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Objective: Network-based approaches emerged as powerful tools for studying
complex diseases. Our intention in this article was to raise awareness of the benefits
of new therapeutic strategy in biological networks context and provide an introduction
to this topic.

Methods: This article will discuss the rational for network intervention, and outline some
of the important aspects of deciphering targets activities in the network and future
embodiments of network intervention. We also present examples of network intervention
based on the strategies these approaches use.

Results: Network intervention seeks for target combinations to perturb a specific subset
of nodes in disease networks to inhibit the bypass mechanisms at systems level.
Experimental results derived from our studies are discussed, with conclusions that lead
to future research directions. A simple diagram is designed to give a way to find the
minimum number of external input required for a network intervention based on the
graph theory and get the analytical value of the least input.

Conclusion: Creating network intervention that addresses blindness and unthinking
action in this way could, therefore, provide more benefit than multi-target therapy. We
hope that this article will give readers an appreciation for a new therapeutic strategy
that has been proposed for improving clinical benefit by adopting network-based
approaches as well as insight into their properties.

Keywords: network intervention, therapeutic strategy, complex disease, network pharmacology, algorithm

INTRODUCTION

Contemporary classification of disease systems has properties that limit its usability in some
situations, especially therapeutic strategies. Thus a new approach network classification has been
proposed to classify human disease status (Lu et al., 2008; Zhang et al., 2016). This classification
method became more precise because of the network approach gained an increasing ground in
modeling biological processes by now. Complex networks have progressed steadily to provide
a specially promising framework for systems biology investigation. Further research is needed
to shed more light on important practical applications related to properties of networks, in
particular about therapeutic approach, therapists have unprecedented opportunities to increase

Abbreviations: APC, Adenomatous polyposis coli; ASP, asparaginase; CDF, Compound Danshen Formula; CIS, Cisplatin;
DOX, Doxorubicin; ETO, Etoposide; GEM, Gemcitabine; T2DM, type 2 diabetes mellitus; TCF, T cell factor; VIN,
Vinorelbine.
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their value and significance. For this purpose, it may be assumed
that network intervention can be an effective approach. Network
intervention is the application of network science toward
modifying clinical outcomes in patients. Accordingly, this paper
analyzes network intervention in biological processes in light of
this strategy.

The Limitation of Traditional Clinical
Disease Classification
Traditional approaches of clinical disease classification have
been based on pathological analysis and existing knowledge
of diseases (Robinson, 2012). However, traditional diagnostic
approaches are prone to errors (Wu and Montgomery, 2008;
Loscalzo et al., 2016). Consequently, discover a potential new
therapeutic strategy for difficult-to-treat diseases is beset with
problems (Schreiber, 2000), given the lack of reliable pathogenic
criteria. To help identify physiological failures, diseases can be
defined as specific sets of phenotypes affecting one or multi-
systems (Goh et al., 2007; Hidalgo et al., 2009). This explains
why often current therapeutic options are single- or multi-target
directed. However, the current state of knowledge about target
directed strategy which based on matching disease classification
is far from enough. Although most diseases are often treated
separately, they are not independent of each other (Menche et al.,
2015). There are no clear boundaries between many diseases
(Rosenberg, 2006), as diseases can have multiple causes and
can be related through several dimensions (National Center for
Complementary and Alternative Medicine, 2004; Hidalgo et al.,
2009; Barabási et al., 2011). Network approach may provide
a systems level understanding of human status complexity
(Zanzoni et al., 2009).

Network-Based Classification to
Diseases
During the past half-decade, network-based classification to
diseases has undergone a revolution because of the emergence
of new theoretical tools and techniques (Csermely et al., 2005).
This further understanding makes us to view diseases as the
network than as single gene. Meanwhile, evolving therapeutic
strategies to improve outcomes of patients were discussed.
Given the multi-components of networks, single component
often fails to restore disease inducing systems failure (Tun
et al., 2011). And sometimes the effects of drugs with high
doses can spread throughout the network in which they act,
causing some unwanted adverse reactions. From single- to multi-
target, medicinal chemists still rely on some version of lock–
key paradigm to the design of novel therapeutics. Now they
recognizes that final effects of a given drug on a biological system
may depend not only on the specific ligand-target recognition
events but also on the influence of a specific intervention on
human body systems.

Potential New Therapeutic Strategy:
Network Intervention
In such a network context, therapy response can be considered
from robustness of human status networks to deal with

node attacks, due to inherent diversity and redundancy of
compensatory signaling pathways that result in highly resilient
network system with interconnected topology. Therefore,
network intervention seeks for target combinations to perturb
a specific subset of nodes in human status associated networks
to inhibit the bypass mechanisms at systems level. Network
intervention can help therapists to better understand why
sometimes the effect of targeted therapies varies heterogeneously
even if they directly bind to the molecules. Although direct
binding, no clinical indicator is visually effective. Networks can be
attacked after intervention in many ways most links in networks
are weak, observed changes will be given to clinical indicator. In
a network model of pharmacological actions, red elements of the
network represent various targets (Figure 1), the drug candidate
molecule binds to its target, which is a part of a network. The
effect of activation of a target (regulators a), which is the usual
outcome of the current single target drug design paradigm, is
shown. The effect of regulator 1 is inhibited 20%. Again, another
target (regulators b) can go into partial effect, inhibited 50% is
shown. Unfortunately, this induced top-down effect on disease
indicator shows ineffective. Finally, regulators a–c, act together
resulting in the development of efficient network interventions
and 86% decrease in disease indicators. In this case, a target-sets
pattern intervention might be sufficient to achieve a significant
modification.

What Are the Difference Between
Network Intervention and Multi-Target
Intervention?
The biggest difference between network intervention and multi-
target intervention is the way of building of effects with/without
network science. Multi-target intervention focus on multi-target
recognition ability and network intervention quests for the effect
of target combinations to perturb a specific subset of nodes in
disease network. From multi-target perspective, combination
interventions are the standard of care for the treatment of
diseases including cancer, T2DM, viral and bacterial infection,
and asthma (Zimmermann et al., 2007). Plants also developed
a combinative-strategy (Kubinyi, 2003). Multi-target effect is
considered overcome the adverse reactions associated with high
doses of single drugs by countering pathway compensation
and thereby increasing effect while minimizing overlapping
toxicity and allowing a lower dose of each compound. Actually,
recognizing that positive target effects change in vivo is not a
matter of choosing more targets, but choosing appropriately
perturbing function. For example, Isorhamnetin, Nardostachin,
and Jatamansin are the three active ingredients of Chinese herbal
medicine CDF. Enoxaparin sodium, a low-molecular-weight
heparin prepared from porcine intestinal heparin, is used for the
prevention and treatment of venous thromboembolism (Buckley
and Sorkin, 1992). Conventional scientific understanding
of multi-targets is that there are more reliable targets were
hit by the action of the three ingredients, but our research
suggests the antiangiogenic effect of enoxaparin sodium (normal
concentration) was significantly higher than that of three
ingredients of CDF (Supplementary Figure S1). This example
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FIGURE 1 | The network model of pharmacological actions.

shows that network intervention strategies not myopic view
only with targets combination but perturbing ability of drug for
disease network. From single target to multi-target therapies,
those paradigms have achieved considerable success in some
diseases.

Now, we are in turning points in treatment of the disease
they have failed to provide an effective approaches (Talevi,
2015). Network intervention may offer hope for an effective
treatment. In this paper, we will discuss the rationale for
network intervention, and present a strategy to develop modeling
approaches to identify targets in a network context that could be
leveraged for therapeutic benefit.

RATIONALE

The Characteristics of Network
Intervention
Networks are characterized by a number of highly connected
nodes while most nodes interact with a few neighbors (Alm and
Arkin, 2003). These highly connected nodes have been proposed
to play important roles in biological processes and shown to
be related to the modular structure of networks (Liu et al.,
2007; Sejoon et al., 2011). Therefore, it might be interesting
to consider complex disease related key nodes (targets) in the
context of the self-organized properties of interaction networks.
Self-organized criticality is unstable state of networks in which

tension develops as the network grows (Akker et al., 2011; Janina
and Thilo, 2014). The tension is released by an avalanche type
change in the network when the system becomes critical, because
many of its elements behave identically as in transition phase
(Dancík et al., 2010). The probability of this critical behavior
often follows a power law and concentration threshold (Sanatkar
et al., 2015). In some cases, network intervention effect can be
obtained from different targets combination. Sometimes they are
just like teams trying to reach the same destination via different
paths. Often, single target node selection in dynamic networks
is more difficult for choosing a deterministic node applies in
different subjects. Consequently, many single-target drugs are
not fully correct complex conditions such as cancer. By contrast
module nodes in network with low concentration sometimes
satisfy an important structural property. Once concentration
threshold of module nodes is reached, the effects of target-sets
pharmacological activities recoveries can lead to disease network
reverts to its original state and avoid overreaction. Certainly,
concentration threshold and different combinations are the
parameters in considering the effect of network interventions.

More Than One Best Intervention Can Be
Determined? A Network Modeling
Example
To recognize that network modeling approach provides an
opportunity to understand the complex relationships and direct
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quantitative analysis of dynamic network, and show directly the
effects of combination intervention, we generated network model
such that it with parameter variation. Wnt signaling (Clevers,
2006), one of the most critical signaling pathway in rheumatoid
arthritis (RA) pathogenesis, is a potent pathway to regulate the
expression of matrix metalloproteinase-13 (MMP-13) (Wernicke
et al., 2006), while MMP-13 is known to be one of key factors
responsible for degradation of collagen type II in articular
cartilage. Wnt signaling is initiated by targeting the “destruction
complex” consisting of the core scaffolding proteins Axin and
APC that promotes the phosphorylation of β-catenin. And
stabilized β-catenin translocate to the nucleus and functions
as a co-factor of TCF transcription factors to trigger the
transcription of Wnt target gene (Sen, 2005). A mathematical
model for Wnt/β-catenin dynamic network regulating MMP-
13 was developed by employing a chemical kinetic reactions
approach, as illustrated in Figure 2A. Figure 2B shows a
time series of the dynamic behavior of major components
in Wnt/β-catenin pathway. The changes of single or multi-
parameters related to Axin, APC/β-catenin and β-catenin/TCF
induce the effects on the MMP-13 dynamic behavior of our
model was a detailed analysis. The values of three most sensitive
kinetic parameters k1–3 were set to increase or decrease by
1200×, with the other parameters fixed. The obtained results
are shown in Figure 2B, in which the blue, red, and black
curves represent the variation of k1–3, respectively. As seen
in Figure 2B (1), the value of k1 was set to 0.0002, 0.02
(‘basal’ value) and 2 nM min−1. When k1 increases from
0.02 to 2 nM min−1 (black curve) or decreases from 0.02
to 0.0002 nM min−1(blue curve), the oscillations of MMP-13
disappear and subsequently reach steady state. Since k1 is the
synthesis rate of Axin that is a suppressor of Wnt/β-catenin
pathway, the concentration of MMP-13 decreases when k1 rises
to 2 nM min−1. Compare with Axin (Kishida et al., 1998),
a reliable and key target which should now be regarded as
a tumor suppressor, the effects of two targets combination
APC/β-catenin and β-catenin/TCF with low concentration are
extremely similar to Axin. It is interesting to observe that
different targets combinations seem to have obtained the same
effect independently. This example also shows how the effect
of multi-parameters causes changes in the dynamic behavior of
network model.

The Rationale for Network Interventions
Can Be Especially Applicable to
Oncology
The combination approaches aim to discover the unknown
off targets for the existing drugs. Clinically efficacious cancer
therapies often multi-target because the process of oncogenes
is known to be multi-genic, and most cancers have some
independent mutations (Tang and Aittokallio, 2014). These
tumorigenic viruses use a multi-target approach to drive their
own proliferation. Given that multiple nodes in the network must
be modified to induce cancer, recently many researchers have
proposed that multiple interventions will be required to counter
this process. A much anticipated is try to find strongest one of

all possible drug combinations. In this specific case, we aimed to
find the most effective drug combinations. Chemotherapy drugs
including GEM, VIN, DOX, ETO, CIS, and ASP, known to be
clinically effective against cancer and selected by algorithm, they
were mixed by the following methods: single drug (6 possible
ways), two drugs mixed (15 possible ways), and three drugs
mixed (20 possible ways). The drug combinations were incubated
in vitro with the SKOV3 cells for inhibitory efficacy evaluation.
The concentration of each drug in the system was equal to
the critical concentration, which was obtained in our previous
experiment. Finally, the inhibitory efficacies of two combinations
(GEM+VIN+ETO and GEM+VIN+CIS) were expressed as
an effective combinations. Other combinations were completely
ineffective. Certainly, the results require further pharmacological
testing, and clinical trials.

STRATEGY

How should we develop modeling approaches to identify targets
in a network context? With the large amount of data generated
by the new technologies, it is possible to construct the multi-
dimensional molecular network in specific disease, but there are
a lot of unsolved hot problems, Such as detection of disease–
gene relation, characterization of disease mechanisms and
process, early diagnosis of disease and individualized medical,
the key points of these problem including the construction
of biological networks, annotation of molecular mechanism
and biological significance analysis, identification of biomarker
and quantification of network intervention. Emerging evidences
suggest that human diseases are associated with complex set of
inner and inter factors, the inner factor refer to gene expression
and gene-related regulation which could be underlined by
shared TFs, histone modifications, miRNAs, and other regulators
(Guan et al., 2014). The inter factors means the environmental
pollution, radiation and other factor, both inner and inter factors
can perturbed the normal molecular networks in human, here
we name them as disease-perturbed networks, Capturing and
quantifying these disease-perturbed networks is the first step
in network intervention. The information gain (Info Gain)
can be used to measure the total interference degree of the
perturbed network. Specifically, the A gene is a variable in the
perturbed network, and the entropy of A can be calculated. The
B gene which regulated A gene is also a variable. If we know
the information entropy of the B gene as H (B) when the A
gene is disturbed. Here we need to know the joint probability
distribution (Jiang et al., 2015; Zeng et al., 2016) through the data
estimation and joint distribution probability formula. We set H
(B| A) as the conditional entropy. The subtraction of H (B) and
H (B| A) is the information gain. If the information entropy of
the B gene is interfered as 1, the conditional entropy is 0.01 (the
A gene is disturbed as a condition), then subtracting to 0.99, in
the condition that the B gene is disturbed under the condition
that A gene is disturbed, the information gain is 0.99. That is,
when the A gene is disturbed. This information is important for
the downstream regulation of the B gene. Therefore, we measure
the total information gain for each gene in a network that can
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FIGURE 2 | (A) Reaction scheme for a model of the Wnt pathway. (B) Effect of Axin, APC/β-catenin, and β-catenin/TCF on MMP-13 dynamics behavior.

be used to characterize the perturbed network under the disease
state.

For a complex perturbed network, the nodes represent the
genes, and the edges between the nodes represent the causal
relationship of the genes. As show in Figure 3, we build such a
system has four nodes on behalf of the four genes of the system,

where x1, x2, x3, x4 represent the movement or concentration
distribution, and the edges between the nodes indicates that
there are interactions between the genes of the system. The
weights W1→2, W1→3, W3→4 represent the importance of these
interactions between two genes. The total edges related to one
nodes means the degree of the node. The external input u1, u2
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FIGURE 3 | The diagram of perturbed network and intervention structure.

through x1 and x2 nodes to intervene the system. If the system
reaches X (t) = Xf within a finite time or a finite concentration
t for any given initial state xo and any given final state Xf .
According to Wang and Liu (2011) and Xu et al. (2014) the
system can be reversed and intervened. The system dynamics
or concentration gradient equation is: Y = Ax + Bux ∈ RN,
u ∈ RN

Where, x = x (t) = (x1(t), ..., xN (t)) is the state of the system
at time or concentration t, A =

(
aij

)
N×N is the system matrix

represent the interaction in the system, for example if the
distance between the individual i and the individual j is
connected, then the value of the aij is the weight of the edge,
otherwise aij = 0; B = (bij)N×M, M ≤ N is the input matrix,
indicating that how the external input signal (drug) controls the
nodes acting in the network. And then use the Kalman rank
to determine whether the network system can be intervened
(Treebushny and Madsen, 2003; Liard and Lissy, 2017). For
constrained systems, C = [B, AB, A2B, ..., AN−1B], rank (C) =
N. If the Kalman matrix C is full, the system can be
intervened.

The above criteria provide a theoretical approach for the
intervening performance of our criterion system, but it is a
difficult task to calculate the rank of the Kalman matrix C for
large-scale complex disease networks. First, for each element aij
in the system matrix A, the edge weight value in the network
is difficult to measure accurately; second, even if we know all
the edge weights, the computational complexity is very high
and difficult to apply. Thus, the study of complex interventions
for complex disease network can be simplified as structural
intervention study according to structure controllability by using
lasso or ridge regression.

This example is designed to give a way to find the minimum
number of external input required for a network intervention
based on the graph theory and get the analytical value of the
least input. It is found that the number of nodes that need to be
intervened mainly determined by the degree distribution of the
network, and the problem of determining the minimum input
intervention of a directed network can be transformed into the
maximum matching problem. Further study we need consider
all these factors to get the best intervention for a specific disease
network.

CONCLUDING REMARKS

It is recognized that network representation of the complexity
of biological systems is just the beginning, given that it just
provides an overview of the system under investigation. The
wisdom of target-sets, the proper concentration in the context
of network properties might predominate and the patients
could benefit from combinations that simultaneously impact
new therapeutic strategies. Creating network intervention that
addresses blindness and unthinking action in this way could,
therefore, provide more benefits than multi-target therapy.
As we have discussed, the application of these principles
to specific diseases is in its infancy, but the early concepts
are internally consistent and early results are encouraging.
Attempts to confirm this hypothesis may lead to new therapeutic
strategy.
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