
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Kodama H, Yoshida K. 2022
A mathematical model of network
elastoplasticity. Proc. R. Soc. A 478: 20210828.
https://doi.org/10.1098/rspa.2021.0828

Received: 28 October 2021
Accepted: 22 March 2022

Subject Areas:
applied mathematics, geometry, graph theory

Keywords:
polymer networks, periodic weighted graphs,
discrete harmonic maps

Author for correspondence:
Ken’ichi Yoshida
e-mail: yoshida.kenichi@ocha.ac.jp

A mathematical model of
network elastoplasticity
Hiroki Kodama1,2 and Ken’ichi Yoshida3

1WPI - Advanced Institute for Materials Research (WPI-AIMR),
Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi
980-8577, Japan
2RIKEN iTHEMS, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
3Department of Mathematics, Saitama University, 255
Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan

KY, 0000-0002-7478-603X

We introduce a mathematical model, based on
networks, for the elasticity and plasticity of materials.
We define the tension tensor for a periodic graph in a
Euclidean space, and we show that the tension tensor
expresses elasticity under deformation. Plasticity is
induced by local moves on a graph. The graph is
described in terms of the weights of edges, and we
discuss how these weights affect the plasticity.

1. Introduction
The field of topological crystallography was initially
introduced by Kotani & Sunada [1–5] as a part of discrete
geometric analysis. One of the main objects of their study
is a net, that is, a periodic graph realized in R

N . The
energy of a net is defined as an analogue of the Dirichlet
energy of a Riemannian manifold. In other words, one
can say that the energy of a net is the total potential
energy of springs, viewing edges as linear springs with
rest lengths equal to zero. Harmonic and standard nets
are defined as energy-minimizing nets under certain
conditions, and they are regarded as equilibrium states.
Nets have been used as models of crystals.

In this paper, we suggest that the energy of a
net induces a model of hyperelastic materials. Here,
hyperelasticity is the property from which stress under
deformation is derived using an energy density function.
To describe the deformation of a net, we introduce the
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Figure 1. A spherical structure formed from ABA triblock copolymers.

notion of a tension tensor, which is regarded as multivariate energy. Further, a standard net is
characterized by the tension tensor. We show that the Cauchy stress tensor is also expressed by the
tension tensor. Furthermore, if the graph structure is preserved, the elasticity at the macro-scale is
also determined by the tension tensor; otherwise, a departure from elasticity, known as plasticity,
occurs. To describe the manner in which the graph structure changes, we consider two types of
local moves: contraction and splitting. We define a condition for a local move and introduce two
models of deformation concerning plasticity. This enables us to draw the stress–strain curve.

Our model is motivated by the structure of thermoplastic elastomers (TPEs). A TPE is a
polymeric material with rubber elasticity and is remoldable at high temperatures. A typical TPE
consists of ABA triblock copolymers, in which monomers of types A and B are arranged in
a sequence such as A · · · AB · · · BA · · · A. ABA triblock copolymers of a certain type form two
domains consisting of monomers A and B. This structure is called microphase separation. We
consider a structure such that each component consisting of monomer A is a ball, as shown in
figure 1. This is called a spherical structure. The domains consisting of monomers A and B are
called hard and soft domains, respectively. The theoretical and numerical treatments of block
copolymers are explained in the book by Fredrickson [6], to which we refer the reader for further
information.

In our model, the hard and soft domains correspond to the vertices and edges, respectively.
More precisely, a hard domain is a vertex, and a polymer chain in the soft domain is an edge.
The endpoints of an edge are the (possibly single) hard domains that contain monomer A of the
copolymer. The obtained graph may have loops and multiple edges.

The network structure of polymers induces rubber elasticity. The random motion of polymer
chains in the soft domain gives rise to entropic forces. A hard domain functions as a cross-link.
In our approximation, we ignore the maximal length of the chain and the interaction between
chains. If a chain moves randomly, the tension on the chain is proportional to the distance between
the endpoints. This setting is consistent with the definition of the energy of a net. Suppose that
the polymers can move freely while preserving the network structure. Additionally, we obtain
a harmonic net in equilibrium. Since harmonicity is preserved by affine deformation, the affine
assumption in the classical theory of rubber elasticity holds. Additional details of rubber elasticity
are provided in the book by Treloar [7].

The hard domains of a TPE are less robust than the cross-links of vulcanized rubber because
each hard domain is aggregated by intermolecular forces. The network structure of a TPE may
change under deformation, as observed in simulation [8,9] and by conducting experiments [10].
For example, a hard domain may split, as shown in figure 2. Further, a loop may become a non-
loop edge between the new domains. Conversely, two hard domains may contract. These moves
cause plasticity. Although other moves may occur, we consider only contractions and splittings.
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Figure 2. Splitting of a hard domain. In this example, one loop becomes a non-loop edge between the new domains.

In §2, we give preliminary definitions of nets. The graphs we use are weighted, and their
weights can be regarded as the number of edges. Different types of polymers may contribute
different weights.

In §3, we introduce the tension tensor. This is visualized by an ellipsoid.
In §4, we consider the elasticity of nets under deformation. Based on a physical argument, the

Cauchy stress tensor is derived from the tension tensor. We also consider the stress under uniaxial
extension. Young’s modulus of a standard net is determined by the energy per unit volume.

In §5, we define local moves. The contraction of two vertices is a natural operation. A splitting
of a vertex is an inverse operation of contraction. The sum of weights is preserved in our model.
The conditions for the occurrence of these moves are provided by the realization of a graph. The
local tension tensor is used to determine whether a vertex splits or not. We suspend the physical
validity of the conditions.

In §6, we introduce two models we call fast and slow deformations. Although these models
reflect the dependence on the speed of deformation, we consider only the two extreme cases.
Subsequently, we obtain the stress–strain curve, which is merely piecewise continuous. We
suppose that the local moves under deformation finish in finitely many times. For example, after
a vertex splits, the inverse contraction should not occur immediately. We show only a sufficient
condition to avoid such repetitions.

Section 7 is devoted to mathematical results. In there, we consider the extent to which the
weight of an edge affects the harmonic realization. For the sake of theoretical consideration, we
allow weights to be non-negative real numbers and continuously deformed. When the weight of
an edge in a harmonic net becomes large, the limit of nets is obtained by the contraction of this
edge. In theorem 7.2, we show a mathematical result on the relation between the edge length and
the difference of the tension tensor. Moreover, in theorem 7.6 we obtain a lower bound for the
edge length.

In §8, we define the number called the energy loss ratio to measure the plasticity of nets. This
provides an estimate of the permanent strain for uniaxial tension. We observe simple examples,
which suggest the following:

(i) a material has lower plasticity if the proportion of loops is large;
(ii) a material with lower plasticity is obtained by blending two materials.

Continuous deformation of weights highlights these tendencies.
In §9, we give examples of deformation. We use a periodic graph obtained from the hexagonal

lattice. The nets obtained by deformation depend on the stretching direction.

2. Definitions
Based on the formulation in [3,5], we prepare some notions in topological crystallography. Let
X = (V, E, w) be an (abstract) weighted graph, which is defined by the vertex set V and the edge
set E with maps o, t : E → V, and ι : E → E such that ι2 = id, ι(e) �= e, and o(ι(e)) = t(e) for any e ∈ E.
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The maps o and t associate the origin and the terminal of an edge, respectively. The map ι reverses
the orientation of an edge. We allow a loop (edge e such that o(e) = t(e)) and a multi-edge (edges
with common terminal points). The weight function w : E → R≥0 satisfies w(ι(e)) = w(e) for e ∈ E.
We regard the weight of an edge as the number of edges. Hence, we may replace an edge e0 with
the union of edges e1 and e2 if o(e0) = o(e1) = o(e2), t(e0) = t(e1) = t(e2), and w(e0) = w(e1) + w(e2).
The weight function is often omitted in the notation. The degree of a vertex v ∈ V is defined
by deg(v) =∑

o(e)=v w(e). Note that the weight of a loop contributes twice to the degree of its
endpoint.

A graph X = (V, E) is a finite graph if V and E are finite sets. Otherwise, X is an infinite graph.
We can naturally identify X with a one-dimensional complex. Note that two elements e and ι(e)
in E correspond to a single 1-cell in the complex. We may reduce the complex by removing the
zero-weight edges. If this reduced complex is connected, we say that the graph is connected.

We consider an infinite connected graph X. For N ≥ 1, suppose that L = Z
N acts on X as

(weight-preserving) automorphisms of the graph, the quotient map ω : X → X/L = (V/L, E/L) is
a covering, and X/L is a finite graph. Then, we say that X is a periodic graph, and L is a period
lattice for X. A map Φ : V → R

N is called a periodic realization of X in R
N if there exists an injective

homomorphism ρ : L ↪→ R
N as Z-modules satisfying that

(i) Φ(γ v) = Φ(v) + ρ(γ ) for any v ∈ V and γ ∈ L, and
(ii) ρ(L) is a lattice subgroup of R

N.

Condition (i) means that Φ is L-equivariant. We call ρ and ρ(L), respectively, the period
homomorphism and the period lattice for Φ.

Definition 2.1. The pair (X, Φ) is called as a net in R
N if Φ is a periodic realization of a periodic

graph X in R
N .

A periodic realization Φ maps an edge e ∈ E to a vector

vΦ (e) = Φ(t(e)) − Φ(o(e)),

in R
N . Since vΦ (γ e) = vΦ (e) for γ ∈ L, we obtain vΦ : E/L → R

N by vΦ (ω(e)) = vΦ (e). We often write
Φ instead of vΦ by abuse of notation. If e is a loop, then Φ(e) = 0.

We define the energy of a net and consider energy-minimizing realizations. Note that our
definition of the energy is slightly different from that in [5, §7.4], where the energy normalized by
the volume is defined.

Definition 2.2. The energy (per period) of a net (X, Φ) is defined as follows:

E(X, Φ) = 1
2

∑
e∈E/L

w(e)||Φ(e)||2.

In other words, when we regard edges as springs, the energy is two times the total potential
energy of linear springs with rest length equal to zero and elasticity constant given by the edge
weight. Note that we count the segment between points P and Q twice in the summation, as edges
from P to Q and from Q to P.

Definition 2.3. A periodic realization Φ of X is called harmonic if the energy E(X, Φ) is minimal
among the periodic realizations of X with the fixed period homomorphism ρ. Then, we call (X, Φ)
a harmonic net.

Definition 2.4. A periodic realization Φ of X is called standard if the energy E(X, Φ) is minimal
among the periodic realizations of X with the fixed covolume vol(RN/ρ(L)). Then, we call (X, Φ)
a standard net.

Remark that when vol(RN/ρ(L)) = vol(RN/ρ̃(L)), there exists a volume-preserving linear
transformation A ∈ SL(N, R) satisfying A ◦ ρ = ρ̃. Therefore, a periodic realization is standard if
its energy is minimal among its volume-preserving linear transformations.
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Figure 3. A symmetric net with tension ellipse. (Online version in colour.)

Clearly, a standard realization is harmonic. A harmonic realization is characterized by a local
condition. We characterize a standard realization in §3.

Theorem 2.5 ([5] theorem 7.3). A periodic realization Φ is harmonic if and only if
∑

o(e)=v w(e)Φ(e) =
0 for any v ∈ V.

From this theorem, it directly follows that a linear transformation of a harmonic representation
is also harmonic.

Corollary 2.6. Suppose that Φ is a periodic realization and A ∈ GL(N, R) is a linear transformation
Then the composition A ◦ Φ is a harmonic realization if and only if Φ is harmonic.

Remark 2.7. One might think that in definition 2.2, the rest lengths of the springs should be
positive, not zero. However, we have assumed the rest lengths to be zero for two reasons. The
first reason is due to statistical mechanics. A chain in a TPE is not taut like a helical spring, but it
fills space randomly. Therefore, the tension on the chain is proportional to the distance between
the endpoints. The second reason is a mathematical one. We will transform harmonic nets by
continuous linear transformations in the following sections. However, in order for the result of
any linear transformation to be harmonic again, the natural length of the spring must be zero (see
corollary 2.6).

Remark 2.8. In this paper, we use the term ‘net’ as a periodically realized network in R
N. In the

book of Wells [11], who initiated a systematic study of crystal structures as networks, a connected
simple periodic graph with straight edges in a Euclidean space was called a net, and we follow
this convention. Note that in the terminology of [5], a net is called a topological crystal.

3. Tension tensor
In our mathematical model, a net represents the structure of TPE chains. Consider the tension
caused by the structure. Indeed, a stretched TPE must have tension in the direction in which the
structure is stretched. For example, the net in figure 3 has a symmetric shape. Thus, it has no
tension in any direction. By contrast, the net in figure 4 seems to be stretched from the top right to
the bottom left. However, what can we say about a more complicated net such as that in figure 5?

To answer this question, we introduce a matrix named a tension tensor. Essentially, the tension
tensor denotes the energy of a net with information of the direction along which the net is
stretched, or its ‘directed energy’. We will observe that the tension tensor can be visualized as
an ellipse (or ellipsoid), such as the ellipses in figures 3–5.
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Figure 4. A stretched net with tension ellipse. (Online version in colour.)

Figure 5. A complicated net with tension ellipse. (Online version in colour.)

Through computer simulation for the deformation of two-dimensional nets, we make the
following observations:

(i) when we stretch a net and the graph structure does not experience any change, the ellipse
of the tension tensor also stretches in the same direction; and

(ii) when the graph structure changes, the ellipse of the tension tensor becomes round.

The former immediately follows from the definition. The latter can be verified by theorem 7.2.
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(a) Definition of the tension tensor
Definition 3.1. For a net (X, Φ), we define the local and global tension tensors as follows: For a

vertex v of X or X/L, the local tension tensor is defined by

T (v) =
∑

o(e)=v

w(e)Φ(e)⊗2,

where ⎛
⎜⎜⎝

x1
...

xN

⎞
⎟⎟⎠

⊗2

=

⎛
⎜⎜⎝

x1
...

xN

⎞
⎟⎟⎠⊗

⎛
⎜⎜⎝

x1
...

xN

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

x1
...

xN

⎞
⎟⎟⎠ (x1, . . . , xN) =

⎛
⎜⎜⎝

x2
1 · · · x1xN
...

. . .
...

xNx1 · · · x2
N

⎞
⎟⎟⎠ .

The global tension tensor (per period) is defined by

T (X, Φ) = 1
2

∑
v∈V/L

T (v).

Proposition 3.2. It holds that tr(T (X, Φ)) = E(X, Φ).

Proof.

tr(T (X, Φ)) = 1
2

∑
v∈V/L

∑
o(e)=v

w(e)tr(Φ(e)⊗2)

= 1
2

∑
e∈E/L

w(e)||Φ(e)||2

= E(X, Φ).

Note that two elements e, ι(e) ∈ E/L are distinguished. �

The following characterization of a standard realization follows from ([5], Theorem 7.5).

Theorem 3.3. A periodic realization Φ is standard if and only if it is harmonic and the global tension
tensor T (X, Φ) is a constant multiple of the identity matrix.

Consequently, a standard realization is unique up to similar transformations. The existence
and explicit constructions of a standard realization were also shown previously [3,5].

We remark that the global tension tensor T (X, Φ) per period depends on the choice of period.
Suppose that L2 is a finite index sublattice of L1 = L, and Ti is the tension tensor with respect to
the lattice Li. Then

T2(X, Φ) = [L1 : L2]T1(X, Φ).

To avoid this ambiguity, we can define the tension tensor per weight by

Tw(X, Φ) = T (X, Φ)
1
2
∑

e∈E/L w(e)
.

However, in most parts of this paper, we assume that the covolumes of period lattices are constant,
and we use the tension tensor per period without the ambiguity.

(b) Linear action and visualization
Let A ∈ GL(N, R). The matrix A acts on a net (X, Φ) by

A(X, Φ) = (X, A ◦ Φ).

Since x ⊗ x = x xT for x ∈ R
N , it follows that T (A(X, Φ)) = AT (X, Φ)AT, where xT and AT are the

transposes of x and A, respectively. In particular, if A is a symmetric matrix, then T (A(X, Φ)) =
AT (X, Φ)A.
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To visualize the tension tensor, we define an ellipsoid by

Ell(X, Φ) = {x ∈ R
N | xTTw(X, Φ)−1x = 1}.

We remark that we use the tension tensor per weight here to avoid ambiguity. It is easy to check
that Ell(A(X, Φ)) = AEll(X, Φ).

4. Stress
In this section, we consider the stress experienced by a net by using the tension tensor. Fix a
periodic graph X. Let Φ be a harmonic realization of X. We regard the energy E = E(X, Φ) as
physical energy. This is interpreted as the Helmholtz free energy for entropic elasticity. With
a three-dimensional object in mind, we give an obvious generalization to the N-dimensional
version. (See [12] for the classical theory on continuum mechanics.)

As a result, the stress satisfies the neo-Hookean model, which is the simplest one among
the hyperelastic materials. This also coincides with the consequence of the classical theory on
rubber elasticity by Kuhn (see [7], ch. 4). Note that his setting is not identical to ours. Although
polymers are normally distributed in his theory, the net in our setting is not isotropic. Nonetheless,
a standard net has isotropy at the macro-scale.

(a) Stress tensor
By compositing rotational isometry, we may assume that the tension tensor per period is a
diagonal matrix T = T (X, Φ) = diag(τ1, . . . , τN). Then, the energy per period is E = trT =∑

i τi.
Let V = vol(RN/ρ(L)) denote the volume per period.

We apply a physical argument to define stress for nets. Let us consider a macro-scale object
of which the shape is an orthotope (N-cuboid) of edge length Li in each ith direction for
1 ≤ i ≤ N. Suppose that this object consists of a net at the micro-scale. We apply the affine
deformation assumption ([7], ch. 4) (or the Cauchy–Born rule [13]). In other words, if the macro-
scale object undergoes an affine deformation, the net at the micro-scale undergoes the same
affine deformation. Then, the total energy is equal to (

∏
i Li/V)E = (

∏
i Li/V)

∑
i τi. Suppose that

external force Fi extends outward in each ith direction, and the object remains in equilibrium.
Then, the stress in the ith direction is σi = LiFi/

∏
j Lj. Consider infinitesimal deformation of the

object. For a short while, we allow the volume V to vary but let
∏

i Li/V be constant. Let 
Li
denote the displacement in the ith direction. The strain in the ith direction is εi = 
Li/Li. Then,
the work is

∑
i Fi
Li =∏

j Lj
∑

i σiεi, which is equal to the difference of energies (
∏

j Lj/V)
E .
Hence,

∑
i σiεi = 
E/V . The difference of the tension tensor is given by


T = diag(τ1(1 + ε1)2, . . . , τN(1 + εN)2) − T = diag(2τ1ε1, . . . , 2τNεN),

modulo the order more than one. Hence, 
E = tr(
T ) =∑
i 2τiεi. Therefore,

∑
i

σiεi =
∑

i

2τi

V εi.

If we can vary εi freely, we obtain σi = 2τi/V . Thus, we define the Cauchy stress tensor for a net as
Σ = (2/V)T , which is valid in general coordinates.

Furthermore, we suppose that the deformation preserves the volume. In other words,
∏

i Li
and V are constant. Since

∏
i(Li + 
Li) =∏

i Li, we have
∑

i εi = 0. If we vary εi under this
condition, the equation

∑
i σiεi =∑

i(2τi/V)εi implies that σi = 2τi/V − c for some constant c.
Indeed, uniform pressure does not change the shape under the constraint of volume. Thus, the
traceless part of the Cauchy stress tensor Σ − (tr(Σ)/N)I = (2/V)T − (2E/NV)I is regarded as the
volume-preserving part. This is called the deviatoric stress tensor.

If the external forces Fi are equal to zero, then 2τi/V = c. Hence, the deviatoric stress tensor is
zero. Since T = (cV/2)I, theorem 3.3 implies that Φ is a standard realization.
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A material is hyperelastic (or Green elastic) if the stress under deformation is determined by
a strain energy density function. In our setting, consider the affine deformation of a standard net
(X, Φ) by the diagonal matrix

A = diag(λ1, . . . , λN) ∈ SL(N, R).

The strain energy density function is given by

1
V (E(A(X, Φ)) − E(X, Φ)) = E(X, Φ)

NV

(∑
i

λ2
i − N

)
.

A material with such a strain energy density function is called incompressible neo-Hookean.

(b) Uniaxial extension
Consider a harmonic net (X, Φ). For the sake of the argument in §8, first let Φ be not necessarily
standard. We write (τij)1≤i,j≤N = T (X, Φ), which is not necessarily diagonal, in contrast to the
previous subsection. For λ > 0, the diagonal matrix

A(λ) = diag(λ, λ−1/(N−1), . . . , λ−1/(N−1)) ∈ SL(N, R),

induces a uniaxial extension with strain ε = λ − 1. The volume V per period is constant
under deformation. Consider the tension tensor T (λ) = T (A(λ)(X, Φ)) = A(λ)T (X, Φ)A(λ) after
deformation. A stress tensor in the volume-preserving setting is given by (σij)1≤i,j≤N =
(2/V)T (λ) − cI for some c. By considering the nature of uniaxial extension, we suppose that
σ22 + · · · + σNN = 0. However, it does not hold that σ22 = · · · = σNN = 0 in general. Then,

c = 2
(N − 1)V (τ22 + · · · + τNN)λ−2/(N−1).

The true stress under this uniaxial extension is defined by

σtrue = σ11 = 2
V τ11λ

2 − c = 2
V (τ11λ

2 − 1
N − 1

(τ22 + · · · + τNN)λ−2/(N−1)).

The engineering stress (or nominal stress) is measured using the cross-sectional area before
deformation, and it is defined by σeng = σtrue/λ.

Proposition 4.1. Let E(λ) = E(A(λ)(X, Φ)). Then

σtrue = λ

V
dE(λ)

dλ
, σeng = 1

V
dE(λ)

dλ
.

Proof. Since E(λ) = tr(T (λ)) = τ11λ
2 + (τ22 + . . . + τNN)λ−2/(N−1), we have

dE(λ)
dλ

= 2
(

τ11λ − 1
N − 1

(τ22 + · · · + τNN)λ−1−2/(N−1)
)

.

�

The permanent strain is the number ε0 satisfying σeng(1 + ε0) = 0. The following equality is clear
from the definition of σeng.

Proposition 4.2. It holds that

ε0 =
(

τ22 + · · · + τNN

(N − 1)τ11

)(N−1)/2N
− 1.
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Figure 6. Contraction of two vertices.

Consider the case in which Φ is standard. Then, τ11 = · · · = τNN = E(X, Φ)/N. Moreover, we
have σ22 = · · · = σNN = 0, which is natural for uniaxial extension. The true stress is given by

σtrue = σ11 = 2E(X, Φ)
NV (λ2 − λ−2/(N−1)).

The engineering stress is given by

σeng = σtrue

λ
= 2E(X, Φ)

NV (λ − λ−1−2/(N−1)).

Then, Young’s modulus for a standard net (X, Φ) is defined by

E = dσtrue

dλ

∣∣∣∣
λ=1

= 4E(X, Φ)
(N − 1)V .

5. Local moves
We introduce three local moves for nets: contraction and splitting. A local move for a graph is
an operation to obtain a new graph by replacing some vertices and edges. When we say that we
replace an edge e with e′, we simultaneously replace ι(e) with ι(e′) in our notation. For a periodic
graph, a local move is regarded as an equivariant operation preserving the period. Even though
local moves are defined as operations for abstract graphs, the conditions under which they occur
are given by realizations of nets.

(a) Contraction of two vertices
Let X = (V, E) be an (abstract) graph, and let v0, v1 ∈ V. We construct a new graph X′ = (V′, E′)
as follows: We define V′ = (V \ {v0, v1}) 
 v′ and E′ = E. Let π : V → V′ denote the projection such
that π (v0) = π (v1) = v′ and the restriction π |V\{v0,v1} is the identity map. We define the endpoint
maps o′ = π ◦ o, t′ = π ◦ t : E′ → V′. Suppose that the weight function on E′ is identical to that on
E. We call this operation the contraction of v0 and v1 to v′. This contraction causes the edges e0, e1
and e01 to change into the loop e′ on v′, where ei is the loop on vi, and e01 is the edge between v0
and v1 (figure 6). Then, the sum of weights is preserved.

For a periodic graph X with period L, we define a contraction as an equivariant operation. In
other words, we apply the contraction of γ v0 and γ v1 for each γ ∈ L. In this case, it is necessary
that v1 �= γ v0 for any γ ∈ L. As a result, we obtain a new periodic graph X′.

To introduce deformation in §6, we define a condition for contraction using a realization Φ of
the graph X. Fix a constant δ > 0. If ||Φ(v1) − Φ(v0)|| ≤ δ, then we suppose that the vertices v0 and
v1 contract.

Note that the weight w(e01) may be zero. Even in this case, the vertices v0 and v1 contract if
their distance is sufficiently small.
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(b) Splitting of a vertex
A splitting of a vertex is an inverse operation of contraction. This is not determined only by the
vertex. When a vertex v splits, the loop on v changes the loops on v0 and v1 and the edge between
them. Although the sum of weights is preserved, the choice of the three weights is not unique. We
also need to assign an endpoint v0 or v1 for each new edge corresponding to an edge originating
from v. Note that there may not necessarily exist loops on the vertex v. If there exist no loops on
v, there exist no edges between the new vertices v0 and v1.

For a periodic graph X, we define a splitting as an equivariant operation to obtain a new
periodic graph X′. We remark that vertices v and γ v for γ ∈ L may be adjacent. Even in this case,
we can still define a splitting as such. By ignoring the period, we apply successive splittings of v

and γ v. Note that the sequence of splittings in any order yields the same result.
We define a condition for splitting using a realization Φ of the graph X:

(i) when a vertex v splits;
(ii) the way in which the edges originating from v are divided into two classes; and

(iii) the way in which the weights are assigned.

Fix constants Kd > 0 for d > 0. The value Kd is regarded as the firmness of a vertex with degree
d. Recall that Φ : E → R

d is the map induced by Φ, and T (v) =∑
o(e)=v w(e)Φ(e)⊗2 is the local

tension tensor around v. Let λmax denote the maximal eigenvalue of T (v). Take an eigenvector
u associated with λmax. We divide the edges originating from v into two classes {e0,j}1≤j≤m and
{e1,j}1≤j≤n so that u · Φ(e0,j) ≤ 0 and u · Φ(e1,j) ≥ 0. If λmax ≥ Kdeg(v), then we suppose that the
vertex v splits. This may be regarded as the maximal principal stress criterion. The new edge
corresponding to ei,j originates from vi. Roughly speaking, the splitting occurs in the stretched
direction.

To obtain the unique division into two classes {e0,j} and {e1,j}, we need the following condition
of genericity:

(i) the eigenspace associated with λmax is the one-dimensional space span(u), and
(ii) there are no edges ei,j such that u · Φ(ei,j) = 0.

Because it is difficult to decide how the weights are assigned, we use an ad hoc setting: suppose
that e′

0 and e′
1 are, respectively, the loops on v0 and v1. Moreover, suppose that e′

01 is the edge
between v0 and v1. Fix the probabilities p0, p1 and p01 that the loop e on v changes into the new
edges e′

0, e′
1 and e′

01. In other words, w(e′
0) = p0w(e), w(e′

1) = p1w(e), w(e′
01) = p01w(e) and p0 + p1 +

p01 = 1. Although the choice of p0, p1 and p01 may be arbitrary, it is reasonable to set p0 = p1 = 1/4
and p01 = 1/2. The reason is that the above choice holds if each endpoint of a new edge is v0 with
a probability of 1/2.

For a realization Φ of a graph X, suppose that a graph X′ is obtained by splitting a vertex v

into v0 and v1. Then, we define the immediate realization Φ(i) of X′ (or Φ by abuse of notation)
as follows: Φ(i)(v0) = Φ(i)(v1) = Φ(v), and Φ(i)(u) = Φ(u) for any other vertex u. If Φ is a periodic
realization, then Φ(i) is equivariantly defined as a periodic realization. Using this, we can show
that splitting decreases the energy.

Proposition 5.1. Suppose that X′ is a graph obtained from X as a result of splitting under the above
condition. Let Φ ′ be a harmonic realization of X′ with the same period as Φ. Then, E(X′, Φ ′) < E(X, Φ).

Proof. Clearly, E(X′, Φ(i)) = E(X, Φ). The condition of splitting and theorem 2.5 imply that Φ(i) is
not harmonic. Hence, E(X′, Φ ′) < E(X′, Φ(i)) by definition 2.3. �

Remark 5.2. In the above two subsections, the graph X′ obtained by the local move is well
defined. However, the realization Φ ′ of X′ should be defined using harmonicity, so there remains
ambiguity of parallel translation.
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In this paper, it does not matter because we only consider the shape of the realized graph and
its energy. However, if one wants to discuss such as the displacements of nodes before and after
a local move, this ambiguity should be removed. One idea is to assume that the centre of mass of
the periodic cell is fixed.

6. Models of deformation
We introduce two models: fast and slow deformation. The difference of these two models reflects
the strain rate sensitivity, that is, the dependency of stress on the speed of deformation. A
harmonic realization of a periodic graph is regarded as an equilibrium state. Let (X0, Φ0) be a
standard net with period homomorphism ρ0 as an initial condition. This is regarded as a state
without external force, as explained in §4. In this section, we express the period homomorphisms
explicitly. Suppose that the initial net (X0, Φ0, ρ0) does not satisfy any condition of a contraction
or splitting. Deformation is obtained by linear transformations with constant volume. We apply
contractions and splittings that satisfy the conditions in §5 for harmonic nets in deformation.
Because the process is not deterministic in general, it is necessary to choose one that satisfies the
conditions. We leave the stochastic formulation for future work.

(a) Fast deformation
Let A ∈ SL(N, R). Fix the period homomorphism A ◦ ρ0. We apply local moves for the harmonic
net A(X0, Φ0, ρ0) = (X0, A ◦ Φ0, A ◦ ρ0). First, we apply the splittings. Then, we obtain a new
harmonic net. If the conditions of other local moves hold, we continue to apply the splittings.
Second, we apply the contractions. However, more than two vertices may contract to a point. In
general, we need to choose the contracting vertices so that the contraction does not violate the
period.

We continue this procedure by supposing that these procedures finish with finitely many local
moves. In the end, we obtain a harmonic net (X1, Φ1, A ◦ ρ0). We call this process fast deformation.

(b) Slow deformation
Slow deformation is a limit of sequences of fast deformation. For a continuous family of linear
transformations, take approximations by discrete families of small ones. They induce sequences
of fast deformation. We obtain slow deformation by the limit as the approximations get arbitrarily
fine.

Equivalently and more precisely, slow deformation is defined as follows. Suppose that At ∈
SL(N, R) for 0 ≤ t ≤ 1 is a continuous family of linear transformations such that A0 = id. Let ρt =
At ◦ ρ0. We apply local moves while increasing t from zero to one. Let t1 be the minimal t such that
the condition of a local move holds for the harmonic net (X0, At ◦ Φ0, ρt). We obtain a graph X′

0
by the local move. Consider a harmonic net (X′

0, Φ ′
0, ρt1 ). Note that another local move may occur

for (X′
0, Φ ′

0, ρt1 ). Then, we continue to apply local moves. Subsequently, we obtain a harmonic net
(Xt1 , Φt1 , ρt1 ).

After the exhaustion of local moves for t1, we increase t. Let t2 be the minimal t more than t1
such that the condition of a local move holds for the harmonic net (Xt1 , AtA−1

t1
◦ Φt1 , ρt1 ). Using

the same argument as above, we obtain a harmonic net (Xt2 , Φt2 , ρt2 ).
We continue this procedure by supposing that these procedures finish with finitely many local

moves. Ultimately, we obtain a harmonic net (X1, Φ1, ρ1). We call this process slow deformation.
A condition of genericity is given as follows:

(i) two local moves do not occur simultaneously, and
(ii) two vertices equivalent by the period do not contract.
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If the net is highly symmetric, the genericity is difficult to hold. For genericity, we arbitrarily
choose a single local move at a time, and we ignore any contraction that violates the period.

We define the stress–strain curve for a uniaxial extension. Let

A(λ) = diag(λ, λ−1/(N−1), . . . , λ−1/(N−1)) ∈ SL(N, R).

The slow deformation by At = A(λt) for 0 ≤ t ≤ 1 induces a net (X1, Φ1). The energy E(λ) =
E(X1, Φ1) is a right-continuous function of λ. We can plot the stress–strain curve as a graph of
the engineering stress σeng as a function of the strain ε = λ − 1, where σeng = (1/V)(dE(λ)/dλ) by
proposition 4.1.

(c) Compatibility of splitting and contraction
We suppose that the above procedures in deformation finish with finitely many local moves. In
general, splittings and contractions may cause an infinite sequence of local moves. We give only
a partial result for this problem.

Let (X, Φ) be a harmonic net. Let X′ be a periodic graph obtained from X by splitting a
vertex v into v0 and v1 with respect to the condition given in §5. The maximal eigenvalue of
the local tension tensor T (v) is equal to Kdeg(v). Let e′ denote the new non-loop edge in X′.
Let w′ be the weight of e′, which does not exceed the weight of the loop on v. We consider a
harmonic realization Φ ′ with the same period lattice as Φ. If ||Φ ′(e′)|| = ||Φ ′(v1) − Φ ′(v0)|| ≤ δ,
then splittings and contractions continue alternately. We show that such repetition does not occur
if δ is sufficiently small.

Theorem 6.1. Suppose that the weights are non-negative integers. Then,

||Φ ′(e′)|| ≥
√

2Kdeg(v)

deg(v)
.

Proof. Let Φ(a) be an auxiliary periodic realization of X′ such that Φ(a)(v0) = Φ(v), Φ(a)(u) = Φ(u)
for any vertex u �= γ v1 (γ ∈ L), and Φ(a) is harmonic around v1. Then, ||Φ ′(e′)|| ≥ ||Φ(a)(e′)||, which
we show in theorem 7.6. Hence, it is sufficient to show that

||Φ(a)(e′)|| ≥ 1
deg(v1)

√
Kdeg(v)

2
.

Indeed, since deg(v) = deg(v0) + deg(v1), we may assume that deg(v) ≥ 2 deg(v1) by interchanging
v0 and v1 if necessary.

Let ei1, . . . , eini for i = 0, 1 denote the non-loop edges of X′ originating from vi other than e′,
and let vi1, . . . , vini denote their terminals. Note that we may ignore the edges between vi and
γ vi for γ ∈ L. Let wij be the weight of eij. The same symbol is used for the corresponding edges
and vertices of X. We write Φ(vij) = (x1

ij, . . . , xN
ij ). We may assume that Φ(v) = Φ(a)(v0) = 0 and

the splitting occurs in the direction of the first coordinate; that is, the vector (1, 0, . . . , 0) is an
eigenvector associated with the maximal eigenvalue of the local tension tensor around v. Then,
x1

0j ≤ 0, x1
1j ≥ 0,

∑
i,j wijx1

ij = 0, and
∑

i,j wij(x1
ij)

2 = Kdeg(v). Since Φ(a) is harmonic around v1, we have

−w′Φ(a)(v1) +
n1∑

j=1

w1j(Φ(v1j) − Φ(a)(v1)) = 0.

Hence,

||Φ(a)(e′)|| = ||Φ(a)(v1)|| =
∣∣∣∣∣|
∑n1

j=1 w1jΦ(v1j)

w′ +∑n1
j=1 w1j

∣∣∣∣∣ | ≥
∑n1

j=1 w1jx1
1j

deg(v1)
.

Moreover, we obtain
∑n1

j=1 w1jx1
1j ≥

√
Kdeg(v)/2 by lemma 6.2 and the assumption that wij ∈ Z≥0.

�
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Lemma 6.2. Let x01, . . . , x0n0 ≤ 0 and x11, . . . , x1n1 ≥ 0. Suppose that z = −∑n0
j=1 x0j =∑n1

j=1 x1j and

K =∑
i,j(xij)2. Then, z ≥ √

K/2.

Proof. We find the maximum K for a fixed z > 0. If x + y = a is fixed for x, y ≥ 0, then the
maximum a2 of x2 + y2 is attained when x = 0 or y = 0. Hence, the maximum of K is attained
when x0j0 = −z and x1j1 = z for some j0 and j1, and xij = 0 for the other j. Therefore, K ≤ 2z2. �

7. Variation of weights
In this section, we consider the extent to which the harmonic realizations and their energies
depend on the weights, which vary in non-negative real numbers. We describe a contraction as
the limit by increasing the weight of an edge. Note that we do not suppose that the sum of weights
is preserved, which differs from the assumption in §5.

Let X = (V, E) be a periodic graph with period L. We take representatives v0, v1, . . . , vn ∈ V of
the set V/L. Let eijγ denote the edge from vi to γ vj for γ ∈ L. Then, {eijγ } are representatives of the
set E/L. Let wijγ denote the weight of eijγ . Then, wij,−γ = wjiγ .

Fix a period homomorphism ρ : L → R
N . Suppose that n ≥ 1. Let X̂ be a periodic graph

obtained from X by the contraction of v0 and v1 to a vertex v̂. Suppose that Φ(h) and Φ̂(h) are
harmonic realizations of X and X̂, respectively. We may assume that Φ(h)(v0) = Φ̂(h)(v̂) = 0. We
change the harmonic realizations Φ(h) by varying w010 while fixing the other weights on X. Here,
we regard wijγ = wji,−γ as a single variable. Suppose that X is connected, that is, the union of
its edges with positive weights is connected. Since the harmonic realization Φ(h) is given by the
unique solution of a system of linear equations, it depends continuously on w010. After we show
that Φ̂(h) can be regarded as limw010→∞ Φ(h), we give explicit presentations.

Lemma 7.1. The realizations Φ(h) converge to Φ̂(h) as w010 → ∞. In other words, Φ(h)(vi) converge to
Φ̂(h)(vi) for each 2 ≤ i ≤ n, and Φ(h)(v1) converge to Φ̂(h)(v̂) = 0. In particular, limw010→∞ Φ(h)(e010) = 0.
Consequently,

lim
w010→∞T (X, Φ(h)) = T (X̂, Φ̂(h)) and lim

w010→∞ E(X, Φ(h)) = E(X̂, Φ̂(h)).

Proof. Consider a (not necessarily harmonic) periodic realization Φ of X. We write Φ(vi) =
(x1

i , . . . , xN
i ) ∈ R

N and ρ(γ ) = (ρ1
γ , . . . , ρN

γ ) ∈ R
N for γ ∈ L. Then, ρk−γ = −ρk

γ . By theorem 2.5, the
realization Φ is harmonic if and only if

n∑
j=0

∑
γ∈L

wijγ (−xk
i + xk

j + ρk
γ ) = 0, (7.1)

for any 0 ≤ i ≤ n and 1 ≤ k ≤ N. Let xk
i = ξ k

i be a solution of this system of equations, which is
unique up to translations. We may assume that ξ k

0 = 0. Then, Φ(h)(vi) = (ξ1
i , . . . , ξN

i ). We write
wij =∑

γ wijγ , bij = −wij for i �= j, bii =∑
j�=i wij, and ck

i =∑
j,γ wijγ ρk

γ . Using the matrix B = (bij),

the system of linear equations is written as B(xk
0, . . . , xk

n)T = (ck
0, . . . , ck

n)T. Since ξ k
0 = 0 and (ξ k

i )1≤i≤n
are unique, we have B00(ξ k

1 , . . . , ξ k
n)T = (ck

1, . . . , ck
n)T, where B00 = (bij)1≤i,j≤n is a minor of B. Then,

B00 is invertible. Cramer’s rule implies that ξ k
i = det Ck

i / det B00, where Ck
i is the matrix obtained

by replacing the ith column of B00 with (ck
1, . . . , ck

n)T. In this presentation of det Ck
i / det B00, only

b11 =∑
j�=1,γ w1jγ contains w010 = w100. (Note that ρk

0 = 0.) Hence, det B00 and det Ck
i are linear

functions of w010. Moreover, det Ck
1 is constant for w010.

Since Φ(h) is harmonic, we obtain E(X, Φ(h)) ≤ E(X̂, Φ̂(h)) by regarding Φ̂(h) as a realization
of X. Moreover, we have w010||Φ(h)(e010)||2 ≤ E(X, Φ(h)). Hence, limw010→∞ Φ(h)(e010) = 0. In other
words, limw010→∞ ξ k

1 = 0. If det B00 is constant for w010, then ξ k
1 = det Ck

1/ det B00 is also constant.
Hence, ξ k

1 = 0. Then, Φ(h) = Φ̂(h), and the assertion holds trivially.
Suppose that det B00 is not constant for w010. Then, ξ k

i = det Ck
i / det B00 converges as w010 →

∞. We define the realization Φ̂ of X̂ such that Φ̂(v̂) = 0 and Φ̂(vi) = limw010→∞ Φ(h)(vi) for 2 ≤
i ≤ n. Since E(X̂, Φ̂) = limw010→∞ E(X, Φ(h)) ≤ E(X̂, Φ̂(h)) and Φ̂(h) is harmonic, the realization Φ̂
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is also harmonic. The uniqueness of a harmonic realization implies that Φ̂ = Φ̂(h). Therefore,
limw010→∞ Φ(h) = Φ̂(h). �

Theorem 7.2. There are z ∈ R
N and W ∈ R such that

Φ(h)(e010) = z
w010 + W

and

T (X̂, Φ̂(h)) − T (X, Φ(h)) = z⊗2

w010 + W
,

where z and W do not depend on w010, and W does not depend on ρ. Consequently,

E(X̂, Φ̂(h)) − E(X, Φ(h)) = ||z||2
w010 + W

= (w010 + W)||Φ(h)(e010)||2.

Proof. We showed that ξ k
1 = det Ck

1/ det B00 in the proof of lemma 7.1. The determinants det B00
and det Ck

1 are, respectively, linear and constant as functions of w010 = w100. If det B00 is constant
for w010, then ξ k

1 = 0, and we obtain z = 0. We can take W arbitrarily.
Suppose that det B00 is not constant for w010. Then, we can write det B00 = (w010 + W) det B00,11,

where B00,11 = (bij)2≤i,j≤n, and W does not depend on w010 or ρ. Let zk = det Ck
1/ det B00,11 and

z = (z1, . . . , zN). Then,
Φ(h)(e010) = (ξ1

1 , . . . , ξN
1 ) = z

w010 + W
.

Moreover, z does not depend on w010.
We regard the tension tensor T (X, Φ) as a function of w = (wijγ ) and x = (xk

i ). Its (k, l)-entry is
given by

T kl(w, x) = 1
2

n∑
i,j=0

∑
γ∈L

wijγ (−xk
i + xk

j + ρk
γ )(−xl

i + xl
j + ρl

γ ).

Then,
∂T kl

∂xβ
α

(w, x) = −δβk
∑
j,γ

wαjγ (−xl
α + xl

j + ρl
γ ) − δβl

∑
j,γ

wαjγ (−xk
α + xk

j + ρk
γ ).

Consider T kl(w) = T kl(w, ξ (w)) as a function of w, where ξ (w) = (ξ k
i (w)). By the equality (7.1), we

have
∂T kl

∂xβ
α

(w, ξ (w)) = 0. Hence,

∂T kl

∂w010
(w) = ∂T kl

∂w010
(w, ξ (w)) +

∑
α,β

∂T kl

∂xβ
α

(w, ξ (w))
∂ξ

β
α

∂w010
(w)

= ∂T kl

∂w010
(w, ξ (w))

= ξ k
1ξ l

1

= zkzl

(w010 + W)2 ,

where we regard w010 = w100 as a single variable. Hence, T kl = C − zkzl/(w010 + W) for some C
independent of w010. Since limw010→∞ T (X, Φ(h)) = T (X̂, Φ̂(h)) by lemma 7.1, we have

T (X̂, Φ̂(h)) − T (X, Φ(h)) = (
zkzl

w010 + W
)1≤k,l≤N = z⊗2

w010 + W
. �

Lemma 7.3. Let the vector z and the number W be as in theorem 7.2. Suppose that z �= 0. Then,

0 < W ≤
⎛
⎝∑

j�=1

∑
γ∈L

w1jγ

⎞
⎠− w100.
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Proof. Since

||z||2
w010 + W

= E(X̂, Φ̂(h)) − E(X, Φ(h)) < E(X̂, Φ̂(h))

for any w010 ≥ 0, we have W > 0.
As in the proof of theorem 7.2, we have w010 + W = det B00/ det B00,11, where wij =∑

γ wijγ ,
bij = −wij for i �= j, bii =∑

j�=i wij, B00 = (bij)1≤i,j≤n and B00,11 = (bij)2≤i,j≤n. Then,

det B00

det B00,11
= b11 − (b12, . . . , b1n)B−1

00,11(b12, . . . , b1n)T,

by lemma 7.4. Since B00,11 is positive definite by lemma 7.5 and det B00,11 �= 0, so is B−1
00,11.

Therefore, w010 + W ≤ b11 =∑
j�=1

∑
γ∈L w1jγ . Note that if n = 1, we conventionally set det B00,11 =

1 and w010 + W = b11. �

Lemma 7.4. Let A = (aij)1≤i,j≤n be a symmetric matrix. Suppose that A11 = (aij)2≤i,j≤n is invertible.
Then

det A
det A11

= a11 − (a12, . . . , a1n)A−1
11 (a12, . . . , a1n)T.

Proof. Using the adjugate matrix, we have

A−1
11 = (det A11)−1((−1)i+j det A11,ji)2≤i,j≤n,

where A11,ij = (akl)k �=1,i,l�=1,j. The cofactor expansion implies that

det A = a11 det A11 +
∑

2≤i,j≤n

(−1)i+j+1ai1a1j det A11,ij

= a11 det A11 − (a12, . . . , a1n)(det A11)A−1
11 (a12, . . . , a1n)T.

�

Lemma 7.5. Let A = (aij)1≤i,j≤n be a symmetric matrix. Suppose that aij ≤ 0 for any i �= j and∑n
j=1 aij ≥ 0 for any i. Then, A is positive semi-definite.

Proof. The proof is by induction on n. The assertion is trivial for the case n = 1. We have

A = diag

⎛
⎝ n∑

j=1

a1j, . . . ,
n∑

j=1

anj

⎞
⎠+ PTA′P,

where

A′ =

⎛
⎜⎜⎜⎜⎝

a11 · · · a1,n−1 0
...

. . .
...

...
an−1,1 · · · an−1,n−1 0

0 · · · 0 0

⎞
⎟⎟⎟⎟⎠− diag

⎛
⎝ n∑

j=1

a1j, . . . ,
n∑

j=1

an−1,j, 0

⎞
⎠

and

P =

⎛
⎜⎜⎜⎜⎝

1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1
0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ .

The matrix A′ is positive semi-definite by the assumption of induction for n − 1. Therefore, A is
also positive semi-definite. �

Theorem 7.6. Let Φ(a) be a realization of X such that Φ(a)(vi) = Φ̂(h)(vi) for any i �= 1 and Φ(a) is
harmonic around v1. Then, ||Φ(h)(e010)|| ≥ ||Φ(a)(e010)||.
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Proof. Since Φ(a) is harmonic around v1 and
∑

γ∈L w11γ ρ(γ ) = 0, we have
∑
j�=1

∑
γ∈L

w1jγ (−Φ(a)(v1) + Φ̂(h)(vj) + ρ(γ )) = 0.

Hence,

Φ(a)(v1) =
∑

j�=1
∑

γ∈L w1jγ (Φ̂(h)(vj) + ρ(γ ))∑
j�=1

∑
γ∈L w1jγ

.

Let

z(a) =
∑
j�=1

∑
γ∈L

w1jγ (Φ̂(h)(vj) + ρ(γ ))

and

W(a) =
⎛
⎝∑

j�=1

∑
γ∈L

w1jγ

⎞
⎠− w100.

Then, Φ(a)(e010) = Φ(a)(v1) = z(a)/(w010 + W(a)). The difference of energies is given by

E(X̂, Φ̂(h)) − E(X, Φ(a)) =
∑
j�=1

∑
γ∈L

w1jγ ||Φ̂(h)(vj) + ρ(γ )||2

−
∑
j�=1

∑
γ∈L

w1jγ || − Φ(a)(v1) + Φ̂(h)(vj) + ρ(γ )||2

= −
∑
j�=1

∑
γ∈L

w1jγ ||Φ(a)(v1)||2

+ 2
∑
j�=1

∑
γ∈L

w1jγ (Φ̂(h)(vj) + ρ(γ )) · Φ(a)(v1)

= −(w010 + W(a))

∣∣∣∣∣| z(a)

w010 + W(a)

∣∣∣∣∣ |2 + 2z(a) · z(a)

w010 + W(a)

= ||z(a)||2
w010 + W(a)

.

Since Φ(h) is harmonic, we have E(X, Φ(h)) ≤ E(X, Φ(a)). Lemma 7.3 implies that W ≤ W(a).
Therefore,

||Φ(h)(e010)||2 = E(X̂, Φ̂(h)) − E(X, Φ(h))
w010 + W

≥ E(X̂, Φ̂(h)) − E(X, Φ(a))
w010 + W(a)

= ||Φ(a)(e010)||2

by theorem 7.2. �

8. Plasticity
The plasticity of a material is its ability to undergo permanent deformation. For a fixed periodic
graph, no external force is applied to a net if and only if its realization is standard, as shown
in §4. Hence, if no local moves occur in the deformation of a net, then it returns to its initial
state by unloading, and it is perfectly elastic. In general, however, local moves cause plasticity. To
measure plasticity, we introduce the energy loss ratio of a net under deformation. This is defined
by comparing the energy with that of a net in which local moves do not occur.



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210828

..........................................................

Definition 8.1. Let (X0, Φ0) be a harmonic net in R
N . Let us consider fast deformation by

A = A1 ∈ SL(N, R) or slow deformation by At ∈ SL(N, R) for 0 ≤ t ≤ 1. Suppose that we obtain a
harmonic net (X1, Φ1) as in §6. We define the energy loss ratio of X0 with respect to A or At as

R(X0, Φ0, A(t)) = E(X0, Φ0) − E(A−1
1 (X1, Φ1))

E(X0, Φ0)
.

If no local moves occur, then R = 0. We may regard the ratio R as a degree of destruction. Note
that R may be negative by some occurrence of contractions.

Consider the uniaxial extension by

A(λ) = diag(λ, λ−1/(N−1), . . . , λ−1/(N−1)) ∈ SL(N, R)

and At = A(λt). The permanent strain ε0 was defined in §4, by setting A−1
1 (X1, Φ1) as the reference

position.

Proposition 8.2. Suppose that Φ0 is standard, no contractions occur in the deformation, and
R = R(X0, Φ0, At) < 1/N. Then, the permanent strain ε0 satisfies that(

1 − N
N − 1

R
)(N−1)/2N

− 1 ≤ ε0 ≤ (1 − NR)−(N−1)/2N − 1.

Approximations(
1 − N

N − 1
R
)(N−1)/2N

− 1 ∼ −1
2

R, (1 − NR)−(N−1)/2N − 1 ∼ N − 1
2

R,

hold when R ∼ 0. One might expect that ε0 ≥ 0 for λ > 1, but it does not generally hold, because
the directions of deformation and splittings do not necessarily coincide.

Proof. Write E0 = E(X0, Φ0), E1 = E(A−1
1 (X1, Φ1)) and (τij) = T (A−1

1 (X1, Φ1)). Then, T (X0, Φ0) =
(E0/N)I, E1 = τ11 + · · · + τNN , and R = 1 − E1/E0. Since only splittings occur, we have τii ≤ E0/N
for each 1 ≤ i ≤ N by theorem 7.2. Hence,

τ11 = E1 − (τ22 + · · · + τNN) ≥ E1 − N − 1
N

E0.

Proposition 4.2 implies that

(1 + ε0)2N/(N−1) = τ22 + · · · + τNN

(N − 1)τ11
= E1 − τ11

(N − 1)τ11
= 1

N − 1

( E1

τ11
− 1

)
.

Since τ11 ≤ E0/N, we have E1/τ11 ≥ NE1/E0 = N(1 − R). Since R < 1/N and τ11 ≥ E1 − ((N −
1)/N)E0, we have

E1

τ11
≤ (1 − N − 1

N(1 − R)
)−1 = N(1 − R)

1 − NR
.

Therefore,

1 − N
N − 1

R ≤ (1 + ε0)2N/(N−1) ≤ 1
1 − NR

. �

In the remainder of this section, we consider the simplest case of splitting; let X0 be a periodic
graph such that only a single vertex exists in each period. We identify each i = (i1, . . . , iN) ∈ Z

N

with a vertex of X0. Let ei denote the edge of X0 joining 0 and i ∈ Z
N . We write wi for the weight of

ei. It is necessary that wi = w−i. Let ρ : Z
N → R

N be a period homomorphism, and let (u1, . . . , uN)
be a basis of ρ(ZN). The period homomorphism ρ induces a periodic realization Φ0 of X0 such that
the image of vertices is ρ(ZN). For i ∈ Z

N , the edge ei corresponds to vi = i1u1 + · · · + iNuN ∈ R
N .

Then, Φ0 is a harmonic realization. Let I ⊂ Z
N such that Z

N = I 
 −I 
 {0}. Let X1 be a periodic
graph obtained from X0 by splitting the vertex 0 into v0 and v1 so that v0 and v1 are endpoints
of e′

i for i ∈ −I and i ∈ I, respectively, where e′
i is an edge of X1 obtained from ei. We write w′

0
for the weight of the new non-loop edge. Let Φ1 be a harmonic realization of X1 with the period
homomorphism ρ. We may assume that Φ1(v0) = 0. Let x = Φ1(v1).
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For u �= 0 ∈ R
N , let R

N
u = {x ∈ R

N | u · x > 0} and Iu = R
N
u ∩ Z

N . If Iu ⊂ I, the vertices split in the
direction of u. Subsequently, it is possible to regard the net (X1, Φ1) as a result of slow deformation.
However, we do not require this assumption unless otherwise stated.

After we show general behaviour, we give some examples of the energy loss ratio
R = (E(X0, Φ0) − E(X1, Φ1))/E(X0, Φ0) depending on the weights {wi}i∈ZN .

Proposition 8.3. It holds that

x =
∑

i∈I wivi

w′
0 +∑

i∈I wi

and

E(X0, Φ0) − E(X1, Φ1) =
∣∣|∑i∈I wivi

∣∣ |2
w′

0 +∑
i∈I wi

=
(

w′
0 +

∑
i∈I

wi

)
||x||2.

Proof. The condition of harmonic realization −w′
0x +∑

i∈I wi(vi − x) = 0 implies the presentation
of x. We have w010 = w′

0, z =∑
i∈I wivi and W =∑

i∈I wi in the notation of theorem 7.2. Thus, we
obtain the presentation of E(X0, Φ0) − E(X1, Φ1).

We remark that Φ1 coincides with Φ(a) in theorem 7.6. Moreover, W attains the maximum in
lemma 7.3. �

By way of example, we suppose that the weights are given by a function of the lengths of
edges.

Theorem 8.4. Let F(x) be a non-negative function on R
N such that F(−x) = F(x). Put wi = F(svi)

for s > 0. Suppose that the sum
∑

i∈I F(svi)||vi||2 is convergent. Let p = w′
0/w0, which is regarded as the

probability that a loop changes into a non-loop edge. Suppose that there is u �= 0 ∈ R
N such that Iu ⊂ I.

Then, the energy loss ratio R(s, p) satisfies

lim
s→0

R(s, p) =

∣∣∣| ∫
RN

u
F(x)x dx

∣∣∣ |2∫
RN

u
F(x) dx

∫
RN

u
F(x)||x||2 dx

,

where we suppose that the three integrals are finite. Moreover, if F(0) > 0 and lims→∞
∑

i∈I F(svi) = 0,
then lims→∞ R(s, p) = 0 for any fixed p > 0.

By the second assertion, we may understand that the material has lower plasticity if the
proportion of loops is large.

Proof. Since ||vi|| ≥ 1 for all but finitely many i, the sums
∑

i∈I F(svi) and ||∑i∈I F(svi)vi|| are
absolutely convergent. The volume per period is given by V = det(u1 · · · uN). By proposition 8.3,

R(s, p) =
∣∣|∑i∈I F(svi)vi

∣∣ |2(
pF(0) +∑

i∈I F(svi)
)∑

i∈I F(svi)||vi||2
.

Hence,

lim
s→0

R(s, p) = lim
s→0

∣∣|sNV
∑

i∈I F(svi)svi
∣∣ |2(

sNVpF(0) + sNV
∑

i∈I F(svi)
)

sNV
∑

i∈I F(svi)||svi||2

= lim
s→0

∣∣|sNV
∑

i∈I F(svi)svi
∣∣ |2(

sNV
∑

i∈I F(svi)
)

sNV
∑

i∈I F(svi)||svi||2

=

∣∣∣| ∫
RN

u
F(x)xdx

∣∣∣ |2∫
RN

u
F(x)dx

∫
RN

u
F(x)||x||2dx

,

where the Riemann sums converge to the Riemann integrals.
Suppose that p > 0, F(0) > 0 and lims→∞

∑
i∈I F(svi) = 0. Since R(s, 0) ≤ 1, we have

lim
s→∞ R(s, p) = lim

s→∞

∑
i∈I F(svi)

pF(0) +∑
i∈I F(svi)

R(s, 0)

= 0. �
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For example, we use the normal distribution, given by the function F(x) = (2πσ 2)−N/2 exp
(−||x||2/2σ 2) for x ∈ R

N and σ > 0. Then,

lim
σ→∞ R(σ , p) =

∣∣∣| ∫
RN

u1
e−||x||2 x dx

∣∣∣ |2∫
RN

u1
e−||x||2 dx

∫
RN

u1
e−||x||2 ||x||2 dx

=

(∫∞
0 e−x2

x dx
(∫

R
e−x2

dx
)N−1

)2

1
2
(∫

R
e−x2 dx

)N N
2
∫
R

e−x2 x2 dx
(∫

R
e−x2 dx

)N−1

=
4
(∫∞

0 e−x2
x dx

)2

N
∫
R

e−x2 dx
∫
R

e−x2 x2 dx

= 2
Nπ

,

and limσ→0 R(σ , p) = 0 for p > 0. Note that constant multiples of the weights do not change
the energy loss ratio R. Generally, if the function F(sx) for each fixed x �= 0 ∈ R

N monotonically
decreases for s ≥ 0 and

∑
i∈I F(svi) < ∞, then lims→∞

∑
i∈I F(svi) = 0.

Next, we consider the weight functions given by the linear sums ws,i = (1 − s)w0,i + sw1,i for
0 ≤ s ≤ 1. The weight function ws,i for each s induces the energy

Es = E((X0, ws,i), Φ0) =
∑
i∈I

ws,i||vi||2 = (1 − s)E0 + sE1,

and the energy loss ratio Rs = ||zs||2/WsEs by proposition 8.3, where

zs =
∑
i∈I

ws,ivi = (1 − s)z0 + sz1

and

Ws = pws,0 +
∑
i∈I

ws,i = (1 − s)W0 + sW1.

We consider the way in which Rs depends on the compounding ratio s. Since ||z0||2 = W0E0R0
and ||z1||2 = W1E1R1, we have

Rs = ||(1 − s)z0 + sz1||2
WsEs

= (1 − s)2W0E0R0 + s2W1E1R1 + 2(1 − s)sz0 · z1

WsEs
.

Proposition 8.5. Suppose that R0 = R1. Then

Rs = R0 − (1 − s)s

WsEs
((W0E1 + W1E0)R0 − 2z0 · z1) ≤ R0.

The equality holds if and only if E0/W0 = E1/W1 and the vectors z0 and z1 are parallel. For fixed w0,i and
w1,i, the minimum of Rs is attained when

s = ŝ =
√

W0E0√
W0E0 +

√
W1E1

.

We may understand that a material with lower plasticity is obtained by blending two materials.
Note that if I = Iu for u �= 0 ∈ R

N , the vectors z0 and z1 are likely to be nearly parallel to u.
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Proof. It is easy to check the presentation of Rs. The inequality Rs ≤ R1 follows from

2z0 · z1 ≤ 2||z0||||z1|| = 2
√

W0E0W1E1R0 ≤ (W0E1 + W1E0)R0,

where the first inequality is the Cauchy–Schwarz inequality, and the second follows from(√
W0E1 −

√
W1E0

)2 ≥ 0. An easy calculation shows that

(1 − s)s

WsEs
= (1 − s)s

((1 − s)W0 + sW1)((1 − s)E0 + sE1)

= s(1 − s)−1

(W0 + s(1 − s)−1W1)(E0 + s(1 − s)−1E1)

increases for 0 < s < ŝ and decreases for ŝ < s < 1. �

We remark that the linear sums of weights with different energy loss ratios do not yield smaller
ratios in general. For instance, the linear sums of w0,i and wŝ,i as in proposition 8.5 give the energy
loss ratios between R0 and Rŝ.

Under the assumption that R0 = R1, we have

Rŝ =
R0 + z0 · z1/

√
W0E0W1E1

1 + (W0E1 + W1E0)/2
√

W0E0W1E1

≤ 2R0

1 + (W0E1 + W1E0)/2
√

W0E0W1E1

and
W0E1 + W1E0

2
√

W0E0W1E1

= x2 + 1
2x

,

where x =
√

W0E1/W1E0. If x or x−1 is large, then Rŝ is nearly equal to zero.
For example, we consider the cube lattice. Suppose that (u1, . . . , uN) is the standard basis of

R
N . For m ∈ Z>0, let w0,0 = w1,0 = a, w0,±uk = w1,±muk = 1 for any k = 1, . . . , N, and w0,i = w1,i = 0

for the other i. Let u = (1, . . . , 1) and I = Iu. Then, W0 = W1 = pa + N, E0 = N, E1 = m2N, z0 =
(1, . . . , 1), z1 = (m, . . . , m) and R0 = R1 = 1/(pa + N). Since ŝ = 1/(1 + m), we have Rŝ = 4m(1 +
m)−2R0. Consequently, Eŝ = mN and limm→∞ Rŝ = 0.

We give another example by using the linear sums of normal distributions. Suppose that
wk,i = (2πσ 2

k )−N/2 exp(−||vi||2/2σ 2
k ) for k = 0, 1 and σk > 0. Fix μ = σ1/σ0. Theorem 8.4 implies that

R̃s = lim
σ0→∞ Rs = 2(1 − s + sμ)2

Nπ (1 − s + sμ2)
.

It attains the minimum when s = ŝ = 1/(1 + μ). Hence, R̃0 = R̃1 = 2/Nπ , R̃ŝ = 4μ(1 + μ)−2R̃0, and
limμ→∞ R̃ŝ = 0. We remark that limσ0→∞ W1/W0 = 1 and limσ0→∞ E1/E0 = μ2.

9. Examples of deformation
In this section, we give examples of deformation for two-dimensional nets. Let

A(λ) =
(

cos θ − sin θ

sin θ cos θ

)(
λ 0
0 λ−1

)(
cos θ sin θ

− sin θ cos θ

)
.

We consider a uniaxial extension with strain ε = λ − 1 in the direction of an angle θ from the
horizontal axis, namely, the slow deformation by At = A(λt).

For the splitting of a vertex v into v0 and v1, let e, e′
0, e′

1 and e′
01, respectively, denote the loops

on v, v0, v1 and the non-loop edge between v0 and v1. Suppose that the weight function w satisfies
w(e′

0) = w(e′
1) = w(e)/4 and w(e′

01) = w(e)/2.
Let X(m) denote the periodic graph after the mth local move, and let Φ(m) be a harmonic

realization of X(m). Suppose that Φ(0) is standard, and all the period homomorphisms for
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0 1v v

Figure 7. The hexagonal lattice.

Φ(m) are common. We write E (m)(λ) = E(A(λ)(X(m), Φ(m))). The engineering stress is σ
(m)
eng(λ) =

(1/V)(dE (m)/dλ). The permanent strain ε
(m)
0 is the number satisfying σ

(m)
eng(1 + ε

(m)
0 ) = 0. The energy

loss ratio is R(m) = 1 − E (m)(1)/E (0)(1).

(a) Hexagonal lattice
Let X(0) be a periodic graph of which the edges consist of loops and the 1-skeleton of the hexagonal
tiling. We assume that the period is minimal. Let w0 and w1 be the weights of each loop and
non-loop edge, respectively. A standard realization Φ(0) of X(0) is given as follows (figure 7):

(i) for l > 0, the vectors u1 = (
√

3l, 0) and u2 = ((
√

3/2)l, (3/2)l) form a basis of the lattice;
(ii) representatives v0 and v1 of the vertices are mapped to Φ(0)(v0) = (0, 0) and Φ(0)(v1) =

((
√

3/2)l, (1/2)l); and
(iii) The non-loop edges e1, e2 and e3 originating from v0 are mapped to Φ(0)(e1) =

((
√

3/2)l, (1/2)l), Φ(0)(e2) = (−(
√

3/2)l, (1/2)l) and Φ(0)(e3) = (0, −l).

Then, the volume per period is V = (3
√

3/2)l2. The energy per period is E (0) = E(X(0), Φ(0)) = 3w1l2.
Young’s modulus is E = 4E0/V = (8

√
3/3)w1. The tension tensors around the vertex v0 and v1 are

T (v0) = T (v1) =
(

(3/2)w1l2 0
0 (3/2)w1l2

)
.

(i) The case θ = 0

Consider the slow deformation by At = A(λt) for θ = 0. Then,

E (0)(λ) = 3
2

w1l2(λ2 + λ−2), σ
(0)
eng(λ) = 2

√
3

3
w1(λ − λ−3).

Suppose that 1 < δ−1l <
√

2K2w0+3w1/3w1l2. When λt = δ−1l, the edge e3 contracts to a loop, where

no splittings occurred earlier. We obtain a periodic graph X(1) as shown in figure 8. The edges of
X(1) consist of loops with weight 2w0 + w1 and the 1-skeleton of the square tiling. Then,

E (1)(λ) = 3
2

w1l2(λ2 + 3λ−2), σ
(1)
eng(λ) = 2

√
3

3
w1(λ − 3λ−3)

and
ε

(1)
0 = 4

√
3 − 1 ≈ 0.316, R(1) = −1.

Furthermore, when λt =
√

K4w0+6w1/3w1l2, the vertices of X(1) split. We obtain a periodic graph

X(2) as shown in figure 9. The weights of each loop and new non-loop edge are, respectively,
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Figure 8. The graph X (1).

Figure 9. The graph X (2).

(1/2)w0 + (1/4)w1 and w0 + (1/2)w1. Then,

E (2)(λ) = E (1)(λ) − 3w2
1l2

w0 + (5/2)w1
λ2

= 3
2

w1l2
(

2w0 + w1

2w0 + 5w1
λ2 + 3λ−2

)
,

σ
(2)
eng(λ) = 2

√
3

3
w1

(
2w0 + w1

2w0 + 5w1
λ − 3λ−3

)

and ε
(2)
0 = 4

√
3(2w0 + 5w1)

2w0 + w1
− 1, R(2) = −2w0 + 3w1

2w0 + 5w1
.

(The first equality is also obtained by theorem 7.2.) It holds that 4
√

3 − 1 < ε
(2)
0 ≤ 4

√
15 − 1 ≈ 0.967.

If w0 = w1, then ε
(2)
0 = 4

√
7 − 1 ≈ 0.626. We remark that ε

(2)
0 decreases as w0/w1 increases.
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Figure 10. The graph X (3).

e (1) e (0)

e (2)

l

e (3)

=    – 1
0 1 2 3

24l2

6l2

e

Figure 11. Energies for deformation in the case θ = 0.

Furthermore, when λt =
√

((2w0 + 5w1)/(2w0 + w1))((2K2w0+3w1 )/(3w1l2)), vertices of X(2) split.
For genericity, we suppose that a single vertex per period splits. (We may assume that a
representative thereof is at the origin.) We obtain a periodic graph X(3) as shown in figure 10.
Then,

E (3)(λ) = E (2)(λ) − 2w0 + w1

2w0 + 5w1

24w2
1l2

2w0 + 21w1
λ2

= 3
2

w1l2
(

2w0 + w1

2w0 + 21w1
λ2 + 3λ−2

)
,

σ
(3)
eng(λ) = 2

√
3

3
w1

(
2w0 + w1

2w0 + 21w1
λ − 3λ−3

)

and ε
(3)
0 = 4

√
3(2w0 + 21w1)

2w0 + w1
− 1, R(3) = −2w0 + 11w1

2w0 + 21w1
.

It holds that 4
√

3 − 1 ≤ ε
(3)
0 ≤ 4

√
63 − 1 ≈ 1.817. If w0 = w1, then ε

(3)
0 = 4

√
23 − 1 ≈ 1.189.
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Figure 12. Stress–strain curve in the case θ = 0.
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Figure 13. Energies for deformation in the case θ = π/6.

Similarly, more splittings of vertices may occur. Subsequently, the length of a path of edges
increases. For w0 = w1 = 1, the energies are shown in figure 11, and the stress–strain curve is
drawn as the thick discontinuous curve in figure 12. Note that if we take a larger period, the
occurrences of local moves change by genericity. We must also consider a contraction when
λt = 3δ−1l. With this consideration, the stress–strain curve also changes. It would be desirable
for these stress–strain curves to converge to a continuous curve as the periods expand.

(ii) The case θ = π/6

Consider the slow deformation by At = A(λt) for θ = π/6. Then, only splittings occur. We state
only a result:

E (0)(λ) = 3
2

w1l2(λ2 + λ−2), σ
(0)
eng(λ) = 2

√
3

3
w1(λ − λ−3) ( same as above) ,

E (1)(λ) = 3
2

w1l2
(

3w0

3w0 + 4w1
λ2 + λ−2

)
, σ

(1)
eng(λ) = 2

√
3

3
w1

(
3w0

3w0 + 4w1
λ − λ−3

)
,

ε
(1)
0 = 4

√
3w0 + 4w1

3w0
− 1, R(1) = 2w1

3w0 + 4w1
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Figure 14. Stress–strain curve in the case θ = π/6.

E (2)(λ) = 3
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w1l2
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3w0
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)
, σ

(2)
eng(λ) = 2

√
3

3
w1

(
3w0

3w0 + 8w1
λ − λ−3

)
,

ε
(2)
0 = 4

√
3w0 + 8w1

3w0
− 1, R(2) = 4w1

3w0 + 8w1
,

E (3)(λ) = 3
2

w1l2
(

w0

w0 + 8w1
λ2 + λ−2

)
, σ

(3)
eng(λ) = 2

√
3

3
w1

(
w0

w0 + 8w1
λ − λ−3

)

and ε
(3)
0 = 4

√
w0 + 8w1

w0
− 1, R(3) = 4w1

w0 + 8w1
,

and so on. For w0 = w1 = 1, the energies are shown in figure 13, and the stress–strain curve is
shown in figure 14.

10. Discussion and perspectives
We discuss some open issues and propose questions for further research.

(1) The definition of the tension tensor fits with our purely mathematical interest, and we can
apply it to topological and discrete geometric properties of graphs and nets. To define an
energy, we have used E(l) = l2 as an energy of an edge of length l. What happens when
we take another energy function E(l)? A linear transformation of a harmonic realization
is no longer harmonic, but a harmonic realization is still unique if E′(l) > 0 and E′′(l) > 0.

(2) In §5, we have arbitrarily given the threshold values δ and Kd in the conditions of a
contraction and a splitting. What are the values δ and Kd for an actual TPE? How does
the value Kd depend on the degree d?

(3) The validity of our model for deformation requires the assumption that infinite repetition
of local moves does not occur. However, mutually inverse splittings and contractions may
continue alternatingly in some cases. Theorem 6.1 gives a sufficient condition that such
alternating repetition does not occur. Is another kind of infinite repetition possible? If it is
possible, what condition is sufficient to avoid such repetition?

(4) In §9, we have given simple examples for two-dimensional nets. What about three-
dimensional nets?

(5) Do local moves occur in unloading? If not, then it reproduces the Mullins effect [14]: the
stress–strain curve in reloading coincides with that in the unloading until the maximal
strain of the prior loading. Figures 12 and 14 illustrate this behaviour. Even if local moves
occur in unloading, the inverse local moves in reloading may induce the Mullins effect.
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(6) We have worked in continuous weights of edges, which is useful for mathematical
arguments. Of course, the weights corresponding to actual polymers are integers.
However, it would not be meaningful only to restrict ourselves to integer weights.
Our presented settings preserve periodicity. As a result, stress–strain curves are not
continuous. To obtain a continuum limit of such discrete matters, stochastic formulation
of local moves will be effective. The stochastic formulation in integer weights may
induce continuous stress–strain curves and a nonlinear constitutive equation that reflects
elastoplasticity. We expect that this is also appropriate to describe fracture of materials.
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