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The sleep EEG envelope is a novel, 
neuronal firing‑based human 
biomarker
Péter P. Ujma1,2*, Martin Dresler3, Péter Simor4,5, Dániel Fabó2, István Ulbert6,7, 
Loránd Erőss2 & Róbert Bódizs1,2

Sleep EEG reflects voltage differences relative to a reference, while its spectrum reflects its 
composition of various frequencies. In contrast, the envelope of the sleep EEG reflects the 
instantaneous amplitude of oscillations, while its spectrum reflects the rhythmicity of the occurrence 
of these oscillations. The sleep EEG spectrum is known to relate to demographic, psychological and 
clinical characteristics, but the envelope spectrum has been rarely studied. In study 1, we demonstrate 
in human invasive data from cortex-penetrating microelectrodes and subdural grids that the sleep EEG 
envelope spectrum reflects neuronal firing. In study 2, we demonstrate that the scalp EEG envelope 
spectrum is stable within individuals. A multivariate learning algorithm could predict age (r = 0.6) and 
sex (r = 0.5) from the EEG envelope spectrum. With age, oscillations shifted from a 4–5 s rhythm to 
faster rhythms. Our results demonstrate that the sleep envelope spectrum is a promising biomarker of 
demographic and disease-related phenotypes.

The sleep EEG is a continuous signal reflecting ongoing electrical activity in the brain, and its spectrum reflects 
the relative contribution of different frequencies to the final waveform. In contrast, the envelope of the sleep EEG 
estimates the instantaneous amplitude of the signal (typically after filtering to frequencies of interest), and its 
spectrum estimates the periodicity of all band-limited activity. In other words, the envelope spectrum estimates 
the typical rhythm at which signal amplitude at certain frequencies waxes and wanes (Fig. 1).

The spectrum of the sleep EEG signal is one of the best-established general-purpose human biomarkers. First, 
it shows a fingerprint-like intra-individual stability and inter-individual variability across measurements1–5, sta-
bilized mostly by genetic factors6–9. Second, the neural generators of several prominent oscillations contributing 
to this spectrum have been extensively studied10–16 often highlighting specific neuronal population assemblies in 
specific brain structures as their origin17,18. Third, the sleep EEG spectrum has been shown to be a highly reliable 
marker of age19,20 and linked to sex21,22, psychological phenotypes23–25, and a multitude of clinical conditions26–39.
Therefore, the current state of knowledge about the sleep EEG spectrum allows a mechanistic interpretation of 
how healthy human variability40 or disease41 is reflected in neural functioning.

In contrast there has been no systematic research describing the periodicity, generating mechanism or real-
life correlates of the EEG envelope, in spite of the fact that as a mathematical function of the oscillations from 
which the ordinary sleep EEG spectrum is calculated it has the theoretical potential to be an equally promising 
biomarker with potential incremental validity. On June 1, 2021 we searched PubMed and ScienceDirect with 
the search terms “eeg envelope spectrum”, “eeg envelope psd” and “eeg envelope power”. Our search returned no 
relevant papers. We also screened the first 100 Google Scholar hits with these search terms, but also found no 
relevant papers. Nevertheless, we are aware of some previous studies which do not explicitly assess the spectrum 
of the EEG envelope but which are still of interest to this field.

An early paper42 described that sleep spindles followed each other in periods slightly exceeding four sec-
onds, corresponding to a hypothetical 0.25 Hz envelope oscillation. Two studies43,44 calculated PSD from short 
windows, smoothed the resulting power estimates and relied on the spectral analysis of the resulting signal to 
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establish the periodicity of certain frequencies of interest. The first study43 reported a 20 s (~ 0.05 Hz) periodic-
ity for slow waves and a 4 s (~ 0.25 Hz) periodicity for sleep spindles, respectively. The second study44 described 
a 50 s (~ 0.02 Hz) periodicity for both sleep spindles and slow waves, but analyses were restricted to carrier 
frequencies <  ~ 0.12 Hz. Even slower rhythms have been reported for sleep spindle occurrence45, replicating the 
finding of higher amplitude at posterior locations44. Long-range temporal correlations, especially in the alpha 
range, were also reported in the wakeful EEG46,47. Some studies48,49 described cyclic alternating patterns (CAPs) 
as periodic (~ 60–90 s, 0.011–0.017 Hz rhythms) bursts of both low- and high-frequency activity in NREM sleep, 
mostly based on visual analysis of the EEG signal.

Several studies of slow EEG rhythms described infraslow oscillations, very slow EEG components typically 
recorded with direct-current EEG setups which do not impose hardware filter constraints on the lowest detect-
able frequencies50,51. Infraslow oscillations are relevant for the study of the EEG envelope because it is a general 
feature of the sleep EEG that high-frequency rhythms are phase-locked to slower rhythms. As spindles are locked 
to slow waves and ripples to spindles13,52,53, virtually all faster rhythms were also shown to be phase-locked to 
infraslow oscillations50. Therefore, prominent frequencies in the infraslow oscillation imply prominent frequen-
cies in the envelope of higher rhythms as well.

This preceding literature, however, has not systematically revealed the characteristics of EEG oscillation 
amplitudes. First, periodicity was estimated only for very specific frequencies or oscillations, usually slow waves 
or spindles. Second, somewhat surprisingly, virtually no study used the modulus of the Hilbert transform (or 
wavelet analogues) as an estimate of instantaneous amplitude, and instead relied on the spectral analysis of 
smoothed proxies43–46. Third, as infraslow oscillation studies focused on very slow rhythms, the full range of 
possible carrier frequencies of interest (especially > 0.1 Hz) have not been adequately explored. Fourth, there 
is little data on the neuron-level generating mechanisms, reliability and real-life correlates of the periodicity of 
sleep EEG oscillations. In our study, we seek to close this gap by combining data from invasive EEGs of epileptic 
patients and scalp EEGs of a large sample of healthy participants. We show that the EEG envelope spectrum has 
at least as many remarkable features as the ordinary EEG spectrum: it reflects neuronal population firing, it is 
highly reliable within individuals, and it can be used to predict age and sex (but not intelligence) with reason-
able accuracy. In line with previous literature, we identify prominent 0.05 Hz and 0.25 Hz rhythms (20 s and 
4 s periods, respectively). We also show that the ageing is specifically associated with the loss of 0.25 Hz (4 s) 
periodicity of sleep EEG oscillations and the relative amplification of faster rhythms.

Figure 1.   The principle of EEG envelope spectrum analysis. (A) Shows a simulated EEG signal, consisting of 
the sum of a 2 Hz sinusoid modulated by a 0.2 Hz carrier frequency, a 12 Hz sinusoid modulated by a 1 Hz 
carrier frequency, and pink noise. Overlain blue and red lines show the instantaneous amplitude or envelope 
(modulus of the Hilbert transform) of the delta (1–4 Hz) and sigma (10–16 Hz) frequency ranges, respectively. 
(B) Shows the power spectral density of the original signal (left) and the delta (middle) and sigma (right) 
envelopes. Note that the carrier frequencies are accurately recovered from spectral analysis of the envelopes 
(with some impurities due to added noise and the fact that the modulus of the Hilbert transform of a modulated 
signal is not fully sinusoidal). The spectrum of the envelope reveals periodic fluctuations in the amplitude of 
higher-frequency activities.
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Results
The envelope reflects cortical neuronal firing.  In Study 1, we used invasive human EEG data from 
epileptic patients. We correlated multiple-unit activity (MUA) measured by cortex-penetrating microelectrodes 
with the envelope of EEG signals measured on the adjacent cortical surface. We found that in all frequency bands 
and across the entire cortical mantle, the envelope of the surface signal reflected firing patterns, with a typical 
average magnitude-squared coherence value of 0.15–0.2. The pattern of coupling was different as a function of 
frequency range (Fig. 2).

In the delta through the theta range, MUA was lowest during or slightly after the peak of the envelope, also 
reflected by the fact that the largest cross-correlations were negative and observed when a zero to slightly negative 
MUA delay was added. In the sigma through gamma ranges, MUA was highest during the ascending phases of 
the envelope, also reflected by the fact that the largest cross-correlations were positive in case of a positive MUA 
delay. The alpha range exhibited an intermediate pattern with only a few IME channels reaching significance.

Findings in individual patients are available in the Supplementary Data. See also Fig. 3B for an illustration 
of envelope-MUA coupling. We note that in 3 patients the envelope-MUA coupling was absent or restricted to 
very specific channels. As data issues (problems with synchronization in case of an absent coupling, and poor 
MUA data quality in case of both absent and spatially restricted coupling) is a possible explanation for this pat-
tern, we re-analyzed coupling excluding these three patients. Results were virtually identical even in this case 
(Supplementary Fig. S1).

The envelope spectrum is stable within individuals.  For Study 2, we used scalp EEG data from 
healthy volunteers to calculate the spectrum of the envelope using a novel colliding window method (see “Meth-
ods” and Fig. 3A). This method ensured optimal data availability in case of artifacts (Fig. 3C), which is a par-
ticular concern for the estimation of very low frequency spectral power which requires long windows. We found 
characteristic spectral peaks at ~ 0.05 Hz (20 s periodicity) for all frequency bands, ~ 0.25 Hz (4 s periodicity) for 
several frequency bands, in particular the sigma band corresponding to sleep spindles, and ~ 1 Hz mainly for the 
beta and gamma bands (Fig. 3D).

The ordinary sleep EEG spectrum is known to have a trait-like quality by being stable within individuals, but 
varying between individuals2,4. In the absence of multiple recordings from participants, in Study 2 we assessed 
the trait-like nature of the envelope spectrum by calculating even–odd reliabilities (intraclass correlation coef-
ficients between the spectral densities calculated separately from the even or odd numbered sampling windows of 
the same individual) and split-half reliabilities. Split-half reliability is a method frequently used in psychometric 
literature. It refers to the similarity of the first and second halves of a non-instantaneous measurement (most 
typically, the scores derived from the first and second halves of a psychological questionnaire)54. In our current 
interpretation, split-half reliabilities were defined as the Pearson correlations between the spectral densities 
calculated separately from only the first and last 50% sampling windows of the same individual.

Based on this analysis, the envelope spectrum was highly trait-like in NREM sleep and moderately so in REM 
sleep. The mean reliability of the envelope EEG spectrum (pooled across channels, frequency bands and envelope 
frequencies) was 0.886 (even–odd, SD = 0.085) and 0.819 (split-half, SD = 0.14) for NREM and 0.513 (even–odd, 
SD = 0.157) and 0.684 (split-half, SD = 0.141) for REM. No clear trend was seen by envelope frequency (Fig. 4). 
The reliability of the mid-frequency EEG bands (alpha and low sigma) was the highest, falling off towards both 
low and high frequencies (Supplementary Fig. S2), while no clear trend was seen by scalp channel (Supplemen-
tary Fig. S3).

The envelope spectrum reflects age and sex, but not general cognitive ability.  The envelope 
spectrum of the sleep EEG was significantly associated with demographic variables, but not with general cogni-
tive ability (Figs. 5, 6). This association was the strongest between the NREM envelope PSD and age. Older age 
was generally associated with a loss of low-frequency oscillations in the power of NREM EEG frequencies, often 
with an increase of higher-frequency oscillations. Specifically, a reduced oscillation of low delta power at ~ 0.5 
and ~ 1.6–1.8 Hz, but increased oscillation at 1–1.5 Hz; a reduced ~ 0.25 Hz oscillation of theta, alpha, sigma and 
beta power with an increased 0.5–1 Hz oscillation of theta and sigma power was seen. In REM sleep, a general 
tendency for increased low- and high-frequency power oscillations and a corresponding decrease at ~ 0.5–1 Hz 
was seen, but this only reached statistical significance in the high delta, alpha and low sigma frequency bands.

Male sex was associated with a lower amplitude of ~ 0.05–0.1 and ~ 0.5–1.5 Hz NREM low sigma power oscil-
lations, but a higher amplitude of power oscillations of the same frequency band at ~ 0.25–0.5 Hz and > 1.75 Hz. 
Male sex was also associated with a lower amplitude of < 0.75 Hz and > 1.75 Hz, but a higher amplitude of ~ 1 Hz 
beta power oscillation irrespective of sleep state.

General cognitive ability was not significantly associated with the envelope spectrum of either NREM or 
REM sleep EEG.

Multivariate models.  The relationship between human phenotypes and single biological markers, such as 
single genetic polymorphisms or individual features of brain morphology is usually modest. However, multivari-
ate models using a large number of such biological markers as independent variables are able to capture the addi-
tive, independent contribution of each single marker to reach a much more substantial correlation between the 
totality of biological markers and phenotypes56. Therefore, beyond demonstrating correlations between single 
spectral features of the sleep EEG envelope and age, sex and intelligence, we set out to investigate the relationship 
between these features using multivariate models. Because of the modest sample size (N = 176) for the very large 
number of possible features (200 PSD values from 8 bands on 18 channels, separately from NREM and REM 
sleep), we used elastic net regression, a learning algorithm for training (N = 154), with an independent valida-
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tion sample (N = 22), we only used the first 100 PSD bins as these exhibited the largest bivariate correlations with 
phenotypes, and we ran models separately by channel.

The total predictive validity of the envelope spectrum towards each phenotype was expressed as the correla-
tion between predicted and actual values in the validation sample (predictive accuracy) (Fig. 7). Using NREM 
sleep, age could be predicted with reasonable accuracy (rmean = 0.616, rSD = 0.151, the prediction accuracy for sex 
was lower but still substantial (rmean = 0.447, rSD = 0.138), but the correlation between predicted and actual IQ was 
low (rmean = 0.151, rSD = 0.178). Using the REM sleep envelope, age could be predicted with moderate accuracy 
(rmean = 0.502, rSD = 0.156), but this was not the case for sex (rmean = − 0.019, rSD = 0.224) and IQ (rmean = 0.092, 
rSD = 0.112). (All means and SDs are across channels.) In case of IQ, elastic net models frequently failed to con-
verge due to the low correlation between PSD values and this phenotype.

Relationship to respiratory rhythms.  Low-frequency fluctuations in the EEG signal could theoretically 
be affected or contaminated by the respiratory cycle, which also occurs with sub-second periodicity. In order to 
investigate to what extent this occurs, we used the recordings of 29 participants containing a pair of respiration 
channels to estimate to what extent respiratory activity is correlated with the course of EEG envelopes. We esti-
mated the (1) magnitude-squared coherence between each EEG band envelope and respiratory activity (2) the 
modulation index between respiratory activity and EEG band envelopes. We performed these calculations with 
100 s windows of artifact-free data with 50% overlaps between windows and compared statistics to those calcu-
lated from 1000 random surrogates to estimate statistical significance in each participant. Like in other analyses, 
we transformed the resulting empirical p-values to z-values, averaged them across participants and transformed 
them back to p-values before application of the Benjamini–Hochberg correction of false discovery rate.

In line with a previous study43 we found no coupling between EEG envelopes and respiratory activity. Neither 
coherence between respiratory activity and EEG envelopes nor their modulation index was ever significantly 
higher than in surrogates, illustrated by an almost perfectly circular phase histograms of EEG envelope ampli-
tudes as a function of respiration phase (Supplementary Figs. S4, S5). Thus, our findings confirm that EEG 
amplitude fluctuations occur largely independently from low-frequency respiratory rhythms, and thus the EEG 
envelope is not a respiratory artifact.

Relationship to the ordinary EEG spectrum.  In contrast to previous studies investigating the spectrum 
of the EEG signal, we investigated the spectrum of the envelope of the signal. Although there is a mathemati-
cal relationship between these two measures, it is unclear how well they are correlated at the individual level. 
In order to investigate this, we calculated correlation coefficients between the individual mean values of the 
envelope spectrum (calculated as described above, in all frequency bands and both vigilance states) and the 
spectrum of the log-transformed absolute signal PSD (calculated with the Welch method, using 4  s epochs 
with an 50% overlap, in both vigilance states, yielding a spectral resolution of 0.25 Hz). The envelope spectrum 
was considered in the 0.01–1 Hz range and the signal spectrum was considered in the 0–48 Hz range.In both 
vigilance states, the correlation between the signal PSD and the envelope PSD was generally low, suggesting that 
the two measures are largely statistically independent. A full illustration of all correlations are provided on Sup-
plementary Figs. S6 and S7.

However, some correlations were present:

•	 NREM low delta envelope: positive correlation with < 2 Hz signal PSD at 0.01–0.2 Hz, negative correlation 
at > 0.5 Hz.

•	 NREM theta and alpha envelope: positive correlation with ~ 8–12 Hz (both band envelopes) and > 15 Hz 
(theta only) signal PSD at 0.2–0.3 Hz.

•	 REM theta, alpha and low sigma envelopes (the latter probably an extension of alpha): positive correlation 
with mid-frequency (~ 5–25 Hz, with an even wider range for low sigma) signal PSD at < 0.1 Hz, a negative 
correlation with the same signal PSD frequencies at 0.2–0.8 Hz.

•	 REM beta envelope: a positive correlation with 1–5 Hz signal PSD at 0.3–0.6 Hz.

Correlations between the NREM low delta envelope and the low delta PSD likely reflect that in participants 
with more slow wave activity, this activity tends to fluctuate in rather long cycles. The other observations need 
replication and specific experimental designs to enable a physiological interpretation, but overall they highlight 
that fluctuations in EEG power—especially in the mid-frequencies—captured by the envelope spectrum are 
associated with individual differences in signal PSD beyond the frequency range from which the envelope was 
calculated. This effect was especially pronounced in REM sleep.

Discussion
In our study, we aimed to describe the sleep EEG envelope in detail and compare its characteristics to the ordi-
nary sleep EEG spectrum to assess its viability as a biomarker. Overall, our study demonstrates that the sleep 
EEG envelope shares many of the properties of the ordinary sleep EEG: it reflects neuronal population firing, it 
has characteristic oscillation frequencies, it is highly individually stable and varies between individuals; and it 
is associated with demographic characteristics.

It has been shown in previous human invasive EEG studies that sleep oscillations recorded either from the 
cortex or from the scalp closely reflect the rhythmic ensemble firing of neuron populations. For instance, slow 
waves11,12, sleep spindles57 and the wakeful alpha rhythm15 as field potentials are all associated with waxing 
and waning patterns in local neuronal firing. We observed a similar pattern for the envelope as well. MUA was 
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significantly suppressed when low-frequency activity was high: specifically, the lowest MUA was observed during 
the maximum of low delta activity and slightly after the maximum of high delta and theta activity. Curiously, 
the opposite pattern (increased MUA during periods of reduced low-frequency oscillations) was less typical. 
This phenomenon may reflect the rhythmic suppression of neuronal firing during slow oscillations11,12,58, which 
contain ensembles of low frequencies up to the alpha range59. Although such neuronal down-states are gener-
ally followed by up-states containing high frequency rhythms52,60, the fact that down-states are generally more 
prominent12,58 may specifically result in a specific association between the presence of low-frequency activity in 
the ECoG and reductions in neuronal firing in nearby cortex. For high frequencies (low sigma through gamma, 
with alpha being an intermediate range), an opposite pattern was seen: MUA was maximal when oscillations in 

Figure 3.   An illustration of EEG envelopes, the colliding window method and its results. (A) Illustrates the 
colliding window method. (B) Shows a single epoch of illustrative envelope and MUA data (ECoG low delta 
envelope and smoothed MUA from the fifth IME channel located in cortical layer III). The Pearson correlation 
of the two signals is shown for reference. Both the ECoG envelope and the MUA is detrended and demeaned, 
but not z-transformed. (C) Shows the distribution of available sleep data after artifact rejection using the 
colliding window method. For each participant, black lines mark the data segments used in analysis. The lower 
panel shows the total number of participants with available data as a function of time after recording start. Note 
the lack of systematic undersampling of any part of the night. (D) Illustrates the log-transformed envelope 
spectra. All data was z-transformed by frequency band to eliminate mean differences. The frequency axis is 
shown on a log scale to enhance the low frequency ranges which are of particular interest. Note spectral peaks 
at ~ 0.05–0.06 Hz, ~ 0.25 Hz and ~ 1 Hz, the latter most prominent in the beta range.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18836  | https://doi.org/10.1038/s41598-022-22255-4

www.nature.com/scientificreports/

these frequencies were gaining in power, possibly reflecting the role of cortical neuronal assemblies in recruiting 
these oscillations.

Next, we used scalp EEGs for healthy volunteers to establish further properties of the sleep EEG envelope 
spectrum. We found that, similarly to the ordinary spectrum, the envelope spectrum was also characterized by 
higher powers at lower frequencies. In line with previous reports on slow wave and sleep spindle periodicity42,43 
we found two characteristic peaks: one at ~ 0.05 Hz (20 s period, most prominent for slow rhythms), and another 
at ~ 0.25 Hz (4 s period, most prominent for faster rhythms). These frequency peaks were less prominent in REM 
sleep than in NREM.

Previous reports have established that the sleep EEG spectrum is fingerprint-like with a high intra-individual 
stability1–5, which is the result of genetic regulating factors6–9. Although our ability to fully replicate this finding 
in the envelope spectrum was limited by the absence of multiple recordings and genetically informative data, 
we could establish that when comparing spectra from the same individual across the two halves of the night or 
across even and odd numbered sampling windows, reliability was very high for NREM (> 0.8) and reasonably 
high for REM (> 0.5), with remarkably similar reliability values across all but the lowest frequencies.

The reliability of the sleep EEG envelope spectrum renders it a potential marker of stable individual differ-
ences, such as demographic variables, psychological traits or pathological conditions. In a quantitative test of 
this hypothesis, we found that higher age was associated with reductions in the 0.25 Hz rhythmicity of high delta 
through beta rhythms. A relative increase in the ~ 1 Hz rhythm of sigma-frequency oscillations, an additional 
increase in the very low frequency rhythms of low sigma and beta oscillations, as well as a relative reduction 
of low-frequency and a relative increase of high-frequency low delta oscillations was also seen. These results—
together with findings from invasive EEG recordings—can be interpreted as a systematic loss of the medium-scale 
temporal organization of rhythmic neuronal firing as a function of ageing. Notably, envelope spectra calculated 
from NREM were much more associated with age than REM spectra, highlighting the functional importance of 
this vigilance state for ageing-related phenomena19,20,41,61.

Sex was associated with a single EEG envelope feature: low-frequency rhythmicity of the NREM beta rhythm 
was reduced in males, while high-frequency rhythmicity was higher. The significance of the ~ 1 Hz rhythm sug-
gests that beta rhythms show stronger coupling to slow waves in males, however, the functional importance of 
this finding is currently unknown.

Although intelligence was found to be associated with multiple sleep EEG spectral features25,62, we found no 
evidence that it is also associated with the rhythmicity of sleep EEG oscillations.

We used a learning algorithm to perform multivariate predictions of age, sex and intelligence based on the 
sleep EEG envelope spectra. As expected based on the reliability of spectra, much better predictions could 
be made based on NREM than REM spectra. Age could be predicted with reasonable accuracy from NREM 
sleep envelope spectra (r ~ 0.6), although much more accurate predictors were previously constructed based on 
overall features of the sleep EEG19 or the shape of NREM slow waves20 Sex could be predicted from the NREM 
envelope spectrum with lower but still substantial accuracy (r ~ 0.45), although the predictive power of the REM 

Figure 4.   The reliability of the sleep EEG envelope spectrum. (A) Shows raincloud plots55) by vigilance state 
and reliability type, showing raw data overlain with box plots on the left side and kernel density curves on the 
right side. Data from all frequency bands, envelope frequency bins and scalp channels are pooled for estimating 
the box plot, while individual instances are shown as data points. (B) Illustrates reliability by envelope frequency 
bin. Data from all frequency bands and scalp channels are pooled, shading indicates 95% confidence intervals of 
the mean.
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spectrum was much lower. Sex prediction based on the envelope spectrum underperforms relative to other pre-
dictors based e.g. on brain imaging63–65. However, we did not expect the envelope spectrum to be a particularly 
sexually dimorphic characteristic. The non-significant zero-order correlations between the envelope spectrum 
and intelligence could not be improved with the use of elastic net regression: models failed to converge on most 
electrodes and even with this method we found no association between the envelope spectral and intelligence.

What biological process do amplitude fluctuations in the sleep EEG reflect? In Table 1 we provide a non-
exhaustive list of known biological oscillations with periods at most on the minute scale. From this list, we had 
data about two prominent oscillations: the cardiac and the respiratory rhythm. Both oscillations could theoreti-
cally drive low-frequency EEG rhythms either through physiological mechanisms (for example, because neu-
ronal firing depends on the availability of oxygenated blood and this is reflected in EEG rhythms) or through 
electrical artifacts detected by the EEG. However, based on non-significant magnitude-squared coherence and 
phase-amplitude coupling the respiratory rhythm appears to play a role in low-frequency EEG amplitude oscil-
lations, and the cardiac rhythm is too fast to strongly influence all but the fastest envelope rhythms. Because our 
recordings did not contain data about other oscillating biological processes, we can only speculate about their 
role. With their characteristic 20-s periods, gastric rhythms66 oscillate at a frequency strongly overlapping with 
characteristic envelope frequencies, rendering EEG envelope oscillations a promising potential marker in the 
study of brain-viscera interactions. Other known biological rhythms are not strong candidates to be the driver 
of or to be coupled with EEG amplitude oscillations due to differences in their characteristic frequencies. In 
sum, the precise biological mechanism creating periodic fluctuations in the amplitude of EEG rhythms remains 
unknown and its discovery is a major task of further studies into this phenomenon.

In sum, our study revealed that the periodicity of amplitude fluctuations in the sleep EEG, reflected by the 
envelope, is a promising human biomarker. In an invasive study, it was found to be associated with fluctua-
tions in neuronal firing. In a study of healthy volunteers, it was found to be a highly reliable individual marker, 
somewhat sexually dimorphic and especially strongly associated with ageing. While we showed that envelope 
fluctuations reflect fluctuations in neuronal firing, why these fluctuations take place (and why they change with 
ageing) requires further study.

Our work has a number of limitations. First, using a single IME per patient we were only able to record 
neuronal firing from a very limited cortical area. EEG recorded on the adjacent cortical surface is likely the 
summation of neuronal activity in a more extended area, consequently, the correlation between MUA and the 
envelope was not particularly strong. Second, we had only a single night of measurement from healthy indi-
viduals, resulting in a within-night, rather than a more optimal across-night estimation of envelope reliability.

Methods
Participants.  Study 1.  Sleep electrophysiological data from 13 patients undergoing presurgical electro-
physiological evaluation for drug-resistant epilepsy were used. All interventions were approved by the Hungar-
ian Medical Scientific Council and the ethical committee of the National Institute of Clinical Neuroscience. 
Clinical procedures were not biased for scientific purposes. All patients gave informed consent in line with the 
Declaration of Helsinki.

Study 2.  We used data from 176 healthy participants (mean age 29.8 years, SD 10.66 years, range 17–69 years; 
95 males) from a multi-center database of the Max Planck Institute of Psychiatry (Munich, Germany) and the 
Psychophysiology and Chronobiology Research Group of Semmelweis University (Budapest, Hungary)20,68 was 
used in this retrospective study. We used participants with available cognitive test scores (Raven’s Advanced Pro-
gressive Matrices, the Culture Fair Test and/or the Zahlenverbindungstest [a trail making test]). Test scores were 
always expressed as IQ scores with a population mean of 100 and a standard deviation of 15, and if multiple tests 
were available from a single participant, the scores were averaged (see the first publication of the dataset68 for 
details). Study procedures were approved by the ethical boards of Semmelweis University, the Medical Faculty 
of the Ludwig Maximilian University or the Budapest University of Technology and Economics. All participants 
were volunteers who gave informed consent in line with the Declaration of Helsinki. According to semi-struc-
tured interviews with experienced psychiatrists or psychologists, all participants were healthy, had no history of 
neurologic or psychiatric disease, and were free of any current drug effects, excluding contraceptives in females. 
Consumption of small habitual doses of caffeine (maximum two cups of coffee until noon), but no alcohol, was 
allowed. Six male and two female participants were light-to-moderate smokers (self-reported), and the rest of 
the participants were non-smokers. Further details about participant selection criteria and study protocols can 
be found in the studies reference above.

Electrophysiology.  Study 1.  Patients underwent electrophysiological recordings using implanted lami-
nar microelectrodes (IME) and subdural grid and strip electrodes, from which only grids were analyzed (ECoG). 
Detailed descriptions of these methods are described elsewhere11,57,69. In brief, IMEs contain 24 serially ref-
erenced contacts on a cortex-penetrating pin spaced evenly at 150  µm, capable of detecting extremely local 
intracortical electrical activity, including neuron population firing, which is represented by high-frequency data 
(300–5000 Hz) from this source. Multiple-unit activity (MUA), an index of local neuronal population firing, was 
calculated by rectifying raw data and filtering it with a 20 Hz low-pass filter, according to standard procedure11,57. 
ECoG was recorded with a sampling frequency/precision of either 2000 Hz/16 bit or 1024 Hz/16 bit depending 
on the individual patient, and always with a contralateral mastoid reference.

We manually selected seizure-free data with adequate signal quality (indicated by the absence of continuous, 
broad-frequency artifacts) from all patients. Sleep staging for the selected ECoG data was performed visually 
on a 20 s basis based on standard criteria70. Since standard scoring criteria are generally only applicable to scalp 
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EEG channels with a full polysomnography setup (including EOG and EMG), we restricted our scoring to the 
identification of NREM sleep (regardless of stage) and the separation of it from other sleep states and wakeful-
ness, based on the presence of slow waves and spindles. REM sleep, which is difficult to detect using our setup, 
was not analyzed in Study 1. Artifacts were excluded from ECoG data on a 4 s basis using visual inspection. 
Only artifact-free data from NREM sleep was considered for further analysis. For analysis, we selected the ECoG 
channel closest to the IME without epileptiform activity. For the IME, we treated data from poor-quality channels 
(based on visual inspection) as missing data.

Study 2.  All participants underwent all-night polysomnography recordings for two consecutive nights, and 
data from the second night was used for all analyses. Scalp EEG electrodes were applied according to the 10–20 
system and referenced to the mathematically linked earlobes. Impedances were kept at < 8kΩ. EEG was sampled 
at 250 Hz for 115 participants, 249 Hz for 29 participants and 1024 Hz for 15 participants, always resampled at 
250 Hz. Sleep EEG was visually scored on a 20 s basis according to standard criteria70. A visual scoring of arti-
facts was also performed on a 4 s basis. EEG preprocessing was implemented in Fercio’s EEG (©Ferenc Gombos, 
Budapest, Hungary). Further details about the technical details of the sample can be found in the first publica-
tion of this dataset68.

For analyses, we pooled all NREM epochs instead of analyzing N2 and SWS separately. This was motivated by 
observations that sleep depth within NREM is continuous rather than categorical71 and concerns that age-related 
and sleep depth-related changes in slow wave activity may be confounded in our demographically heterogene-
ous sample60.

Statistical analysis.  All of the procedures described below were implemented using custom code in Matlab 
2018a.

Study 1.  EEG data preparation.  In our main analysis in Study 1, we investigated whether fluctuations in the 
instantaneous amplitude of ECoG oscillations reflected synchronous fluctuations in neuronal population firing 
within the underlying cortex. For this purpose, we analyzed all artifact-free NREM sleep in each patient, split 
up into non-overlapping 20-s segments. In each segment, we demeaned ECoG data and used the modulus of 
the Hilbert transform to estimate the instantaneous amplitude of the following eight frequency bands: low delta 
(0.5–2 Hz), high delta (2–4 Hz), theta (4–7 Hz), alpha (7–10 Hz), low sigma (10–12.5 Hz), high sigma (12.5–
16 Hz), beta (16–30 Hz) and gamma (30–49 Hz). For coupling analysis with each frequency band, we replaced 
raw MUA data with its moving average calculated from a window of 1/f seconds, where f is the upper limit of 
each frequency band. The purpose of this transformation was to remove high-frequency components from the 
MUA signal exceeding the highest frequency at which the corresponding envelope can oscillate.

ECoG‑MUA coupling.  For each segment and for each frequency band, we estimated the coupling between 
ECoG envelope and the MUA by calculating (1) the normalized cross-correlation of the two signals imple-
mented with the xcorr() MATLAB function, allowing lags in the [−  1 1] second range; (2) the magnitude-
squared coherence between the two signals at 0.1 Hz intervals between 0.1 Hz and 1 Hz, implemented with the 
mscohere() MATLAB function; and (3) the coupling of the amplitude of ECoG envelopes to MUA phases. For 
this last analysis, we first used the phase angle of the Hilbert transform to estimate the instantaneous phase of 
the MUA signal. Next, we z-transformed the ECoG envelope signal along the time dimension to standardize 
amplitude across segments. Finally, we calculated the mean standardized ECoG envelope amplitude (expressed 
in within-segment SD units) concomitant to MUA data in each of 12 equally spaced phase bins of 30 degrees 
each. For each patient, we averaged each of the three statistics across all segments to generate a mean value. We 
used this method to estimate phase-amplitude coupling because traditional methods72, only estimate the pre-
ferred phase and overall significance of coupling, whereas we aimed to calculate a more fine-grained estimate. 
We note, however, that our method is theoretically closest to the Modulation Index73, except we estimate the 
statistical significance of each histogram bin individually instead of relying on a single, Shannon entropy-based 
estimate of omnibus significance.

Statistical significance calculation.  We estimated the statistical significance of coupling statistics by compar-
ing results to surrogates obtained from random EEG segments. For this, we matched each 20-s ECoG envelope 
segment with a randomly selected artifact-free NREM MUA segment, calculated cross-correlation, coherence 
and phase-amplitude coupling and finally an average value across all segments. We performed this analysis 1000 
times to generate a null distribution of coupling statistics. An empirical p-value was assigned to each statistic 
based on actual data, defined as the proportion of surrogate-based statistics more distant from zero.

We calculated unweighted means of all comparable statistics across patients. Similarly, we transformed p-val-
ues into standard normal deviates (z-scores) and averaged them across patients, similarly to Fisher’s method of 
averaging logarithmized p-values74 This approach is more conservative and different from ordinary meta-analysis 
in that it doesn’t add weights to patients based on the amount of data available and it doesn’t increase power 
over what was originally available in individual patients, so effects which fall short of significance in individual 
patients do not become significant when data is pooled. Effectively, the alternative hypothesis of this method is 
that coupling is significantly different from zero in each patient, while in a standard meta-analysis it would be 
that coupling is significantly different from zero when data from all patients is pooled.

Finally, average standard normal deviates were transformed back to p-values and subjected to correction 
for false discovery rate using the Benjamini–Hochberg method75 across all lags and IME channels by frequency 
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band (cross-correlation), across frequencies by frequency band and IME channel (coherence), and across phase 
bins by frequency band and IME channel (phase-amplitude coupling).

Study 2.  EEG data preparation.  We used two-way least-squares filtering (implemented in the MATLAB 
EEGLab function eegfilt()) to filter the sleep EEG of each channel of each participant to the following eight fre-
quency bands: low delta (0.5–2 Hz), high delta (2–4 Hz), theta (4–7 Hz), alpha (7–10 Hz), low sigma (10–12.5 Hz), 
high sigma (12.5–16 Hz), beta (16–30 Hz), gamma (30–49 Hz). The envelope of each of these frequency bands 
was calculated using the modulus of the Hilbert transform, resulting in eight signals per participant and channel. 
We used discrete Fourier transform (DFT, implemented in the MATLAB EEGLab function periodogram()) to 
estimate the power spectral density (PSD) of the envelope using rolling, overlapping 100 s windows (with 20 s 

Figure 7.   The performance of elastic net regression models predicting age, sex and IQ from the envelope 
spectrum. Topographic plots illustrate the correlation between predicted and actual phenotypes in the validation 
sample. (Elastic net regression models were run separately for each channel). The correlation for channels on 
which the elastic net model did not converge is set to 0 and not counted towards the average performance 
described in the text.

Table 1.   Biological processes with low-frequency oscillations. The list of oscillations and data on their 
characteristics are from Goldbeter and Berridge67 unless otherwise indicated.

Oscillation (reference) Period Frequency

Main cardiac rhythm 1 s 1 Hz

Respiratory rhythm 4 s 0.25 Hz

Calcium oscillations 1 s—several minutes  < 0.016–1 Hz

Resting state alpha power (Omata et al.)46 6–100 s 0.01–0.17 Hz

Gastric rhythms66  ~ 20 s  ~ 0.05 Hz

Hormonal rhythms At least several minutes  < 0.016 Hz

Cell cycle 10 min—1 day  < 0.001 Hz
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steps and thus an 80 s overlap). The envelope signal in each window was demeaned, detrended and Hamming-
windowed before DFT. PSD was estimated between 0.01 Hz and 4 Hz with 0.01 Hz increments for each sampling 
window, and an average PSD across windows was calculated for each participant, channel and frequency band.

Colliding window method and spectrum smoothing.  Because fluctuations in the envelope of the EEG signal 
are expected to take place on a much longer timescale than fluctuations in the signal itself, very low frequencies 
of the envelope spectrum are of particular interest, but their estimation is only possible with sampling windows 
much longer than those used to estimate the ordinary power spectrum. This introduces a particular problem 
when dealing with artifacts. In case of the ordinary power-spectrum, which is estimated using many sampling 
windows each only a few seconds long, the loss of a few sampling windows due to the presence of artifacts only 
results in the loss of a comparatively small fraction of the total signal. In case of the envelope spectrum, however, 
totally discarding a 100-s sampling window due to a presence of a relatively short artifact may result in an unac-
ceptable amount of signal loss. Therefore we used a colliding window method (Fig. 2, Panel A) to deal with arti-
facts. When the 100-s windows sampling the signal in 20 s steps encountered a segment marked as an artifact, 
they were progressively shortened to end before the artifact, until a minimum sampling window length of 20 s 
was reached. At this point, the sampling window skipped the artifact segment and re-started at its original 100-s 
duration afterwards. PSD from the shortened windows was calculated and used as usual, but PSD estimates of 
the frequencies below 1/L Hz were discarded and in the calculation of the average PSD data from this window 
was under-weighted by 1*L/100 (L in both cases refers to the length of the window in seconds). In order to avoid 
over-sampling of data before artifacts, all envelope signals were sampled both in the forward and backward 
direction, starting the 100 s windows from the beginning and the end of recordings, respectively. The colliding 
method ensured a minimum signal loss of 20 s instead of 100 s in case of artifacts.

The resulting average envelope PSDs were smoothed using the Savitzky-Golay method with a 10-degree 
polynomial, 10-base log-transformed to normalize variances for linear statistics and z-transformed across fre-
quencies within participant and channel to eliminate the effect of between-participant differences in raw EEG 
signal voltage. Participants with abnormal PSDs (based on visual inspection) on any channel in any frequency 
band were removed from analyses concerning that frequency band (N = 1–3 participants per frequency band).

Envelope frequencies up to 2 Hz (that is, fluctuations in EEG amplitude with up to two cycles per second) 
were considered for analysis. Figure 2 illustrates the colliding window process, the amount and temporal position 
within the night of available artifact-free data and the average spectra. Detailed individual spectra are available 
in the Supplementary Data.

Envelope reliability.  Even–odd reliability was computed by calculating the average PSD for each individual 
twice, using even and odd numbered sampling windows separately. Because sampling windows were up to 100 s 
long and overlapped by 20 s steps, only every fifth sampling window was used to avoid non-independent data. 
The reliability of the PSD in each frequency band, on each channel and at each frequency was estimated by the 
intraclass correlation coefficient (implemented as Pearson’s correlation coefficient with pooled standard devia-
tions) between the two measurements. For split-half reliability, we also calculated the average PSD for each 
individual twice, using the first and last 50% of all available sampling windows separately. Because the intra-
class correlation coefficient is sensitive to mean differences and we expected mean signal voltage to systemati-
cally change between the first and second halves of the night, we computed split-half reliability using the ordi-
nary Pearson correlation instead. Although reliability is generally defined as the square root of the correlation 
between repeated measurements because they are both expected to be equally affected by unreliability76, we used 
the more conservative and more easily interpretable unsquared coefficients.

Multivariate analysis.  For multivariate predictions, we used elastic net regression implemented in the MAT-
LAB lasso() function. Elastic net regression is an iterative learning algorithm which seeks to maximize the pre-
dictive value of a large number of potentially correlated predictors by introducing a penalty term for complexity. 
Elastic net regression is able to fit reliable models in samples where OLS regression would be underdeter-
mined given the large number of predictors and the small sample size. Technical descriptions77,78 and practical 
implementations79,80, including in sleep EEG analysis20 are available in the literature. We used fivefold cross-
validation and an L1–L2 regularization mixture set at alpha = 0.5 for elastic net regression models. All envelope 
spectral values between 0.01–1 Hz from all spectral bands (800 variables in total) were used as predictors and 
age, sex (here treated as a continuous variable81) and IQ were used as dependent variables. These models were 
fitted independently using data from each electrode (18*3 = 54 models in total). One eighth (N = 22) of the sam-
ple was retained as a validation sample, and the models were trained on the remaining participants (N = 154, 
including the cross-validation samples used to ensure robust regression coefficients). The models resulting from 
training were used in the fully independent validation sample to check performance. The validation sample 
was selected by ordering participants by the values of the dependent variable and taking every 8th individual to 
ensure maximal variance.

Data availability
Supplementary data is available on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​55953​41. Due to limitations 
described in the ethical permit of this study (especially pertaining to patient data), raw EEG data is available 
upon reasonable request to the corresponding author. All original code has been deposited at Zenodo at https://​
doi.​org/​10.​5281/​zenodo.​55953​41 Any additional information required to reanalyze the data reported in this 
paper is available from the lead contact upon request.

https://doi.org/10.5281/zenodo.5595341
https://doi.org/10.5281/zenodo.5595341
https://doi.org/10.5281/zenodo.5595341
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