography, or

NMR [9,15–18]. However, the complicated FA net-

work prevents us from understanding the precise

molecular functions of the FA components. This is

because individual components are part of various

submodules within FAs and their functions cannot be

easily dissected within the synergistic network or with

only truncated domains lacking full regulatory

functions. Therefore, building up submachineries of

FAs from individual, fully regulatable components,

gives a great advantage to elucidate the hierarchical

interactions of FA players. This ‘bottom-up’ reconsti-

tution allows to systematically connect different func-

tional subcomplexes toward a comprehensive

understanding of FAs.

In this review, we will focus on the efforts of such

bottom-up reconstitutions, particularly from the FA

initiation process to the attachment of actin bundles

onto the plasma membrane (Fig. 1). We will discuss

the recent findings on the molecular crosstalk toward

FA network formation. The elucidation of the funda-

mental molecular mechanisms of these players will lead

to a general understanding of how cells attach and

react to their surroundings, which is the first step in

comprehending how aberrations in these processes

contribute to diseases such as cancer [2].

Fig. 1. Simplified schematic of the FA machinery focusing on the activation of integrin. Components of the ECM (gray) bind to integrin

receptors (a subunit in light green and b subunit in light blue), which reach through the plasma membrane (dark gray) into the cytosol.

Intracellular proteins kindlin (pink) and talin (blue) bind to the cytoplasmic tail of b-integrin together with additional signaling factors like FAK,

Pax and Skelemin (gray). Activated talin extends through all FA layers from the integrin receptor to the actin cytoskeleton (red/pink) and

vinculin (dark yellow) enforces the talin-actin interaction. The FA machinery is tightly regulated and allows bidirectional signal transduction

from outside-in and from inside-out.
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FA core initiation machinery

Integrins

The main conductor of FAs, integrins, are type I

transmembrane receptors that link the extracellular

environment to the cytoskeleton of a cell (Figs 1 and

2). Integrins are heterodimers, consisting of a noncova-

lently linked a and b subunit (Fig. 2A). In vertebrates,

18 a and 8 b isoforms assemble into 24 different inte-

grins, recognizing various ligands and exhibiting

diverse expression profiles [5]. Integrins can be divided

into four subclasses, depending on their extracellular

ligand recognition profile, namely by binding to RGD,

collagen, laminin, or leucocyte-specific receptors [5].

Upon ligand binding, integrins undergo conforma-

tional changes that enable intracellular proteins to

bind (Fig. 2B). Intracellular linker proteins such as

talin and kindlin connect further to the actin

cytoskeleton (Fig. 1) and transduce chemical and

mechanical signals into the cell (outside-in signaling).

On the other hand, their ligand binding affinity can

also be regulated by binding of intracellular proteins

(inside-out signaling). By changing their structural con-

formation from a bent-closed to an extended-open

state [5], integrins can integrate and transduce stimuli

across the plasma membrane, which affect downstream

signaling and cell fate [4].

Integrin–direct communicator between the

outside and inside of a cell

Integrin a and b subunits are comprised of three main

parts: the N-terminal ligand-binding ectodomain

(~ 800 a.a.), a transmembrane (TM) helix (~ 20 a.a.),

and the C-terminal cytoplasmic tail (CT; ~ 13–79 a.a.)

[19] (Fig. 2A). The ectodomains themselves are divided

into head, upper leg, and lower leg domains [20]. The

ligands are typically recognized by a cleft between the

b-propeller of the a subunit head and the bI domain

of the b subunit head. The well-studied RGD motif, a

three amino acid sequence on many integrin ligands,

such as fibronectin or fibrinogen, is recognized by both

subunits [21–23]. Studies employing techniques such as

X-ray crystallography, electron microscopy, NMR,

and light microscopy have revealed that integrins exist

in three main conformations: bent, extended-closed,

and extended-open (Fig. 2A) [5,20,22,24–27]. The head

is in close proximity to the closed legs in the bent state

with an exception of the recently reported integrin

a5b1 showing an incomplete bent conformation [28].

In the bent conformation, integrin displays a low

ligand binding affinity [20]. When extended, the

integrin ectodomain is pointed away from the mem-

brane [20]; the legs however are still closed (extended-

closed). Further opening of the integrin headpiece

leads to the separation of the legs (extended-open),

and this conformation shows high ligand binding affin-

ity. It has been suggested that integrins are constantly

shifting between these different conformational states,

which can be described as a conformational equilib-

rium or molecular breathing [5,20]. The downstream

TM domains of a- and b-integrin form a coiled-coil

helix pair, securing the inactive form of integrin when

closed [29–32]. Upon opening of integrin, the separa-

tion of the coiled-coil is thought to occur, accommo-

dating a large conformational change of integrin

[25,29,32]. The CT domains are relatively short, rang-

ing from 13 to 79 amino acids in length, except for the

b4 tail containing ~ 1000 amino acids. Despite their

small size, integrin CT domains are considered as ‘in-

teraction hubs’ for proteins of the intracellular signal-

ing network [30,33]. Particularly, the b CT domain is

of importance, as it contains several recognition motifs

for interaction partners, such as the NPxY and NxxY

motifs (Fig. 2B) [19,33]. The membrane-proximal

NPxY motif is recognized by phosphotyrosine binding

(PTB)-containing proteins, such as talin and DOK1

[34,35] and, the membrane-distal motif NxxY is recog-

nized by proteins such as integrin cytoplasmic domain-

associated protein 1 (ICAP1), CD98, and kindlin

[19,30,33,36–41].
Since multiple proteins can bind to partially overlap-

ping regions on the b integrin CT domains and possi-

bly compete with each other, the process of the

protein interactions must be regulated [33]. Phosphory-

lation could be employed to switch between adaptor

protein binding, as in the case of talin and DOK1 [42].

Similarly, the role of lipids in the recruitment of adap-

tor proteins has been suggested [43–46]. Several adap-
tor proteins contain domains that are known for lipid

binding (e.g., PH domain in kindlin) [33]. It has also

been observed that increased lipid phosphorylation can

take place within FAs by phosphatidylinositide 3-

kinase (PI3Ks) and phosphatidylinositol(4) phosphate

5 kinase type I gamma (PIPKI gamma) [47–49], which
affects the affinity and recruitment of FA proteins like

talin and kindlin to the plasma membrane.

Intracellular focal adhesion adaptor proteins

Out of the over 200 proteins involved in FA signaling,

only a few of intracellular proteins are involved in the

initial integrin activation and adhesion assembly steps.

Talin and kindlin are two major FA components,

which are exclusive integrin activators and key factors
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to trigger FA assembly. Both talin and kindlin contain

4.1-ezrin-radixin-moesin (FERM) domains (Fig. 3)

and bind to the CT domain of the b subunit of inte-

grin (Fig. 2). Both proteins cooperate with each other

and are needed to fully activate integrins [19,50].

Talin

Talin, as a main integrin activator, acts as a direct link

between integrin and the actin cytoskeleton [50,51]. As

it is present in most integrin-based adhesions and cru-

cial for inside-out activation of integrin, talin has been

denoted as the core [52] or master of FAs [53]. Talin is

also important for mechanotransduction, as it senses

mechanical force and transduces it into biochemical

signals [53]. In mammals, two isoforms of talin are

present; talin-1 is ubiquitously expressed and talin-2 is

mostly found in heart, brain, and kidney [52]. The sig-

nificance of talin for proper cell adherence and func-

tion has been demonstrated by a plethora of studies.

Knockout of talin leads to embryonic lethality in mice

at E 8.5 [54] or severe defects when targeted to specific

tissues [50]. On a cellular level, depleted talin can lead

to decreased integrin activation and impaired cell

spreading [55–57].
Talin is a 270-kDa large protein consisting of an N-

terminal head followed by a rod domain connected by

a long unstructured linker region (Fig. 3A,B). The

talin head is an atypical FERM domain having an

additional F0 domain. The rod domain is comprised

of 62 a-helices arranged into 13 helical bundles (R1–

R13), consisting of 4–5 helices per bundle followed by

a dimerization domain (DD) at the C terminus [50,58].

Regulation of talin

As talin is important for many cellular processes, sev-

eral control and recruitment mechanisms tightly regu-

late its activation. In vitro studies showed that talin

can exists either in a ~ 15-nm globular, autoinhibited

form or in a ~ 80-nm extended conformation

[53,59,60]. A recent cryo-EM structure of autoinhibited

talin displays how the long rod domains are folded in

autoinhibited talin [60] (Fig. 3A), which occludes most

major interaction sites to FA proteins such as actin,

vinculin, and integrin. Two intramolecular interactions

between the FERM domain and the rod domain,

namely F3–R9 and F2–R12, were shown to be critical

for autoinhibition. The F3–R9 connection shields the

main integrin binding site 1 (IBS1) on F3 [45], while

the F2–R12 connection shields the

phosphatidylinositol-4,5-bisphosphate (PIP2) binding

pocket on F2 [60] (Fig. 3A). The FERM domain F0–
F1 is connected to F2 by a flexible linker and appears

to be accessible when talin employs an autoinhibited

conformation. This notion is also supported by the

two crystal structures showing the arrangement of F0–
F1 either as a linear extension from F2–F3 [61] or

folding into a canonical compact form [62], reflecting

its conformational dynamics. The recruitment of talin

to membrane is suggested to be facilitated by the

GTPase Rap1 [63]. Rap1 binds to the tip of F0, which

Fig. 2. Domain architecture of integrin receptors. (A) a-integrins consist of a b-propeller head, thigh, Genu, Calf-1, calf-2, TM helix, and

cytoplasmic tail domains. b-integrins comprise a bI head, hybrid, PSI, I-EGF1-4, b-tail, TM helix, and cytoplasmic tail domains. Integrin

receptors can adopt a bent (left), an extended-closed (center), and an extended-open (right) conformation. They bind ligands typically at the

cleft between the a- and b-subunit heads (depicted in orange). (B) The cytoplasmic tails of b-integrins can contain two different linear

binding motifs (NPxY or NxxY) for various interaction partners (in boxes on the right) depending on b-integrin isotype.
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is still accessible in the inhibited form of talin, which

may suggest that talin may be recruited to the mem-

brane surface in the autoinhibited form. Upon

activation of talin through the engagement to FAs, the

FERM domain may align linearly on the membrane

surface in a tight interaction when PIP2 is present.

Fig. 3. Domain architecture of talin, kindlin, and vinculin. (A) Talin consists of a globular FERM head (F0-3) and a tail of 13 helical rod

domains (R1–R13, in different colors) and a dimerization helix (DD, behind R13). In the autoinhibited form, all rod domains are entangled and

the structure is secured by key interactions between F2–R12 and F3–R13 (insert). (B) Model of activated talin in an extended conformation

with individual domains in different colors. Actin-binding sites (ABS2 and ABS3) become accessible. Potential vinculin-binding sites are

highlighted with violet balls. (C) Kindlin consists of a globular FERM domain (F0–F3) and an additional PH domain. (D) Vinculin consists of a

head domain comprising helical bundles D1–D4 and a helical tail that folds back in the autoinhibited state. The tail domain is released upon

activation and opens binding sites for talin as well as for actin.
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Interestingly, full-length talin was shown to act as a

monomer in solution, while talin contains a short

~ 20 a.a. C-terminal dimerization domain [58,64]

(Fig. 3B), which has been suggested to contribute to

the cluster formation of FA components, necessary for

FA maturation. Whether talin acts as a monomer or

dimer when engaged in FAs is an important question

to explore in future. For talin to act as a dimer, it

may be necessary to have an interaction partner to

align the extended talin for dimerization.

Kindlin

The other known integrin activator is kindlin. It con-

tains ~ 75 kDa F0–F3 FERM domain resembling the

talin head, except for an additional inserted pleckstrin

homology (PH) domain with affinity for PIP2 [19,65]

(Fig. 3b). In mammals, three isoforms exist: kindlin 1,

2, and 3, which exhibit varying expression patterns. Kin-

dlin 1 is mainly expressed in epithelial cells and kindlin 3

in hematopoietic cells, while kindlin 2 is expressed ubiq-

uitously, except for hematopoietic cells [19,66]. Consis-

tent with these expression profiles, knockout

experiments in mice have shown that kindlin 1 deletion

leads to severe defects in epithelial tissues, such as skin

blistering [40]; kindlin 2 knockout leads to embryonic

lethality [38] and deletion of kindlin 3 leads to severe

bleeding disorders [41]. On a cellular level, kindlin

depletion leads to impaired inside-out integrin activa-

tion, FA formation and cell spreading, even when talin

is present [38,40,41,67]. Kindlins are reported to bind to

the membrane-distal NxxY motif of integrin b CT

domains [19] (Fig. 2B). A crystal structure of kindlin 2

in complex with integrin b1 CT revealed a dimeric form

of kindlin with an additional binding motif on the b tail,

TTV, which is necessary for the recruitment of kindlin

to FAs in cells [68]. Furthermore, a recent study showed

a possibility that the autoinhibition of kindlin may be

achieved through homotrimerization [69,70], which

blocks kindlin’s integrin binding site in the trimer struc-

ture [69]. While these studies implicated scenarios how

kindlin is regulated, the exact role of kindlin, particu-

larly whether oligomerization aids or inhibits integrin

binding, is still an open question.

Regulatory proteins of talin and kindlin

Talin, when elongated, can expose binding sites to a

number of proteins [53,60,71]. Among the interactions

provided by talin, particular importance lies in the

connection between talin and actin as well as between

talin, vinculin, and actin, as these complete the struc-

tural scaffolding of FAs. Besides the direct binding of

talin to actin, vinculin plays a critical role for strength-

ening the connection by crosslinking talin and actin

[72–76]. Vinculin is a 120 kDa globular protein con-

taining 4 a-helical bundles (D1–D4) in the talin-

binding head domain and another a-helical bundle in

its actin-binding tail domain [77,78] (Fig. 3D). In the

autoinhibited conformation, they fold onto each other

occluding binding sites to actin and talin (Fig. 3D). 11

potential vinculin binding sites are predicted along the

talin sequence [79,80] (Fig. 3B), and multiple vinculin

binding on the talin surface may facilitate actin bundle

formation in FAs. Truncated vinculin head, tail, and

deregulated mutants have been used to circumvent the

lack of understanding of the regulation of vinculin

activation [81–83].
Other talin-binding factors include RIAM (Rap1-

GTP-interacting adaptor molecule) [64,84], talin-

activator Kank [85], filamin [86], integrin cytoplasmic

domain-associated protein 1 (ICAP1) [37], DOK1

[34,35], PI3PKc [48,49], and a-actinin [87]. Each of

these components interact not only with talin but also

often with each other, facilitating to form an intricate

network. However, how all these components are

interplaying still has to be elucidated.

Kindlin also plays a role in transducing signals by

interacting with several signaling proteins. Particularly,

kindlin interacts with integrin-linked kinase (ILK) [88],

which then forms a complex with particularly interesting

new cysteine-histidine-rich protein (PINCH) and parvin,

forming the ILK-PINCH-parvin (IPP) complex. The

IPP complex also plays a role in connecting integrin to

the actin cytoskeleton (reviewed in [89]). Other kindlin

interacting proteins include migfilin [90], paxillin [91],

and actin-related proteins 2/3 (Arp2/3) [92]. Paxillin

binds to FAK and triggers Rho and Src signaling path-

ways that ultimately affect cell fate [93,94].

Bottom-up analysis of the interplay
within the FA initiation machinery

FAs undergo a complex network formation that con-

tains multiple layers of regulation; therefore, it is chal-

lenging to elucidate the functions of individual factors

at a molecular level. Many molecular studies have used

truncated or deregulated proteins to focus on how dis-

tinct interactions of proteins of interest occur. How-

ever, using full-length proteins and building up a

machinery by a bottom-up in vitro reconstitution

approach gives valuable hints on their regulations. A

particular interest lies in the initiation of the FA

machinery. How exactly talin, kindlin, and other fac-

tors dock onto the integrin-embedded plasma mem-

brane surface and how they build up a machinery
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connecting to the actin cytoskeleton provides insight

into the molecular basis of FAs.

Integrin-PIP2 containing membrane plus integrin

activator talin and kindlin

As most of the FA proteins are tightly autoregulated,

finding key to activate them is the critical first step for

building up functional FA submachineries. Recent

studies revealed that signaling lipid PIP2 plays an

important role in the regulation and recruitment of the

integrin activators talin and kindlin [61,95–98]. Our

recent study additionally showed that autoinhibited

full-length talin binds to PIP2-rich membrane surface,

indicating that its autoinhibition is released upon bind-

ing to PIP2-rich membrane [99].

By combining those with structural studies of the

full-length autoinhibited talin 1 [60] and the truncated

talin 2 FERM domain in complex with the integrin

b1D tail peptide [97], we can extrapolate our under-

standing on how activated talin then activates integrin

on the membrane surface (Fig. 4A). When talin’s

FERM domain is docked to the PIP2-containing mem-

brane surface, the tangled rod domain is likely

detached from the FERM domain, which would

expose the integrin binding surface on the F3 domain.

Subsequently, the rod domain could flip away from

the membrane so that it orients toward the cytosol.

Membrane-attached talin may readily recognize inte-

grin because of its proximity to the plasma membrane

as well as its exposure of the integrin binding site on

the F3 domain. The exposed talin F3 domain binds to

the NPxY motif in the integrin b CT. This interaction

inhibits the salt bridge interaction between the integrin

CT domains of the a and b subunits [34,56,97,100–
103] inducing the separation of leg domains and the

activation of integrin.

In contrast, it is still unclear how the regulation of

kindlin and the involvement of PIP2 takes place. Kin-

dlin might be necessary to cluster integrins [104] rather

than opening the integrin a- and b-CT domains like

talin [105]. Future studies describing the dynamic pro-

cess of kindlin and its interaction with talin, the PIP2

membrane as well as integrin are awaited to

understand what the precise regulatory role of kindlin

is. Nevertheless, neither talin nor kindlin alone are

thought to be sufficient to activate integrins by them-

selves in vivo, and are thus considered as co-dependent

activators [19]. The binding mode remains elusive

[19,50] as it is not clear whether talin and kindlin

interact directly on the same b-tail (Fig. 4B). Other

possibilities include that they bind sequentially to the

same tail or simultaneously to different tails within the

same integrin cluster (Fig. 4B) [19,50]. It should how-

ever be noted that kindlin has been shown to be dis-

pensable for integrin activation in an in vitro

environment [18], and therefore, it may have rather an

assisting role. Nevertheless, these are important ques-

tions that can be analyzed by in vitro reconstitution

approaches.

Recruitment of actin to the membrane surface

The docking of actin bundles to the FA initiation

machinery located at the plasma membrane surface is

a critical step for the development of FAs. That is

mainly mediated by talin as it can directly bind to

integrin, the plasma membrane through PIP2 and

actin. Furthermore, vinculin strengthens the binding of

talin and actin. These assemblies are the structural

foundation of FAs. How actin can be recruited to the

FA initiation site has been suggested through recent

in vitro reconstitution studies [60,99]. Those studies

showed that autoinhibited talin is still accessible for

actin through actin-binding site 3 (ABS3) located at

R13, while the other actin-binding site ABS2 at R4–
R8 is occluded and its actin-binding function inhibited

(Fig. 3A). ABS2 is ready to engage actin once the

autoinhibition of talin is released by binding to PIP2-

enriched membranes (Figs. 3B and 4A). The opening

of both ABS2 and ABS3 together facilitates binding of

more actin filaments to talin. Upon binding of talin to

integrin and actin, talin can extend to a 60- to 100-

nm-long fibrous strand [11,59,106] (Fig. 4a). This elon-

gation is thought to enable talin to span the distance

between integrins and actin fibers [9] and to act as a

cytoskeletal linker and mechanosensor [53]. At the

same time, extended talin provides a platform for the

Fig. 4. Schematic of integrin activation and FA initiation. (A) Autoinhibited talin can approach to the PIP2-enriched membranes, resulting in

the release of talin head and rod domains autoinhibition. Binding of talin to the cytoplasmic tails of b-integrin primes the integrin receptor,

which then binds to ligands in the extended-open conformation. Opened talin can bind to actin, and this interaction is strengthened by

crosslinking of talin and actin by activated vinculin. Further force-dependent extension of talin (indicated by lightning bolts) uncovers

additional vinculin binding sites. (B) Models of the cooperative activation of integrin by kindlin and talin. Integrin receptors can be activated

by sequential binding of kindlin and talin (violet path), by simultaneous binding of both proteins to the same integrin receptor (cis

cooperation, green path), or by synchronous binding of both proteins to different, clustered integrin receptors (trans cooperation, blue path).
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binding of vinculin (Fig. 3B), reinforcing the engage-

ment of actin to FAs. Interestingly, neither activated

talin alone nor PIP2-enriched membranes were shown

to be sufficient to allow vinculin to bind to these com-

ponents (Fig. 3D). It was however shown that acti-

vated talin attached to PIP2-enriched membranes is

able to activate vinculin and recruit it to the mem-

brane surface where talin is localized [99] (Fig. 4A).

While this is advantageous for the hierarchical regula-

tion toward the engagement of actin bundles to the

FA site, the precise molecular mechanism of action of

vinculin regulation is still elusive.

Mechanosensitive behavior of the FA

components

As FAs provide a link between the ECM and cells, the

molecules within FAs are constantly exposed to

mechanical forces generated by both constant actin

polymerization toward the membrane as well as acto-

myosin contraction of the cytoskeleton. Several of the

components, such as integrin, talin, and vinculin, are

found to be mechanosensitive [107–110]. To character-

ize the force induced behavior of FA molecules,

in vitro biophysical analyses have been instrumental.

Increase of the strength of the integrin-ECM bond

with applied force was observed, both on isolated inte-

grin as well as on cells [111,112], which marks it as a

so-called catch-bond [15]. The force that integrin-ECM

bonds can withstand until the bond breaks has been

measured to be 50–100 pN [113]. In contrast, the con-

formation of talin is altered upon force, as it unfolds,

which marks it as a slip-bond [107]. The unfolding of

talin leads to an exposure of cryptic binding sites for

proteins like vinculin [79]. This suggested to expose

some of the 11 cryptic vinculin binding sites, while

only one vinculin binds to talin without applied force

[60]. The recruitment of more vinculin to the stretched

talin surface is suggested to promote FA growth

[79,80], but the precise mode of action of talin under

force is still not well understood. Furthermore, the

stretching of actin has been suggested to change the

affinity of actin binding proteins such as vinculin [114].

Interestingly, the affinity of vinculin to actin depends

on the direction of the applied force, implicating

another layer of regulation to control vinculin binding

at the FA site. As talin’s binding modules resemble the

structural folding of vinculin, it is possible that talin

may also be able to sense the stretching of actin, as

for the case of catenin [115–117]. These examples hint

at the regulation of several protein functions and the

assembly of the FA initiation machinery by force.

Taking the mechanosensitivity into consideration will

therefore give more comprehensive insights into FA

assembly.

Maturation of FA and conclusion

The assembly process of FA complexes progresses in a

highly coordinated and dynamic manner [51,118]. Upon

generation of a positive feedback loop, which is directly

linked to mechanical force, that is, ECM stiffness and

myosin II contractility [17,119], the maturation of FAs

is thought to occur where hundreds of FA components

start forming an interconnected network. Building up

the FA machinery from minimal components gives a

great advantage for elucidating key interactions within

FAs and provides a hierarchical understanding of the

molecular actions of individual players. That provides a

basis for the understanding of the layers of the vast FA

network formation.
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